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Abstract—This paper deals with the application of clustering 
methods to assist the bidding zone review processes in Italy, 
considering the Locational Marginal Prices (LMPs) as the 
relevant features. A novel approach based on the definition 
of the input data for clustering, depending on a number of 
scenarios defined by the Transmission System Operator, is 
exploited. The problem under analysis requires additional 
procedures to solve the challenging issue of incorporating 
node connection constraints in the clustering algorithm. A 
dedicated procedure, based on the definition of specific 
functions, is then applied to develop customised versions of 
k-means and hierarchical clustering. The customised 
procedures implemented can identify both wide clusters and 
outliers, whose location depends on the assessed scenarios. 

Keywords—Clustering, bidding zones, locational marginal 
prices, scenarios. 

I. INTRODUCTION  
A simplified representation of the transmission grid is 

applied in the framework of the European electricity 
markets, which are based on a zonal approach. In 
particular, electrical nodes are aggregated into Bidding 
Zones (BZs): energy trades are freely to occur inside each 
BZ, while cross-zonal exchanges are limited to a 
maximum amount (set by the cross-border capacities 
made available to the market). Currently, the large 
majority of the European BZs correspond to a single 
Member State: only Italy and Nordic countries (Sweden, 
Norway and Denmark) are split into several internal BZs. 

The BZ configuration has a relevant impact on the 
efficiency of the electricity markets and on power system 
security (and/or the amount of remedial actions to be 
applied by Transmission System Operators - TSOs) [1]. 
For this reason, the European Guideline on Congestion 
Management and Capacity Allocation [2] introduced a 
monitoring and a review process and, in the framework of 
the recent Clean Energy Package, the Regulation (EU) 
2019/943 [3] started a European BZ review (expected to 
be completed during 2021). 

In the framework of the review processes, identifying 
alternative BZ configurations to be compared with the 
current one is a crucial step. For this scope, several 
Stakeholders expressed their interest in the application of 
model-based algorithms, which could support TSOs 
providing quantitative analysis on the expected scenarios. 
In Italy, the National Regulatory Authority asked to the 
TSO to work on this field in order to develop a proper 
methodology to be adopted in the future when the internal 
Italian BZs will be reviewed again (a BZ review has been 

already completed in 2018) [4-6]. Fig. 1 shows the present 
structure of the BZs in Italy, as well as some 
interconnections with neighbouring countries. 

 
Fig. 1. Present bidding zones in Italy and external interconnections. 

In previous studies (recalled in Section III), clustering 
algorithms have been used to identify the possible BZs on 
the basis of the Locational Marginal Prices (LMPs) 
calculated from an optimal power flow applied either on a 
limited set of very realistic scenarios or on a large set 
(8760) of simplified scenarios (where load and RES nodal 
distribution has been determined based on typical 
profiles). In both cases, a grid topology where all elements 
are available has been considered. In these studies, the 
input data were taken from the LMPs determined at the 
network nodes for the all the simulated cases/hours of the 
year. These data were then reduced by removing all the 
hours in which all the LMPs were equal. In fact, the 
presence of equal LMPs would have no contribution to the 
components of the distance between the LMPs in all pairs 
of nodes at the corresponding hour. However, this 
approach has a conceptual drawback: if the number of 
congested hours during the year is very low, the 
partitioning of the BZs would be based only on what 
happens on a few hours, thus making the general validity 
of the result questionable. It is then crucial to rethink the 
way to form the features used in the clustering procedures, 
in such a way to make them representative and avoid 
massive filtering of the input data.  

To bridge these research gaps, this paper introduces a 
new approach where a probability of occurrence is 
assigned to each scenario on which LMPs are computed. 
For each of these scenarios, variations are elaborated to 
consider that one (or more) grid elements could be out of 
service for planned outages (or long-lasting fault). This 
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approach requires setting up the calculation of the LMPs 
for the grid status-based scenarios in an appropriate way 
[7] and customising the clustering algorithms to make 
them able to deal with different scenarios. The importance 
of the scenarios is established by using suitably defined 
weighting factors (reflecting the occurrence probability). 

II. GENERATION OF THE SCENARIOS 
In order to derive reliable LMPs that could represent a 

large range of system working conditions, a relevant set of 
scenarios in terms load and RES generation have been 
identified. In particular, 2018 actual scenarios experienced 
by the Italian power system have been clustered using an 
unsupervised machine learning approach (k-means 
algorithm), using zonal load, solar infeed, wind infeed, 
hydro infeed and import from other countries as relevant 
variables. In order to trade off accuracy and computation 
time, 20 clusters have been identified as suitable 
compromise for this study and the centroids of these 
clusters have been selected as base scenarios for the LMPs 
computation. Keeping the correspondent real-time 
snapshots of the power system, a realistic nodal 
distribution of load and distributed generation 
representing a wide range of system operating conditions 
has been obtained. Then, for each scenario 5 variations 
have been considered: a full network availability scenario 
and 4 planned maintenance cases identified for testing 
purposes by the TSO on the basis of detailed knowledge 
on the network operation. For each scenario, an Optimal 
Power Flow that explicitly incorporates the N-1 security 
criteria has been run to compute realistic LMPs for a 
significantly wide range of operating conditions (the 
details are indicated in [7]). Furthermore, the TSO 
assigned a weight to each scenario, to represent its relative 
importance (e.g., probability of occurrence estimated 
according to historical data). The scenario-based 
definition of the features to be used as inputs for the 
clustering procedure in different with respect to the LMP 
time series generally used, and is a specific contribution 
provided in this paper.  

III. APPLICATION OF CLUSTERING METHODS TO THE 
FORMATION OF THE BIDDING ZONES 

A. Background on clustering methods for BZ formation 
An overview of the clustering methods is presented in 

[8], where it is indicated that the most used unsupervised 
approaches are the methods k-means and hierarchical 
clustering (HC), both based on distances, with penalty 
factors introduced to represent the distances between non-
connected pairs of nodes. 

Previous results in the application of the clustering 
methods to form the BZs (reached in the activity carried 
out by the authors) led to the following outcomes: 
§ The application of the basic versions of the clustering 

algorithms found for example in Matlab® are 
insufficient to form BZs where all nodes are 
connected, because the basic algorithms embed no 
topological check [9]. If a dedicated procedure to 
identify the connected zones is executed at the end of 
the basic clustering algorithms [10], the numbers of 
BZs generally increases.  

§ The implementation of customised versions of the 
clustering algorithms that contain an internal check of 
the interconnections during the execution of the 
clustering procedure has improved the results. In this 
case, high penalty factors have been associated to the 
pairs of non-interconnected nodes, in such a way to 
discourage merging the clusters when there is no 
interconnection among their nodes. In this way, for the 
clustering methods that require the number of clusters 
among the input data, the final number of clusters 
generally remains the same as the initial one. 

§ The solutions obtained highly depend on the clustering 
method adopted. Even some variants of the same 
method can lead to very different results. This has 
been shown in [9] for four variants of the customised 
agglomerative HC algorithm, based on Euclidean 
distance, in which the only difference has been the 
linkage criterion adopted. Taking two groups of nodes, 
the linkage criterion determines how to calculate the 
distance between the two groups [11]. Using classical 
linkage criteria such as single, average, and Ward [12], 
the results obtained with the same number of BZs were 
significantly different. The single linkage criterion 
created a big cluster and had the trend of isolating 
some outliers. The Ward linkage criterion again led to 
the creation of highly populated clusters and a few 
smaller clusters. The average linkage criterion created 
more uniform partitions. These results are in line with 
other applications of the linkage criteria [13]. 

B. Challenges for applying the clustering methods  
The traditional clustering methods are not suitable to 

obtain the partitions of the BZs based on the LMPs, 
because they do not consider the connections among the 
nodes. The extension of the clustering algorithms to 
incorporate the node connection is not straightforward. 
The introduction of topological information concerning 
the network structures in the clustering algorithms fits 
with the distance-based calculation framework by 
introducing appropriate penalty factors applied to the pairs 
of non-connected nodes.  

Another solution to improve clustering accuracy by 
adding knowledge on the problem domain has been 
suggested in [14], by considering constrained clustering 
algorithms based on graphs, in particular applied to the k-
means algorithm [15]. Two types of constraints are 
introduced, namely, (i) must-link constraints (e.g., pairs of 
nodes that must belong to the same cluster based on 
previously known information), ad (ii) cannot-link 
constraints (e.g., pairs of nodes that cannot belong to the 
same cluster based on previously known information). In 
the modified version of k-means developed in [14], called 
COP-kmeans, each component (e.g., node in the case of 
our paper) is assigned to the closest cluster that does not 
violate the constraints, and the absence of available 
clusters results in clustering failure. On the one hand, the 
introduction of the constraints referring to the domain 
knowledge changes the basic rationale of the clustering 
algorithms, with consequences on the computation times 
and convergence characteristics that depend on the effect 
of the constraint. On the other hand, the introduction of 
the constraints clustering can make clustering 



performance less sensitive to the algorithm chosen, 
especially when the constraints (e.g., topological) drive 
the solution in specific directions. 

The application of must-link and cannot-link concepts 
has been used in some problems referring to electrical 
networks such as the formation of intentional islands [16], 
in which the relations between nodes belonging or not to 
an island is known a priori. However, these concepts 
cannot be directly incorporated in the algorithms for BZ 
clustering, because the previous information only 
concerns the network topology, while there is no pre-
established decision referring to the location on pairs of 
nodes within the same cluster or in different clusters. In 
Chapter 7 of a recent book [17], the discussion that 
mentions the existence of constrained clustering 
algorithms indicates the possibility of accommodating 
contiguity constraints to ensure that the clusters form 
connected sub-graphs, adding “while we did not encounter 
such problems in practice”. The problem under 
consideration in this paper is indeed requesting the 
presence of connected sub-graphs in each cluster, thus 
indicating how the studies in progress address more 
general challenging aspects in the clustering domain. 
C. General aspects and notation   

The input data available refer to the network structure, 
the selected scenarios and the corresponding LMPs. The 
general notation is indicated below. 
a) Variables: 

D  Number of initial LMP data for each node  
F  Number of input features for clustering 
K  Number of centroids  
N  Number of nodes  
S Number of scenarios 

b) Vectors and matrices:  
§ Node adjacency matrix A ∈ 	ℕ!,! 
§ Centroid matrix C ∈ 	ℕ#,$ 
§ Initial data matrix D ∈ 	ℝ!,% 
§ Cluster adjacency matrix M ∈ 	ℕ#,# 
§ Input data matrix for clustering X ∈ 	ℝ!,$ 
§ Cluster location vector v ∈ 	ℝ!,& 
§ Vector containing the weighting factors for the 

scenarios w ∈ 	ℝ',& 
D. Input data pre-processing 

The adjacency matrix A contains the connection 
among all pairs of nodes, coded in binary form (0 = not 
connected; 1 = connected). The nodes are defined in such 
a way to represent all the possible interconnections of the 
busbars inside the power substation (i.e., multiple nodes 
are used to represent separate operation of the busbars in 
different scenarios). However, the matrix A does not 
change in all the calculations carried out for clustering. 
Possible situations in which one of the nodes (e.g., a 
busbar) is not connected to the rest of the system are 
handled by assigning to this node the same LMP of the 
node corresponding to the other busbar in the substation.  

The presence of multiple scenarios is addressed by 
first forming a set of features that depends on the LMPs 
indicated by the TSO for each scenario. In this way, the 
data input vector is formed as a data matrix D in which the 
LMPs corresponding to the various scenarios are added to 
the columns, resulting in D columns. Then, each column 

of the matrix D belonging to the same scenario is 
multiplied by the corresponding weighting factor included 
in the vector w. Finally, the columns in which all LMP 
values are equal are eliminated, as they would not 
contribute to the calculation of the distances between 
nodes in the clustering procedure. In this way, the input 
data used for clustering is X, with the number of columns 
equal to the number of features F ≤ D. 
E. Specific functions for customising the clustering 
algorithms 

A number of functions have been set up to incorporate 
domain knowledge into the clustering algorithms. These 
functions perform the following calculations: 
§ F1 (Remove empty clusters): in some cases (e.g., k-

means) in which the number of clusters is set up as one 
of the inputs, it may happen that the final number of 
clusters is lower than the desired one. This function 
takes the cluster location vector v as input, and 
provides as the output the new version of the vector v 
in which the empty clusters have been removed and 
the clusters have been renumbered from 1 to the 
maximum number of resulting clusters. 

§ F2 (Form connected clusters): checks the within-
cluster connection between the nodes belonging to the 
same cluster. The input data are the cluster vector v 
and the adjacency matrix A. For each cluster, if all the 
nodes in the cluster are connected nothing changes; 
otherwise, the initial cluster is split into connected 
clusters, with an increase in the total number of 
clusters. The output is the modified cluster location 
vector v, together with the new number of clusters. 

§ F3 (Cluster connections): identifies the branches that 
connect the clusters. The input data are the cluster 
vector v and the adjacency matrix A. The outputs are 
the list of branches that connect the various clusters, 
the numbers of the connected clusters, and the cluster 
adjacency matrix M, whose entries are equal to unity 
if the clusters are connected, and zero elsewhere. 

§ F4 (Cluster grouping): reduces the number of clusters. 
The inputs are the cluster location vector v, the 
adjacency matrix A, the input data matrix X, the 
centroid matrix C, and the desired final number of 
clusters K. The clusters are grouped by successively 
merging the pair of clusters with the lower distance 
between the centroids. Each time the new centroids are 
recalculated starting from the entries of the input data 
matrix X that belong to the new cluster formed. The 
output is the updated cluster location vector v. 

F. Customisation of the hierarchical clustering algorithm 
A given number of clusters is requested as input data. 

At the beginning, all nodes are assigned to a separate 
cluster. The classical HC is based on three basic steps, 
namely: (i) the calculation of the distances between the 
clusters (typically the Euclidean distance), (ii) the 
definition of the linkage criterion (with a number of 
variants indicated as single, complete, centroid, average, 
and Ward), and (iii) the bottom-up pairwise grouping of 
the clusters. These steps are executed until the requested 
number of clusters is reached.  

Two HC variants have been implemented: 



a) Penalty-based HC: the classical structure of the HC is 
maintained, in which the first step of calculation of the 
distances is modified by adding to the classical 
distances a high penalty factor to all combinations of 
nodes that are not directly connected. The 
consequence of this addition is mainly reflected on the 
application of the linkage criteria. In particular, the 
linkage criteria are affected by the presence of very 
high terms that bring high values to the entries. The 
single linkage criterion is the one less affected, 
because it considers only the nearest distances among 
the components of pairs of clusters. 

b) Constrained HC: in this case, the specific knowledge 
on the domain is included by allowing only operations 
between connected areas. The centroid linkage is used 
as the relevant linkage criterion. The iterative process 
is set up as follows, starting from the initial data and 
from K = N centroids: 
Ø identify the connections between clusters (function 

F3), calculate the distances between centroids, use 
the cluster adjacency matrix to extract only the 
pairs of clusters connected, and determine the 
minimum distance between pairs of clusters; 

Ø check and remove the empty clusters (function F1); 
Ø recalculate the centroids; 
Ø apply the stop criterion: at each iteration the 

number of clusters is reduced by one; the process 
stops when the number of clusters reaches the 
requested one, otherwise the next iteration is 
executed. 

G. Customisation of the k-means algorithm 
Two different types of customised versions of the k-

means algorithm have been implemented. In both cases, 
the k-means++ algorithm1 [18] is used to choose the initial 
centroids, to avoid total random initialisation.  

The two versions are: 
a) Constrained k-means: an iterative process is set up as 

follows, starting from the initial data and centroids: 
Ø for each node, calculate the distances of the 

features from the centroids, and determine the 
location of the centroids for which there is the 
minimum distance (as in the classical k-means); 

Ø check and remove the empty clusters (function F1); 
Ø check the within-cluster connection and form 

connected clusters (function F2); 
Ø identify the connections between clusters (function 

F3); 
Ø reduce the number of clusters (function F4); 
Ø recalculate the centroids; 
Ø apply the stop criterion: stabilisation of the vector 

v, or maximum number of iterations; if the stop 
criterion is not satisfied, the next iteration is run. 

b)  Post-processing of the classical k-means results: after 
the execution of k-means, the functions F1, F2, F3 and 
F4 are applied once, then the final centroids are 
recalculated. 

 
1 The centroid of the first cluster is randomly chosen from the data. The 
other centroids are randomly chosen from the other data by using 
probability weights proportional to the distances from the closest cluster 
centroid. 

IV. CASE STUDY APPLICATIONS AND RESULTS 
The application of the customised and constrained 

clustering procedures with scenario-based LMP data to the 
Italian network is shown in this section. The network 
nodes considered include the continental part of Italy and 
the Sicily island, while the nodes at the external 
interconnections and inside the Sardinia island are not 
included (in this study, the Sardinia island is considered as 
a BZ by definition since it is also a different synchronous 
area). The network model has 918 nodes and 1317 
branches. Five scenarios are considered, in which the 
weights depend on the historical occurrence of the 
planned outages (and of similar ones) [7]:  

Scenario 1 (TSO weight 5%): planned outage of a 380 
kV line on the Adriatic path. This outage limits in a 
significant way the South-North transmission capacity.  

Scenario 2 (TSO weight 40%): planned outage of a 
380 kV line in the Southern part of Italy. This outage 
limits the transmission capacity from the South to the 
Central part of Italy.  

Scenario 3 (TSO weight 5%): planned outage of a 380 
kV line in the Central part of Italy. This outage does not 
typically impact in a significant way the transmission 
capacity between the existing BZs.  

Scenario 4 (TSO weight 20%): planned outage of a 
380 kV line in the North-Western part of Italy. This 
outage does not typically impact in a significant way 
transmission capacity between existing BZs, but during 
this unavailability intra-zonal congestions could occur.  

Scenario 5 (TSO weight 30%): all grid elements are 
considered fully available. The weight of this case is the 
difference between 100% and the sum of the weights of 
the other scenarios. 

The initial set of data includes D = 100 initial data for 
each node, taken from the S = 5 scenarios. After the 
elimination of the data having equal LMP values for all 
the nodes, the remaining input data contain F = 65 
features, with a total of 8003 different LMPs. Fig. 2 shows 
the LMPs corresponding to these features. High LMPs 
appear in a few nodes, depending on the grid status-
scenarios defined. 

 
Fig. 2. LMPs corresponding to the features used for clustering. 

C. Results from the hierarchical clustering variants 
C.1. Penalty-based HC 

This variant of the HC has been run by using the 
average linkage criterion and setting up a penalty factor 
equal to 1020 (i.e., five degrees of magnitude higher than 
the sum of the absolute differences between the LMPs). A 
warning has to be noticed in the use of the average linkage 
criterion. The average is calculated by considering all the 
distances between pairs of nodes in the group. Thereby, 



this average depends on the number of nodes not 
connected among them, as each of these pairs of nodes 
provides a contribution to the distance affected by the 
penalty. The final result then reflects the number of pairs 
of non-connected nodes in the groups. Nonetheless, the 
results obtained have a relatively uniform distribution of 
the final clusters (Fig. 3). The corresponding cluster 
centroids are shown in Fig. 4, from which the averaging 
effect is clearly seen from the reduction of the maximum 
LMPs with respect to the initial values shown in Fig. 2. 

 
Fig. 3. Results of the Penalty-based average linkage HC (7 clusters). 

 
Fig. 4. Centroids of the 7 clusters obtained from the Penalty-based HC 
with average linkage criterion. 

This warning does not apply to the single linkage 
criterion, as this criterion considers the minimum distance 
among the components of different groups (i.e., the 
nearest neighbours). However, in this case, at the 
beginning of the grouping the clusters are formed by 
merging the most similar LMP patterns; then, the further 
clusters are obtained by merging together the most similar 
LMP patterns in two different groups, regardless of the 
other LMP patterns belonging to these clusters. At the 
end, the clustering procedure stops and isolates the LMP 
patterns that resemble less to any of the LMP patterns 
belonging to the existing clusters. Hence, the final clusters 
are typically composed of a large group and a few outliers 
(Fig. 5). The corresponding cluster centroids are shown in 
Fig. 6 and indicate the prevailing role of the outliers to 
determine the clustering results.  

 
Fig. 5. Results of the Penalty-based single linkage HC (7 clusters). 

C.2. Constrained HC 

The Constrained HC adopts a centroid-based 
mechanism for the calculation of the distances, which 
differs from the classical centroid linkage because only 
the connected clusters are considered. When the numbers 
of imposed clusters reduces, conceptually the distances 
among the closest centroids should increase. From the 
zoom reported in Fig. 7 from 2 to 100 clusters, an effect of 
applying the Constrained HC algorithm is the non-
monotonic variation of the minimum distance between the 
cluster centroids (the one relevant for merging the 
clusters; the mean and maximum distances are reported as 
well for the sake of completeness). In fact, even pairs of 
clusters with close distance based on the features, but not 
connected at a given point during the execution, cannot be 
merged in the same cluster. However, further grouping 
could make these clusters connected through another 
group, thus making the connection available for the 
progress of the algorithm. 

 
Fig. 6. Centroids of the 7 clusters obtained from the Penalty-based HC 
with single linkage criterion. 

 
Fig. 7. Minimum, mean and maximum distance between the cluster 

centroids for various numbers of clusters in the Constrained HC method 
(zoom from 2 to 100 clusters). 

The execution of the Constrained HC on the dataset 
used shows the ability of the clustering algorithm to 
identify a number of outliers (Fig. 8). This result and the 
related centroids (Fig. 9) are similar (but not equal) to 
outcomes of the Penalty-based HC with single linkage.  

 
Fig. 8. Results of the Constrained HC (7 clusters). 

C. Results from the k-means variants 



The k-means variants adopt the same set of functions 
introduced for the HC variants. In this way, the typical 
properties of the k-means clustering (i.e., the ability of 
forming relatively uniform groups) are not yet found in 
general. The solution is mainly driven by the functions 
applied to introduce the constraints. The example shown 
in Fig. 11 for the Constrained k-means with 7 clusters 
indicates a solution with similar attitude to isolate the 
outliers to the ones found for the Constrained HC and the 
Penalty-based with single linkage criterion. Also the 
nature of the centroids (not shown here) is similar. 

 
Fig. 9. Centroids of the 7 clusters obtained from the Constrained HC. 

 
Fig. 10. Results of the Constrained k-means (7 clusters). 

V. CONCLUSIONS 
This paper has extended the application of clustering 

algorithms for the purpose of grouping together the 
network nodes with similar evolution in time of the LMPs, 
considering a dataset based on weighted scenarios that 
represent different operating conditions of the Italian 
power system. The scenarios have been selected in order 
to well represent different load and distributed generation 
conditions experienced by the power system, and five 
network topological conditions are considered.  

The nature of the problem was not directly tractable 
with conventional clustering algorithms, due to the needs 
of considering the physical links among the network 
nodes and of guaranteeing the connectivity of the nodes in 
the resulting clusters. For this purpose, customised 
versions of the k-means and hierarchical clustering 
algorithms have been developed and applied.  

From the results obtained, it is possible to formulate 
some general and specific considerations. As general 
considerations, the results from the clustering algorithms 
are always data-driven, and there is no single clustering 
algorithm that provides the final solution. The outcomes 
from different clustering algorithms have to be interpreted 
and discussed. The specific results found in this paper 
indicate that the choice of the scenarios can drive the 
clustering solutions towards specific outcomes, suggesting 
that a sufficiently large set of cases have to be considered 
when applying this approach. In particular, for the 
clustering techniques more aimed to identifying the 
outliers, the individual scenarios in which there are more 

discontinuities in the LMPs leave a footprint that has an 
impact on the formation of the zones. However, since 
these outliers are typically composed of a few nodes, these 
groups of nodes are too small to be considered as separate 
BZs. More likely, these nodes could be considered as 
separators among different BZs.  

The clustering algorithms used in this paper depend on 
the final number of clusters provided as one of the inputs. 
Further stop criteria could be considering for clustering, 
for example based on a distance criterion, concluding the 
procedure when the clusters become too far apart. 
However, the tuning of the limit distance depends on the 
data and it is not simple to be addressed. Moreover, in the 
constrained versions of the procedures there could be a 
non-monotonic evolution of the distances used to form the 
clusters. Further criteria and analyses with more scenarios 
will have to be adopted to establish the final structure of 
the BZs. The results referring to these aspects will be 
presented in future contributions.  
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