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Application of Floquet theory to dynamical systems with memory
Fabio L. Traversa,1, a) Massimiliano Di Ventra,2, b) Federica Cappelluti,3, c) and Fabrizio Bonani3, d)

1)MemComputing Inc., 9909 Huennekens Street, San Diego, CA 92121, USA
2)Department of Physics, University of California San Diego, La Jolla, CA 92093,
USA
3)Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, 10129 Torino,
Italy

(Dated: 14 September 2020)

We extend the recently developed generalized Floquet theory [Phys. Rev. Lett. 110, 170602 (2013)] to
systems with infinite memory, i.e., a dependence on the whole previous history. In particular, we show that a
lower asymptotic bound exists for the Floquet exponents associated to such cases. As examples, we analyze
the cases of an ideal 1D system, a Brownian particle, and a circuit resonator with an ideal transmission line.
All these examples show the usefulness of this new approach to the study of dynamical systems with memory,
which are ubiquitous in science and technology.

PACS numbers: 05.45.-a, 02.30.Oz, 02.30.Sa, 84.30.Bv

Although Floquet theory is a powerful tool in the
solution of linear differential equations with peri-
odic coefficients, its generalization to dynamical
systems with finite memory (generalized Floquet
theory) has only recently been obtained. How-
ever, also of interest are those systems that sup-
port memory over the whole time evolution (in-
finite memory). Here, the generalized Floquet
theory is extended to such systems and analyti-
cal properties of the corresponding Floquet expo-
nents are derived. Several examples, chosen for
both their fundamental and applicative relevance,
are then analyzed to illustrate the theoretical re-
sults. Owing to the prevalence of dynamical sys-
tems with memory, we expect this work to greatly
expand the reach of Floquet theory.

I. INTRODUCTION

Floquet theory is a fundamental tool for express-
ing the solution of linear differential equations that
have periodic coefficients1,2. These types of equations
are very common in several areas of science and tech-
nology, such as quantum3–10 and classical11,12 physics,
chemistry13–15, electronics16–19, noise analysis20–23, ap-
plied mathematics24,25, and in general dynamical
systems26. In particular, it provides a versatile tool for
the stability analysis of physical systems characterized
by a periodic steady-state. However, till very recently
Floquet theorem was limited to systems whose features
depend instantaneously on time, i.e., described by mem-
oryless equations.

a)ftraversa@memcpu.com
b)diventra@physics.ucsd.edu
c)federica.cappelluti@polito.it
d)fabrizio.bonani@polito.it

On the other hand, systems with memory are by
far more common than memoryless ones27, with an ex-
tremely wide range of applications28,29. In general, a
system with memory is characterized by a dependence
of the dynamical equations on a portion or even on the
whole previous state history. Even systems with delay
are a special case of memory systems, where the depen-
dence on the past history is limited to a countable set
of time instants. The ubiquity of memory systems led
some of us (FT, MD, and FB) to prove a generalization
of Floquet theory, extended to a wide class of systems
described by linear memory operators30. In that paper
we have only provided the fundamental theorem of this
generalized Floquet theory, and as a corollary we have
proved Bloch’s theorem for non-local (in space) poten-
tials.

In the present contribution, we apply the general the-
orem proved in Ref. 30 to the case of systems with linear
memory, providing a formal extension of the theorem of
Ref. 30 to systems whose memory is infinite, and show-
ing that a lower asymptotic bound exists for the Floquet
exponents associated to such cases. Furthermore, we also
provide a general numerical tool based on the harmonic
balance method31,32 aimed at the numerical assessment
of stability. As practical examples, we discuss the anal-
ysis of an ideal one-dimensional dynamical system with
memory, of a more realistic Brownian particle with mem-
ory, and of a circuit resonator with ideal transmission
line.

We consider here a nonlinear dynamical system ex-
pressed as

dz

dt
= f(z(t), t) +

∫ t

−∞
K(t, τ)z(τ) dτ, (1)

where z, f ∈ Rn and K ∈ Rn×n is the kernel representing
the memory effects. Notice that (1) is very general, as it
may include both autonomous and forced systems such
as the periodically driven spin-boson system studied in
Ref. 8. We assume that (1) admits a solution zS(t) pe-
riodic of period T (limit cycle), and that K is such that
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2

K(t, τ) = K(t+ T, τ + T ) (2a)∫ t

−∞
‖K(t, τ)‖ dτ <∞ ∀t (2b)

where ‖·‖ is a properly defined norm. Notice that if the
memory part is time-invariant, i.e., if K(t, τ) = K(t−τ),
condition (2a) is always satified.

The stability of the limit cycle zs(t) is defined by the
variational problem

dy

dt
= A(t)y(t) +

∫ t

−∞
K(t, τ)y(τ) dτ, (3)

where y(t) = z(t) − zS(t) is the cycle perturbation, and
A(t) is the T -periodic Jacobian matrix of f(z(t), t), with
respect to z, calculated in the limit cycle.

II. GENERALIZED FLOQUET THEOREM

The generalization of Floquet theorem proved in
Ref. 30 shows that the state transition matrix of (3) can
be expressed as

Φ(t; t0) = M(t; t0) eF(t− t0) (4)

where M(t; t0) is an x× p matrix that is T -periodic with
respect to both time variables, and F is a constant p× p
matrix whose eigenvalues constitute the cycle Floquet
exponents. With respect to a memoryless systems, how-
ever, the size p of F may be larger than n, and even
infinite.

Thus, the general solution of (3) can be expressed as
a linear combination of p exponential functions, charac-
terized by the Floquet exponent λ, times a T periodic
function r(t) = r(t + T ), the (direct) Floquet eigenvec-
tor. This means that we seek solutions of (3) in the form

y(t) = r(t) eλt r(t) = r(t+ T ). (5)

Due to the T -periodicity of the Floquet eigenvector, we
have actually a set of p different classes of values for
λ. In fact if λ0 is one of the eigenvalues of F, each
λ0 + ki2π/T (k ∈ Z) spans the same eigenspace: we
call this phenomenon the splitting of the eigenvalues. To
reduce to a minimum the number of significant quan-
tities, it is customary to define the Floquet multipliers
µ = exp(λT ), since the exponential function eliminates
the splitting phenomenon. Of course, the stability of the
solution of (1) depends on the sign of the real part of λ,
or equivalently on the magnitude of µ.

The defining equation for the Floquet eigenvalues (and
direct eigenvectors) can be found substituting (5) into
(3). We find

dr

dt
+ λr(t) = A(t)r(t) + q(r, t, λ) (6)

where

q(r, t, λ) =

∫ t

−∞
K(t, τ)r(τ) eλ(τ − t) dτ (7)

is a T -periodic function of t because all the other terms
of (6) are.

The convergence of the integral defining q(r, t, λ) is
not trivially derived from (2b). In order to clarify the
matter, we start by proving the following Lemma:

Lemma 1. Let us consider (3) where the memory kernel
satisfies (2). We consider a real s̄ and any s > s̄. Then,
the solutions y(t) = r(t) exp(λt) and ȳ(t) = r̄(t) exp(λ̄t)
of the variational problems (with finite memory)

dr

dt
+ λr(t) = A(t)r(t) +

∫ t

t−s
K(t, τ)r(τ) eλ(τ − t) dτ

(8a)

dr̄

dt
+ λ̄r̄(t) = A(t)r̄(t) +

∫ t

t−s̄
K(t, τ)r̄(τ) eλ̄(τ − t) dτ

(8b)

satisfy:

∣∣λ− λ̄∣∣ ≤M ∫ t−s̄

t−s
max
t∈[0,T ]

‖K(t, τ)‖ dτ (9a)

and for s̄� 0

∣∣λ− λ̄∣∣ ≤M− ∫ t−s̄

t−s

max
t∈[0,T ]

‖K(t, τ)‖

t− τ
dτ

if Re
{
λ̄
}
< 0 (9b)

∣∣λ− λ̄∣∣ ≤M+

∫ t−s̄

t−s
max
t∈[0,T ]

‖K(t, τ)‖ e−Re
{
λ̄
}

(t− τ) dτ

if Re
{
λ̄
}
> 0 (9c)

where 0 < M+,M− ≤M < +∞.

Proof. See Appendix A.

Lemma 1, starting from (2b), shows that for s̄
large enough, for every s,

∣∣λ− λ̄∣∣ → 0 faster than∫ t−s̄
t−s ‖K(t, τ)‖ dτ . This means that the eigenvalue λ be-

comes independent of s̄, i.e., of any finite approximation
of the system memory length. The first consequence is
numerical: for large enough s̄, the eigenvalues of an infi-
nite memory system can be calculated with a prescribed
accuracy. Second, from a theoretical standpoint we have

Theorem 1. The Floquet exponents λ of (3) satisfy

Re {λ} > − min
t∈[0,T ]

kc(t) (10)

where the critical exponent kc(t) is defined as

kc(t) = lim
τ→−∞

ln ‖K(t, τ)‖
τ

. (11)
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Proof. Exploiting a procedure akin to that in the proof
of Lemma 1, it is easy to show that both δv(t) and δr(t)
tend to zero for large s̄. In particular, for s̄ � 0 and
s > s̄

‖r(t)− r̄(t)‖ ≤ H−
∫ t−s̄

t−s
max
t∈[0,T ]

‖K(t, τ)‖ dτ

if Re
{
λ̄
}
< 0 (12a)

‖r(t)− r̄(t)‖ ≤ H+

∫ t−s̄

t−s
e−Re

{
λ̄
}

(t− τ)

× max
t∈[0,T ]

‖K(t, τ)‖ dτ

if Re
{
λ̄
}
> 0. (12b)

where H−, H+ are positive constants. This result, to-
gether with Lemma 1, implies that for s̄� 0 and for any
s > s̄ the solution of

dr

dt
+ λr(t) = A(t)r(t) +

∫ t

t−s
K(t, τ)r(τ) eλ(τ − t) dτ

(13)
becomes independent of s. Since this may happen only
if the integral is independent of s, the latter should con-
verge even if Re {λ} < 0. Defining the critical exponent
as in (11), the integral may converge independently of s
if (10) is met.

III. FLOQUET EXPONENTS COMPUTATION

Clearly, (6) represents a generalized eigenvalue prob-
lem whose solution provides the required Floquet quanti-
ties for the limit cycle. The explicit expression for such a
generalized eigenvalue problem depends on the features
of the memory kernel K(t, τ). Since all the terms of
(6) are T -periodic, a viable solution strategy is the use
of frequency-domain approaches such as the Harmonic
Balance (HB) technique31–34, here summarized in Ap-
pendix B. Frequency transformation of (6) yields

Ωr̃ + λr̃ = Ãr̃ + q̃(r̃, ω, λ) (14)

where ω is the set of all the frequencies multiple of the
fundamental one ω0 = 2π/T . Eq. (14) is a generalized,
transcendental eigenvalue problem in λ and r̃, the collec-
tion of the harmonic amplitudes of the Floquet eigenvec-
tor r(t).

The explicit form of (14) depends on the type of
K(t, τ). However, in general it can be transformed, at
least approximately, into a polynomial eigenvalue prob-
lem by formally developing q̃(r̃;λ) into Taylor series as
a function of λ

Ωr̃ + λr̃ = Ãr̃ +

+∞∑
k=0

∂q̃(r̃, ω, λ)

∂λ

∣∣∣∣
λ=0

λk

k!
. (15)

Several techniques are available to tackle the polynomial
eigenvalue problems, such as for instance those discussed
in Refs. 35–37.

Notice that (14) is an exact representation of the gen-
eralized, time-domain eigenvalue problem (6) only if in-
finite Fourier series are considered. Clearly, for practical
calculations the series is truncated to a finite number of
harmonics NH (see Appendix B) and, equivalently, the
time domain problem is time-sampled. The truncation
affects the accuracy of the Floquet quantities, especially
on the exponents, as discussed e.g. in Refs. 23 and 32.
However, according to intuition, accurate results can be
obtained by properly choosing NH.

IV. EXAMPLES

A. A simple 1D dynamical system with memory

The first example is an extremely simple dynamical
system with memory, characterized by the 1D variational
equation

dy

dt
= ay(t) +

∫ t

t−s
eτ − t y(τ) dτ, (16)

where a is a real parameter and s > 0 defines the “length”
of the memory part of the system. Using the harmonic
balance approach discussed in Sec. III, we find the ex-
plicit form of (14):

(λ+ iωj)rj = arj +
1− e−s(1 + λ+ iωj)

1 + λ+ iωj
rj . (17)

Since (16) is scalar, we can simplify rj from (17), and
consider the case ωj = 0 since the roots of the general
eigenvalue equation are simply those for ωj = 0 plus a
shift equal to −iωj , where i is the imaginary unit. In
other words, we have to study the transcendental eigen-
value equation

λ = a+
1− e−s(1 + λ)

1 + λ
. (18)

Studying (18) is not an easy task, as in general for finite
memory (i.e., finite s) it admits of infinite solutions in the
complex plane. However, results are more compact in the
limit case of infinite memory (i.e., for s → +∞). Let us
start by expressing (18) in the form

(a− λ)(λ+ 1) + 1− e−s(1 + λ) = 0. (19)

Notice that (19) is not fully equivalent to (18), as λ = −1
solves (19) but this value cannot satisfy (18) since

lim
λ→−1

1− e−s(1 + λ)

1 + λ
= s. (20)

We now put in evidence the real and imaginary compo-
nents of λ = λr + iλi. Separating the real and imaginary
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parts of (19) we find

λ2
i − λ2

r + (a− 1)λr + a+ 1− e−s(1 + λr) cos(sλi) = 0
(21a)

(a− 1)λi − 2λiλr + e−s(1 + λr) sin(sλi) = 0
(21b)

Deriving λi from (21b) and substituting into (21a) we
find a second order algebraic equation in cos(sλi)

1

R2 cos2(sλi) + e−s(1 + λr) cos(sλi)−N = 0 (22)

where R = (a−1−2λr) exp[s(1+λr)] and N = R−2−λ2
r +

(a−1)λr+a+1. Notice also that the exponential function
tends to different limit values for infinite memory

lim
s→+∞

e−s(1 + λr) =


+∞ if λr < −1

1 if λr = −1

0 if λr > −1

(23)

In order to discuss the solutions of (18) in the infinite
memory limit s → +∞ we separate the analysis as a
function of λr:

1. λr > −1. Due to (23), 1/R → 0 and (22) reduces
to N = 0. Equation (21b) becomes

(a− 1− 2λr)λi = 0 (24)

implying λi = 0 or λr = (a − 1)/2. The second
solution must be discarded, since substituted into
(21a) would require an imaginary value for λi. On
the other hand, using the first solution λi = 0 into
(21a) leads to the only viable root

λr = λ∞ =
1

2

[
a− 1 +

√
(a+ 1)2 + 4

]
(25)

since the other solution of the obtained second or-
der algebraic equation is lower than −1.

2. λr ≤ −1. We consider the formal solution of (22)

λi =
1

s
arccos(A/2) (26)

where the argument of the inverse cosine function

A = −R2 e−s(1 + λr)

±
√
R4 e−2s(1 + λr) +4R2N (27)

is a limited quantity for each s value. This implies
that in the long memory limit λi → 0 and, thus,
(21a) becomes

−λ2
r + (a− 1)λr + a+ 1− e−s(1 + λr) = 0 (28)

The solution (λr = −1, λi = 0) must be excluded
as discussed above, therefore we have to study the

FIG. 1. (Color online) 1D system with memory: Dependence
on s of the real solution of (18) as a function of the model
parameters. The horizontal line represents the asymptotic
possible minimum of Re {λ} according to Theorem 1. Circles
show the asymptotic value λ∞ according to (25).

case λr < −1. A Taylor series development of the
terms in (28) around λr0 = −1 leads to

− a− 1 + (λr + 1)− s

×

1− s

2
(λr + 1) +

+∞∑
j=3

sj−1

j!
|λr + 1|j

 = 0 (29)

where, due to the initial constraint of this analysis,
λr + 1 < 0. In these conditions, the bracketed term
is positive ∀s > 0, therefore (29) cannot have any
solution λr < −1 for s→ +∞.

In order to discuss the behavior of the 1D system for
infinite memory, we therefore limit our analysis to the
real solution of (18) only, whose dependence on the s
and a parameters is sketched in Fig. 1. As expected
from Lemma 1, for each value of the a parameter and
for “long” enough memory, the solution λ reaches the
asymptotic value λ∞ defined in (25). On the other hand,
since the memory kernel is exponential, the critical expo-
nent is easily calculated as kc = 1, thus setting the lower
bound for the real part of λ (see Fig. 1).

B. Brownian particle with memory

The second example of application that we consider
is the 2D Brownian particle with memory originally in-
troduced in Ref. 38, extending the results presented in
Ref. 39. From the physics standpoint, we study a stochas-
tic system representing the motion of a particle of mass
m subject to a Langevin force modeled as an Ornstein-
Uhlenbeck process. The finite time correlation of the
Langevin source implies a memory effect in the particle
dynamics, that according to Refs. 40 and 41 is described
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by the friction retardation function Γ(t, τ), shown here in
the deterministic system corresponding to the ensemble
average of the stochastic description

dx

dt
= v(t) (30a)

m
dv

dt
= −m

∫ t

−∞
Γ(t, τ)v(τ) dτ −∇U(x) (30b)

where the external potential U represents a central force
as in Ref. 38

∇U(x) = mω̄2x, (31)

being ω̄ = diag {ω̄1, ω̄2} and ω̄1, ω̄2 > 0 two real param-
eters.

According to the discussion in Ref. 39, the friction re-
tardation function reads41

Γ(t, τ) = γ(v)k e−k|t− τ |, (32)

where γ is instantaneously dependent on the particle
velocity40 v (the magnitude of the particle velocity v)

γ[v(τ)] = −α+ βv(τ)2 +
g

k
. (33)

and k = 1/τn, τn being the noise correlation time of the
Ornstein-Uhlenbeck process. We remark that the γ de-
pendence on the velocity magnitude makes the model
fully 2D.

Coefficients α, β, g and k are model parameters. As
discussed in Ref. 39, the case of the memoryless particle
is obtained by letting k → +∞.

System (30) admits a periodic limit cycle in the phase
space (xS(t),vS(t)) for several values of the parameters.
The corresponding stability is assessed following the pro-
cedure outlined in Sec. III. The 4D Floquet eigenvector
r(t) is decomposed in the 2D position rx(t) and velocity
rv(t) components. Substituting into (6) we evaluate the
integral in (7) taking into account the Fourier expansion
of r(t) and Theorem 1, that guarantees Re {λ} > −k.
Thus we get a closed, albeit in infinite series form, ex-
pression

drx
dt

+ λrx = rv (34a)

drv
dt

+ λrv = −k
∑
j,h

γ̃e,j−hr̃v,h eiωjt

k + λ+ iωj
− ω̄2rx (34b)

where r̃α,j is the j-th harmonic amplitude (in exponential
form) for function rα(t) (α = x, v), j, h ∈ Z and ωj =
j2π/T .

Equation (34) is further transformed into (14) exploit-
ing the Fourier series expansion of all the T -periodic
terms. Balancing the harmonic components, we find the
ideally infinite set (as a function of the harmonic index

g=0

g=2

g=4

g=6

0.8 0.9 1 1.1 1.2 1.3
0.0

0.4

0.8

1.2

1.6

2.0

� �1 2/

�

_ _

k=1

FIG. 2. (Color online) Brownian particle with memory:
Arnold tongue in the (ω̄1/ω̄2, α) plane as a function of g.
Parameters: β = 1, ω̄1 = 2, k = 1.

j) of order 2 polynomial eigenvalue problems (PEP)

(λ+ iωj)r̃x,j = r̃v,j (35a)

(λ+ iωj)(k + λ+ iωj)r̃v,j = −(k + λ+ iωj)ω̄
2r̃x,j

− k
∑
h

γ̃e,j−hr̃v,h. (35b)

As discussed in Refs. 36 and 37, an r-th order PEP for
an equation of size m has r × m eigenvalues, thus (35)
provides a set of n/2 + 2(n/2) = 3n/2 eigenvalues (for
each harmonic j), where for the 4D phase space of the
2D particle n = 4, i.e., a total of 6 Floquet multipliers.

We implemented a numerical solution of the second-
order polynomial eigenvalue problem using NH = 30
harmonics, thus truncating (35) into a system for j =
−NH, . . . , NH. Furthermore, the limit cycle solution is
calculated in the frequency domain exploiting the Har-
monic Balance32 numerical technique, again making use
of 30 harmonics.

With respect to the memoryless case (i.e., k → +∞)
a stable equilibrium (originally unstable) is found in the
origin of the phase space. The bifurcation diagram in the
parameter space (ω̄1/ω̄2, α) is plotted in Fig. 2 for k = 1
and several values of g. As expected, Arnold tongues are
found. The area of the parameter space below the almost
horizontal curve (not present in Ref. 38) corresponds to
the stable equilibrium previously discussed. Above this
line, we have either two symmetric, stable limit cicles
(the inner part of the Arnold tongue) or a strange at-
tractor (the outer part): both of these have a shape close
to that of the memoryless case38. The boundaries of the
Arnold tongue correspond to fold bifurcations, thus im-
plying that (as for the memoryless case) the strange at-
tractor is generated by the collapse of the two limit cy-
cles. The crossing point between the Arnold tongue and
the boundary of the stable equilibrium defines a triple
point42 for the particle dynamics.

Fig. 3 represents the bifurcation curve in the (k, α)
plane for the triple point as a function of g. Consistently,
the bifurcation curves tend to zero for disappearing mem-
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FIG. 3. (Color online) Brownian particle with memory: bi-
furcation curve in the (k, α) plane as a function of g for the
triple point. Parameters: β = 1, ω̄1/ω̄2 = 1, ω̄1 = 2.

losslessTL

x

L0

v x t( , )

i x t( , )

FIG. 4. (Color online) Circuit representation of a transmis-
sion line (TL).

ory (k → +∞).

C. Circuit resonator with ideal transmission line

The last example we provide considers the presence of
a lossless transmission line (TL) in an electronic circuit.
TLs are ubiquitous in circuits for high frequency applica-
tions, e.g., in the RF and microwave frequency range43.
The presence of the lossless TL implies a memory ef-
fect that, as we shall demonstrate in the following, cor-
responds to a delay system. Despite being well studied,
we include it here to highlight the general applicability
of out methodology even beyond the exponential kernels
discussed in the previous examples, and to obtain, via a
non-standard approach, the well known oscillation con-
dition.

The lossless TL is a distributed circuit element charac-
terized by the following linear partial differential system
of equations

∂v

∂x
= −l

∂i

∂t
(36a)

∂i

∂x
= −c

∂v

∂t
(36b)

where v(x, t) and i(x, t) are, respectively, the voltage and
current at time t and position x along the TL (see Fig. 4),

l is the TL inductance per unit length, and c the TL
capacitance per unit length. The general solution of (36)
is expressed as the sum of a progressive and a regressive
wave43

v(x, t) = v−(t− x/vf) + v+(t+ x/vf) (37a)

i(x, t) = Y0v−(t− x/vf)− Y0v+(t+ x/vf) (37b)

where vf = 1/
√

lc is the TL phase velocity and Y0 =

1/Z0 =
√

c/l is the TL characteristic admittance. The
specific shape of v− and v+ depends on the line boundary
and initial conditions, i.e., on the circuit in which the TL
is embedded. If we consider the TL embedded into a
nonlinear circuit characterized by a set of state variables
collectively denoted as y(t), the circuit equations to be
solved take the form

L0 {v(0, t), i(0, t),y, ẏ} = 0 (38a)

LL {v(L, t), i(L, t),y, ẏ} = 0 (38b)

dy

dt
= q(y, t) (38c)

where ẏ = dy/dt, L0 and LL are linear operators, q is
a vector function describing the embedding circuit state
equations. System (38) can be easily transformed into a
nonlinear system with memory of type (1). In fact, from
(37)

v(0, t) = v−(t) + v+(t) (39a)

i(0, t) = Y0v−(t)− Y0v+(t) (39b)

v(L, t) =

∫ t

−∞
v−(τ)δ(t− τf − τ)dτ

+

∫ ∞
t

v+(τ)δ(t+ τf − τ)dτ (39c)

i(L, t) = Y0

∫ t

−∞
v−(τ)δ(t− τf − τ)dτ

− Y0

∫ ∞
t

v+(τ)δ(t+ τf − τ)dτ (39d)

where τf = L/vf represents the delay associated to the
TL. Notice that the time anticipation included in the
second integral of (39c) and of (39d) is only apparent,
see Ref. 44, Chapter 8. In fact, reversing (37) we find

v−(t− x/vf) =
1

2
v(x, t) +

1

2Y0
i(x, t) (40a)

v+(t+ x/vf) =
1

2
v(x, t)− 1

2Y0
i(x, t). (40b)

The variational problem defining the stability of the
solution of (38) can thus be derived by linearizing the
full system and looking for solutions of type (5), i.e.,
δv(x, t) = rv(x, t) exp(λt) and δi(x, t) = ri(x, t) exp(λt).
Correspondingly, from (37) we find rv−(t − x/vf) =
rv−(t) exp[λ(t−x/vf)] and rv+(t+x/vf) = rv+(t) exp[λ(t+
x/vf)]. Finally, we get the generalized eigenvalue problem
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R

lossless TL
losslessTL

active

element

x

L0

FIG. 5. (Color online) Example of distributed resonating cir-
cuit containing a lossless TL. The active device is here repre-
sented as a constant resistance Ra that may assume negative
values.

L′0
{
rv− , rv+ , ry, ṙy + λry

}
= 0 (41a)

L′L
{
rv− e−λτf , rv+ eλτf , ry, ṙy + λry

}
= 0 (41b)

dry
dt

+ λry = A(t)ry (41c)

where A(t) is the Jacobian of q with respect to y, and
the linear operators L′0 and L′L are derived from L0 and
LL exploiting the linear transformation (37).

As an example of application, we consider the dis-
tributed resonating circuit in Fig. 5: the active device
is used to provide the necessary energy to overcome the
dissipation included in resistance R. For the sake of sim-
plicity, we assume here that the electrical equivalent of
the active element is simply a constant resistance Ra,
whose value however may become negative.

In this case, (38c) disappears, and the two linear op-
erators L0 and LL simply read

v(0, t) + (R+Ra)i(0, t) = 0 (42a)

v(L, t) = 0. (42b)

Using v− and v+, (42) provide

v+(t) = Γ0v−(t) (43a)

v−(t) = −v+(t− 2τf) (43b)

where Γ0 = [(R+Ra)Y0−1]/[(R+Ra)Y0 +1] is the reflec-
tion coefficient43 measured at the left of position x = 0
and calculated using 1/Y0 as the reference impedance.
Clearly, the previous conditions lead to

v+(t) = −Γ0v+(t− 2τf). (44)

The eigenvalue problem (41), finally, is

e2λτf = −Γ0. (45)

therefore the bifurcation (Re {λ} = 0) takes place for
|Γ0| = 1. Notice that for finite R, the only possible real-
ization is Γ0 = −1, i.e., as expected, Ra = −R. In this
case, the admitted oscillation frequencies are defined by
the complex roots of

e2λτf = 1 (46)

i.e., λ = i2kπf where f = 1/(2τf) and k ∈ Z.

V. CONCLUSION

In this paper we have proved an important extension
of the recently developed generalized Floquet theory30

to systems supporting infinite memory. In particular, we
have proved that a lower asymptotic bound exists for the
Floquet exponents of such cases.

We have then analyzed three cases of systems with
memory: an ideal 1D system, a Brownian particle, and a
circuit resonator with an ideal transmission line. While in
the first two cases the memory kernel K(t, τ) is character-
ized by an exponential dependence on t−τ , for the delay
system in the third example the memory kernel cannot be
represented in a similar way. This makes such system dif-
ficult to be treated with system enlargement approaches
such as those proposed in the recent literature6,8. In this
sense our approach is characterized by a wider generality,
however the enlargement approach appears advantageous
for the study of the allowed systems, as the enlargement
procedure results in a (wider) memoryless description, to
which of course well known techniques apply.

Owing to the fact that dynamical systems with mem-
ory are ubiquitous in science and technology, we expect
our generalized Floquet theory will find numerous appli-
cations in diverse fields.
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Appendix A: Proof of Lemma 1

Let us consider a time increment δs� s̄. The solution
for s̄+δs is expressed as r(t) = r̄(t)+δr(t) and λ = λ̄+δλ.
Since δs is small, linearizing (8a) we find the (first order)
relationship between the Floquet quantities variations

p(t)δλ+ δv(t) =

∫ t−s̄

t−s̄−δs
K(t, τ)r(τ) eλ̄(τ − t) dτ (A1)
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where we have defined the T periodic functions

p(t) = r(t)−
∫ t

t−s̄
K(t, τ)r̄(τ)(τ − t) eλ̄(τ − t) dτ,

(A2)

δv(t) =
dδr

dt
+ λ̄δr(t)−A(t)δr(t)

−
∫ t

t−s̄
K(t, τ)δr(τ) eλ̄(τ − t) dτ. (A3)

As δs is small, we can approximate the integral in (A1)∫ t−s̄

t−s̄−δs
K(t, τ)r(τ) eλ̄(τ − t) dτ

≈ K(t, t− s̄− δs/2)r(t− s̄− δs/2) e−λ̄(s̄+ δs/2) .
(A4)

We now define the scalar product between T -periodic
functions

(a(t),b(t)) =
1

T

∫ T

0

a†(t)b(t) dt, (A5)

where † denotes hermitian conjugation, and we consider
a versor e(t) orthogonal to δv(t). Equations (A1) and
(A4) yield

(e(t),p(t))δλ ≈
(
e(t),K(t, t− s̄− δs/2)r(t− s̄− δs/2)

× e−λ̄(s̄+ δs/2)
)
δs. (A6)

Defining |α| as the vector made of the collection of the
absolute values of the components of α(t), (A6) implies

|(e(t),p(t))δλ| ≤
∣∣∣(|e(t)|, ‖K(t, t− s̄− δs/2)‖

× |r(t− s̄− δs/2)|) e−λ̄(s̄+ δs/2)
∣∣∣

≤ (|e(t)|, |r(t− s̄− δs/2)|) e−Re
{
λ̄
}

(s̄+ δs/2)

× max
t∈[0,T ]

‖K(t, t− s̄− δs/2)‖ (A7)

therefore

|δλ| ≤ (|e(t)|, |r(t− s̄− δs/2)|)
|(e(t),p(t))|

e−Re
{
λ̄
}

(s̄+ δs/2)

× δs max
t∈[0,T ]

‖K(t, t− s̄− δs/2)‖. (A8)

Since α exp(Re
{
λ̄
}
α) is a monotonic function of α,

τ̄ ∈ [t− s̄, t] exists such that∫ t

t−s̄
K(t, τ)r̄(τ)(τ − t) eλ̄(τ − t) dτ

= K(t, τ̄)r̄(τ̄) eiIm
{
λ̄
}

(τ̄ − t)

×
∫ t

t−s̄
(τ − t) eRe

{
λ̄
}

(τ − t) dτ

= K(t, τ̄)r̄(τ̄) eiIm
{
λ̄
}

(τ̄ − t) e−Re
{
λ̄
}
s̄

×

 s̄

Re
{
λ̄
} +

1

Re
{
λ̄
}2 −

eRe
{
λ̄
}
s̄

Re
{
λ̄
}2

 . (A9)

Defining p′(t) = p(t) exp
(
Re
{
λ̄
}
s̄
)
, from (A2) and (A9)

we find that for s̄� 0

p′(t) ≈ −K(t, τ̄)r̄(τ̄) eiIm
{
λ̄
}

(τ̄ − t)

Re
{
λ̄
} s̄

if Re
{
λ̄
}
< 0 (A10a)

p′(t) ≈

r̄(t) +
K(t, τ̄)r̄(τ̄) eiIm

{
λ̄
}

(τ̄ − t)

Re
{
λ̄
}2

 eRe
{
λ̄
}
s̄

if Re
{
λ̄
}
> 0. (A10b)

Since K(t, τ) satisfies (2a), 0 < M < +∞ exists such
that

|(|e|, |r̄(t− s̄− δs/2)|)|
|(e,p)|

=
|(|e|, |r̄(t− s̄− δs/2)|)|

|(e,p′)|

× eRe
{
λ̄
}
s̄ ≤M eRe

{
λ̄
}
s̄ . (A11)

Therefore, because of (A10), for s̄ � 0, 0 < M+,M− ≤
M exist such that

|(|e|, |r̄(t− s̄− δs/2)|)|
|(e,p′)|

≤ M−
s̄

if Re
{
λ̄
}
< 0 (A12a)

|(|e|, |r̄(t− s̄− δs/2)|)|
|(e,p′)|

≤M+ e−Re
{
λ̄
}
s̄

if Re
{
λ̄
}
> 0. (A12b)

Accordingly, to first order in δs (A8) becomes

|δλ| ≤Mδs max
t∈[0,T ]

‖K(t, t− s̄− δs/2)‖ (A13a)

and, for s̄� 0

|δλ| ≤ M−
s̄
δs max

t∈[0,T ]
‖K(t, t− s̄− δs/2)‖

if Re
{
λ̄
}
< 0 (A13b)

|δλ| ≤M+ e−Re
{
λ̄
}
s̄ δs max

t∈[0,T ]
‖K(t, t− s̄− δs/2)‖

if Re
{
λ̄
}
> 0. (A13c)

Let us now consider any s > s̄. We divide the interval
[s̄, s] into N sub-intervals of size δs = (s − s̄)/N , and
denote as δλj the Floquet exponent variation due to the
j-th interval (with respect to the value attained at the
beginning of the interval itself), such that

|λ− λj | =

∣∣∣∣∣∣
N∑
j=1

δλj

∣∣∣∣∣∣ ≤
N∑
j=1

|δλj |. (A14)

Taking the limit for N → +∞ and using (A13), we find
(9).
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Appendix B: The Harmonic Balance approach

Harmonic Balance (HB) is a powerful numerical tech-
nique used to transform differential equations into alge-
braic systems that can be applied when the terms and
the solution in the differential equation are time-periodic.
As such, it is widely used in circuit analysis and design
tools, see, e.g., Ref. 31. In other words, HB seeks di-
rectly for the time-periodic solution without any explicit
time-domain integration. Thus the transient part of the
solution is avoided altogether.

Consider first a scalar, real function α(t), whose fre-
quency domain representation is built by means of the
(truncated) exponential Fourier series

α(t) =

NH∑
h=−NH

α̃h eihω0t (B1)

where α̃h is the h-th harmonic amplitude associated to
the (angular) frequency hω0 = h2π/T (h-th harmonic).
Since α(t) is real, α̃−h = α̃h? (? denotes complex con-
jugation): therefore only 2NH + 1 real coefficients fully
define the Fourier series. For numerical implementation,
(B1) is replaced by the more effective trigonometric se-
ries representation31. However, we will stick here to the
exponential form for what concerns theoretical develop-
ments.

The ]0, T ] fundamental period is discretized in a
set of 2NH + 1 time samples tk (k = 1, . . . , 2NH +
1), and the collection of the time sampled vari-
able ᾰ = [α(t1), α(t2), . . . , α(t2NH+1)]T is put in rela-
tion with the collection of harmonic amplitudes α̃ =
[α̃−NH

, α̃−NH+1, . . . , α̃0, . . . , α̃NH
]T by means of the dis-

crete Fourier transform (DFT) invertible linear operator
Γ−1

ᾰ = Γ−1α̃⇐⇒ α̃ = Γᾰ. (B2)

Clearly, for NH →∞ Γ−1 is the matrix representation of
the operator defining the Fourier series representation of
a T -periodic function.

In the frequency domain the time derivative is repre-
sented by a diagonal matrix Ω ∈ C(2NH+1)×(2NH+1) pro-
portional to ω0

31

˜̇α = Γ˘̇α = Ωα̃ (B3)

where α̇(t) = dα/dt.
For a vector variable α(t) ∈ Rn, (B2) and (B3)

are easily generalized by expanding each time sample
α(ti) into a vector α(ti) ∈ Rn, and therefore defining
the collection ᾰ = [αT(t1),αT(t2), . . . ,αT(t2NH+1)]T ∈
Rn(2NH+1). Correspondingly, the HB representation is
α̃ = [α̃T

−NH
, . . . , α̃T

0 , . . . , α̃
T
NH

]T ∈ Cn(2NH+1). This al-
lows to formally maintain (B2) and (B3) by defining two
block diagonal matrices Γ−1

n and Ωn built replicating n
times the fundamental operators Γ−1 and Ω

ᾰ = Γ−1
n α̃ ˜̇α = Ωnα̃. (B4)

The HB representation of β(t) = T(t)α(t) (i.e., the
convolution in frequency domain) and of its time deriva-
tive, where T(t) is a T -periodic matrix and α(t) a T -

periodic vector, is derived as follows. Denoting as T̆ the
n×n block diagonal matrix built expanding each element
th,k(t) of T(t) as a (2NH +1)×(2NH +1) diagonal matrix

formed by the time samples t̆h,k, we have

β̃ = T̃α̃
˜̇
β = Ωnβ̃ = ΩnT̃α̃ (B5)

where T̃ = ΓnT̆Γ−1
n is a Toepliz matrix built assembling

the Fourier coefficients of the elements of T(t)31.
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