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Abstract. Systems exhibiting a negative stiffness region are often used as vibration isolators, 

due to their enhanced damping properties. The device tested in this paper is part of a damping 

system and it acts like an asymmetric double-well Duffing oscillator, with two stable and one 

unstable equilibrium positions. The range of motion can either be bounded around one stable 

position (in-well oscillations) or include all the three positions (cross-well oscillations). 

Depending on the input amplitude, the oscillator can exhibit linear and nonlinear dynamics, 

and chaotic motion as well. Due to its asymmetrical design, the two linearized systems 

associated to small-amplitude oscillations around one stable equilibrium position are different. 

In this work, the dynamical behavior of the system is first investigated in the case of linear and 

nonlinear in-well oscillations and then in the case of cross-well oscillations with chaotic motion. 

To accomplish this task, the device is mounted on a shaking table and it is driven through 

several excitation levels with both harmonic and random inputs. An experimental bifurcation 

tracking analysis is also carried out to understand the possible response scenarios. Afterwards, 

the nonlinear identification is performed using nonlinear subspace algorithms to extract the 

restoring force of the system. Eventually, the physically-based model of the device is updated 

to match the identified characteristics via genetic algorithms. 
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1 INTRODUCTION 

Devices and materials based on a negative stiffness behavior are very often used as vibration 

isolators due to their amplified damping properties [1,2]. In particular, in the case of engineering 

structures, examples can be found in automotive suspensions [3,4] or seismic isolation [5,6].  

When the negative stiffness effect is coupled to a nonlinear polynomial stiffness contribution, 

the so-called double-well Duffing oscillator is obtained, whose dynamical properties have been 

extensively studied in the literature due to the wide kind of motions it can exhibit, ranging from 

linear to highly nonlinear and chaotic [7]. This oscillator exhibits two stable and one unstable 

equilibrium positions, and the oscillations can either be bounded around one stable point (in-

well or intra-well small oscillations) or include all the three positions (cross-well or infra-well 

large oscillations). In both cases, periodic oscillations can evolve to steady in-well or cross-well 

chaotic motions under external excitation [8]. The occurrence of irregular motion, consisting of 

random-like crossings from oscillations around the two stable equilibrium positions, was first 

observed experimentally in 1971 [9] and the motion was called “snap-through”. A 

comprehensive literature review about the Duffing equation can be found in [10].  

In this work, a negative stiffness oscillator is studied and tested to derive a reliable nonlinear 

dynamical model. The dynamical properties of the oscillator are first investigated to uncover 

the possible kind of motions it can exhibit (in-well, cross-well, chaotic). To accomplish this 

tasks, the device is mounted on a shaking table and it is driven through several excitation levels 

with harmonic and random inputs. The experimental bifurcation diagram is estimated, together 

with the attractor surface in the case of chaotic motion. 

Afterward, nonlinear system identification is performed to extract the model parameters 

directly from the measurements. The nonlinear subspace identification (NSI) method [11–14] 

is adopted to identify the nonlinear restoring force of the system using just one cross-well 

measurement obtained with random excitation. Eventually, a model updating procedure is 

implemented with genetic algorithms to refine the physically-based model based on the 

identified restoring force.  

2 NEGATIVE STIFFNESS OSCILLATOR 

The device under investigation consists in a U-shaped steel frame connected through rods to 

a central moving mass. The frame has the purpose to keep the rods under compression during 

their movement, exerting a compression force 𝑝(𝜃) depending on the rotation angle 𝜃 . A 

schematic representation of the device is depicted in Figure 1.  

It is assumed that the inertia of the moving parts can be concentrated into one central point 

with mass 𝑚, comprising the mass of the central bushing and the equivalent inertia of the rods. 

The vertical movement of this point is described by the coordinate 𝑦(𝑡). The lower surface of 

the frame is attached to a shaking table, so that displacement 𝑏(𝑡) can be imposed to the 

structure. The free-body-diagram of mass 𝑚 is depicted in Figure 1. 
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Figure 1: Schematic representation of the negative stiffness oscillator and free-body-diagram of m. 

With 𝑧(𝑡) = 𝑦(𝑡) − 𝑏(𝑡), the equation of motion of the system in the variable z(t) can be 

written as 

𝑚�̈� + 𝑘3𝑧3 + 𝑘2𝑧2 − 𝑘1𝑧 + 𝑘0 = −𝑚�̈�, (1) 

where 𝑘0 = 𝑚𝑔 and the coefficients 𝑘3, 𝑘2, 𝑘1 have to be experimentally estimated. Eq. (1) has 

the form of a negative-stiffness Duffing equation, and its restoring force 𝐾 and elastic potential 

𝑈 can be defined as 

𝐾(𝑧) = 𝑘3𝑧3 + 𝑘2𝑧2 − 𝑘1𝑧 + 𝑘0, (2) 

𝑈(𝑧) =
1

4
𝑘3𝑧4 +

1

3
𝑘2𝑧3 −

1

2
𝑘1𝑧2 + 𝑘0𝑧. (3) 

A qualitative representation of the potential is shown in Figure 2, where its asymmetric 

double-well characteristic can be observed, together with the three equilibrium positions 𝑧∗ 

obtained by setting 𝐾(𝑧∗) = 0. Two out of three positions represent a stable equilibrium, 

namely 𝑧−
∗  and 𝑧+

∗ , while the central position 𝑧0
∗ is an unstable point.  

 

Figure 2: Potential 𝑈(𝑧). Orange dots: equilibrium positions. 

α 
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The oscillations of the moving point are said to be in-well when the motion is bounded 

around one of the two stable equilibrium positions 𝑧±
∗ . The associated linear natural frequency 

𝜔± can be computed by 

𝜔± = √
𝐾′(𝑧±

∗ )

𝑚
, (4) 

𝐾′(𝑧±
∗ ) being the derivative of 𝐾(𝑧) computed in 𝑧−

∗  or 𝑧+
∗ . 

3 EXPERIMENTAL CHARACTERIZATION 

Two photos of the experimental setup corresponding to the two stable equilibrium positions 

are reported in Figure 3. The moving mass is instrumented with a laser vibrometer to measure 

its absolute displacement 𝑦(𝑡), whose zero position corresponds to the horizontal configuration 

of the rods (𝜃 = 0). The acceleration of the base �̈�(𝑡) is also recorded through an accelerometer 

and the displacement 𝑧(𝑡) is computed as the difference between the laser measure 𝑦(𝑡) and 

the displacement of the base 𝑏(𝑡), obtained by integrating twice its measured acceleration.  

The system is driven by harmonic inputs with fixed excitation frequency 𝜔 = 9 ⋅ 2𝜋 rad/s 

and different amplitudes. The measured signals are sampled at 512 Hz. By applying this set of 

harmonic excitations, the so-called bifurcation map of the system can be built for a specific 

excitation frequency. The bifurcation map is a snapshot of the kind of steady-state solutions 

that can be obtained for a given excitation frequency when ranging over the excitation 

amplitude. Each point in the map represents the amplitude(s) of the steady-state solution for a 

specific value of the excitation amplitude. Indeed, the system can in principle exhibit super-

harmonics of the exciting frequency (meaning frequency contents at 2𝜔, 3𝜔, 4𝜔, …), sub-

harmonics (1 2⁄ 𝜔, 1 3⁄ 𝜔, 1 4⁄ 𝜔, …) or chaotic motion. 

 

Figure 3: Photos of the experimental setup. a) Negative equilibrium position 𝑧−
∗ ; b) Positive equilibrium 

position 𝑧+
∗ . 
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When building the bifurcation map on experimental time series, one should be able to detect 

the presence of super/sub-harmonics in order to correctly estimate the amplitude(s) of the 

response. This is done in this work automatically by performing a periodicity analysis of the 

measured displacement 𝑧(𝑡) over a certain number of periods of the input force. The algorithm 

seeks the number of periods that gives the best periodicity of the output signal: 

- A period-1 solution is gathered if the output is periodic with the input. The system in this 

case might respond with higher harmonics of the excitation frequency 𝜔. 

- A period-2 solution is gathered if the output is periodic with twice the period of the input. 

The system in this case responds also with the sub-harmonic 1 2⁄ 𝜔. 

- A period-4 solution is gathered if the output is periodic with four times the period of the 

input. The system in this case responds also with the sub-harmonics 1 2⁄ 𝜔, 1 4⁄ 𝜔. 

- ... 

The experimental bifurcation map is depicted in Figure 4, where the cross-well region is 

highlighted in grey. Since the map is inferred from experimental measurements, it is not 

intended to be an exhaustive representation of all the possible bifurcations of the system, as it 

would be rather difficult to experimentally collect the huge number of points that would be 

required. Nevertheless, it gives useful information about the range of motions the system 

exhibits for different input amplitudes. In particular, a cascade of period doublings can be 

appreciated when the input amplitude is around 12 − 15 m/s2, especially when starting from 

the positive equilibrium position (𝑧+
∗ = 0.023 m). 

 

Figure 4: Experimental bifurcation map of the system. The chaotic region is highlighted in grey. 

The time series and phase diagrams of some of the points of the bifurcation map are depicted 

in Figure 5. The selected phase diagrams correspond respectively to a period-1 solution, a 

period-2 solution, a period-4 solution and to a cross-well motion of the system. The latter in 

particular can be called chaotic in this context, as no periodic solution to a periodic input is 

retrieved, and this behavior lasts for the entire acquisition time (10 minutes). 
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Figure 5: Time series and corresponding phase diagrams of selected measurements. a) Period-1 solution. 

b) Period-2 solution. c) Period-4 solution. d) Cross-well motion. 

It should be recalled that no definition of chaos is universally accepted, and this is 

particularly true when experimental data is considered. The reason is that uncertainties and 

noise in the data acquisition may interfere with the extreme sensitivity to the initial conditions 

that characterizes chaotic systems.  

The well-known LLE (largest Lyapunov exponent) [15] can be used to check whether the 

system is behaving chaotically or not: a positive sign means chaotic motion, while a negative 

sign is representative of a periodic orbit. Several methods exist to compute the LLE from 

experimental time series, and the one proposed in [16] is adopted here. Results are shown in 

Figure 6, where a positive sign is retrieved.   

 

Figure 6: Estimation of the largest Lyapunov exponent. Red line: convergence mean value. 
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Eventually, the experimental Poincaré sections are computed for different phase 

synchronizations 𝜙  of the data with the forcing term [17]. The typical shape of a strange 

attractor is retrieved [8] and depicted in Figure 7a in a polar plot, while three of its sections are 

represented in Figure 7b,c,d. 

 

Figure 7: Experimental Poincaré sections. a) Polar representation of the attractor surface; b) Poincaré 

section, 𝜙 = 0°; c) Poincaré section, 𝜙 = 170°; d) Poincaré section, 𝜙 = 320°. 

4 IDENTIFICATION OF THE NONLINEAR RESTORING FORCE AND MODEL 

UPDATING 

The nonlinear subspace identification (NSI) method is adopted in the following to identify 

the nonlinear state-space model of the system, with the final purpose of estimating its restoring 

force. NSI relies on the possibility of splitting the nonlinear equation of motion into an 

underlying-linear (and stable) system (ULS) and a nonlinear feedback. By looking at Eq. (1), 

this seems not to be possible for the considered system, as the negative linear stiffness creates 

an unstable ULS. Nevertheless, a workaround can be found by shifting the reference axis and 

considering the oscillations of the moving point around one reference position. This reference 

position is chosen as one of the two stable equilibrium points 𝑧±
∗ , and it is generally referred to 

as 𝑧∗. A new variable 𝑥(𝑡) can therefore be defined as 

𝑥(𝑡) = 𝑧(𝑡) − 𝑧∗, (5) 

so as to write the equation of motion in the variable 𝑥 

𝑚�̈� + 𝐾(𝑥 + 𝑧∗) = −𝑚�̈�, (6) 

with 
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𝐾(𝑥 + 𝑧∗) = 𝑘3𝑥3 + (𝑘2 + 3𝑘3𝑧∗)𝑥2 + (3𝑘3𝑧∗2 + 2𝑘2𝑧∗ − 𝑘1)𝑥

= 𝑘3𝑥3 + �̃�2𝑥2 + �̃�1𝑥. 
(7) 

The new coefficients of the restoring force to be identified are therefore 𝑘3, �̃�2 and �̃�1. Also, 

a nonlinear damping model of the kind 𝑐𝑛𝑙�̇�(𝑡)|�̇�(𝑡)| is sought by the method in addition to a 

linear viscous damping 𝑐�̇�, to account for the dissipation that comes with the relative motion 

between the moving point and the vertical steel guide.  

Indeed, the ULS depends on the choice of the reference position 𝑧∗, therefore: 

- When 𝑧∗ = 𝑧−
∗  the modal parameters of the underlying-linear small oscillations around 

the negative equilibrium position can be estimated; 

- When 𝑧∗ = 𝑧+
∗  the modal parameters of the underlying-linear small oscillations around 

the positive equilibrium position can be estimated; 

Consequently, two mutually exclusive ULSs can be obtained with NSI. For this reason, a 

single cross-well measurement under random excitation is fed to the NSI algorithm with two 

consecutive choices of the reference position: namely 𝑧∗ = 𝑧−
∗  and 𝑧∗ = 𝑧+

∗ . The measurement 

is sampled at 512 Hz and lasts 300 s, with the last 60 s used for validation purposes.  

A model order equal to 2 is chosen for the nonlinear state-space identification, the system 

being a single-degree-of-freedom system, and the corresponding modal parameters are listed in 

Table 1. 

 

Reference position Natural frequency (Hz) Damping ratio (%) 

𝑧−
∗  11.41 11.2 

𝑧+
∗  9.19 20.3 

Table 1: Modal parameters of the two underlying linear systems identified with NSI. 

The validation of the identified model is carried out by simulating the output of the system 

𝑥𝑆𝐼𝑀(𝑡)  with the identified nonlinear state-space model, given the measured input. The 

simulated and the measured outputs are then compared to estimate the modeling error. Results 

are reported in Figure 8 in terms of simulated and measured time histories, in time and 

frequency domains. The statistical parameters of the residual between the measured output 𝑥(𝑡) 

and the simulated one 𝑥𝑆𝐼𝑀(𝑡) are listed in Table 2. Generally, the identified state-space model 

is capable of catching the cross-well motion with a very good accuracy, providing a percentage 

RMS deviation from the measurement of approximately 8%.  

Once the identified model is validated, the coefficients of the nonlinear restoring force can 

be extracted [11–14], obtaining: 

𝐾(𝑥 + 𝑧∗) = 𝑘3𝑥3 + �̃�2𝑥2 + �̃�1𝑥

= 7.35 ∙ 105 𝑥3 − 6.45 ∙ 103 𝑥2 + 1.34 ∙ 103 𝑥. 
(8) 

The identified restoring force 𝐾 and the corresponding potential 𝑈 are depicted in Figure 

9a,b. As for the nonlinear damping coefficient 𝑐𝑛𝑙, a value of −5 Ns2 m2 ⁄ is obtained. The total 

damping force 𝐷(�̇�) = 𝑐�̇� + 𝑐𝑛𝑙�̇�|�̇�| is depicted in Figure 9c. 
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Residual mean (mm) Residual standard deviation (mm) 

0.18 1 

Table 2: Statistical parameters of the residual between measured and simulated outputs. 

 

 

Figure 8: Validation of the nonlinear identification in the time domain (a) and frequency domain (power 

spectral density, b). Black line: measured output; red line: residual between simulated and measured output. 

 

 

Figure 9: Estimation of the restoring force 𝐾 (a), the corresponding potential 𝑈 (b) and the damping force 

𝐷 (c). 



D. Anastasio, A. Fasana, L. Garibaldi, S. Marchesiello 

 

 

4.1 Model updating 

Once the parameters of the restoring force have been estimated from the experimental 

measurements, a comparison with the originally designed values is carried out to validate the 

model. A model updating procedure is implemented to adjust the physical parameters of the 

model and minimize the difference between simulated and identified behaviors. A genetic 

algorithm (GA) [18] is adopted to find the global optimum set of parameters. Genetic 

algorithms offer the chance to effectively update the model parameters, by exploring the range 

of feasible values in a smart and fast way. Also, crossover and mutation operators reduce the 

risk of falling into local minima [18]. The selected fitness function 𝜖 to be minimized is defined 

as the sum of two relative error functions 𝜖𝜔 and 𝜖𝑧∗ . The function 𝜖𝜔  is associated to the 

residuals on the positive and negative natural frequencies 𝜔±  , while 𝜖𝑧∗  is related to the 

residuals on the positive and negative equilibrium positions: 

𝜖𝜔 = RMS {100 |
(𝜔−

𝑀𝑂𝐷 − 𝜔−
𝐸𝑆𝑇)

𝜔−
𝐸𝑆𝑇

| , 100 |
(𝜔+

𝑀𝑂𝐷 − 𝜔+
𝐸𝑆𝑇)

𝜔+
𝐸𝑆𝑇 | } 

𝜖𝑧∗ = RMS {100 |
(𝑧−

∗𝑀𝑂𝐷 − 𝑧−
∗𝐸𝑆𝑇)

𝑧−
∗𝐸𝑆𝑇

| , 100 |
(𝑧+

∗𝑀𝑂𝐷 − 𝑧+
∗𝐸𝑆𝑇)

𝑧+
∗𝐸𝑆𝑇 | } 

𝜖 = 𝜖𝜔 + 𝜖𝑧∗ 

(9) 

The superscripts ΜΟD and EST stand respectively for “model” and “estimation”. In 

particular, the estimated natural frequencies 𝜔±
𝐸𝑆𝑇 are the ones listed in Table 1. The parameters 

to be optimized are the Young’s modulus 𝐸 of the frame, the frame angle 𝛼 and the moving 

mass 𝑚. The values of the fitness function across the generations of GA are shown in Figure 

10, while the final result is depicted in Figure 11.  

 

Figure 10: Values of the fitness function across the generations of GA. Black line: best 

fitness; blue dots: mean fitness values. 
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The optimization reduces the residual between the experimental characteristics and the 

model prediction, providing a good match between the final restoring force and potential curves, 

with a residual 𝜖 equal to 1.38%. 

 

 

Figure 11: Results of the optimization in terms of restoring force in (a) and potential in (b). Black line: 

identified curves; orange line: starting values; green line: final values. 

5 CONCLUSIONS 

A negative stiffness oscillator has been characterized experimentally to exploit its dynamical 

behavior. A variety of different kind of motions can be obtained because of the bi-stable nature 

of the device, from in-well to cross-well oscillations, including chaotic motion. These 

dynamical behaviors have been confirmed by the experimental observations, obtained with 

harmonic inputs. The bifurcation map of the system has been estimated, together with the 

attractor surface in the case of chaotic motion. Eventually, the nonlinear restoring force of the 

system has been identified from the measured time series by applying the nonlinear subspace 

identification method, and the physically-based model of the device updated via genetic 

algorithm to match the experimental results. 
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