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Abstract

The aim of this study is to compare numerical methods for the simulation
of single-phase flow and transport in fractured media, described here by
means of the Discrete Fracture Network (DFN) model. A Darcy problem
is solved to compute the advective field, then used in a subsequent time
dependent transport-diffusion-reaction problem. The numerical schemes are
benchmarked in terms of flexibility in handling geometrical complexity, mass
conservation and stability issues for advection dominated flow regimes. To
this end, three benchmark cases have been specifically designed and are here
proposed, representing some of the most critical issues encountered in DFN
simulations.

Keywords: Discrete fracture network, benchmark, discretization methods,
domain decomposition, non-matching grids, polygonal grids
PACS: 02.60.Cb, 02.60.Lj, 02.70.Dh

1. Introduction

The movement of liquids in the underground is heavily influenced by the
presence of fractures and their relative intersections [24, 37, 26]. Fractures
are discontinuities (here assumed planar) along which a rock has been bro-
ken, mainly due to geological movements or to artificial stimulation [43]. In
this work, we are considering only open structures, characterized by a geo-
metrical aperture, that allow a liquid to flow through [25]. Possibilities are
actual fractures, faults, and joints. We are thus excluding low permeable
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(closed/impervious) objects such as veins or dykes. For particular under-
ground compositions (e.g., granite, shale, or sandstone) the rock permeabil-
ity is several orders of magnitude smaller than the fracture permeability. It
is a common choice and a reasonable approximation to ignore the rock ma-
trix effect in the simulations and rely only on the fractures. The framework
is the discrete fracture network model (DFN), where the aperture is not a
geometrical constraint but a parameter in the bidimensional representation
of the fractures by reduced models, see [42] and the forthcoming references.

The geometrical complexity of natural fracture networks may impose dif-
ficulties in the numerical simulations, due to the presence of small intersec-
tions between fractures, different intersection configurations (e.g., Y-type or
L-type), small angles of intersection, and small distances between intersec-
tion lines. In the literature, three main approaches are developed to overcome
these difficulties.

The first approach considers rather standard numerical scheme for the
discretization of the physical equations, and relies on robust grid generation
software. The coupling conditions among fractures are imposed via Lagrange
multipliers on a representation of the interfaces conforming with the compu-
tational mesh on all sides. To be specific, the edges of the computational el-
ements have to match at the intersections. This approach, commonly known
as conforming discretization, may suffer, for example, when intersections lines
are very close to each other, see [38, 39, 44, 45]. To partially overcome these
problems, a possibility is to consider the class of virtual element methods that
allows grid elements of general shapes. Two different numerical methods of
this type are introduced in [8, 30, 10, 31, 12].

A second possibility is to keep the intersections explicitly represented, but
relaxing the conformity of the edges. This approach, named non-conforming,
requires more advanced numerical schemes based on the mortar technique.
In this case, we relax the actual generation of the fracture meshes which
usually gives less discrete elements than the conforming approach [7, 46].
This method may still suffer in presence of severe geometries. Also in this
case the virtual element methods are an interesting option to further decrease
the computational cost, see [4, 6].

A third family of schemes comprises the so-called non-matching dis-
cretizations. In terms of mesh generation, in this case the intersections do
not place any constraints, as the fractures are meshed independently and
the coupling conditions are imposed by an optimization procedure. A func-
tional that measures the mismatch in the coupling conditions is minimized
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iteratively, where only the degrees of freedom involved in the intersections
(the cut region) are considered [18, 19, 20, 11, 21]. This procedure is inde-
pendent on the actual numerical schemes, might take advantage of ad-hoc
strategies to enrich the solution in the cut region. Extended finite elements
are a successful example, see, for example, [23, 27, 34, 35].

The present work extends and enriches the one proposed in [32] to more
complex physical phenomena. The concepts previously discussed are applied
to Darcy and heat transport-and-diffusion models. The Darcy velocity is
computed first and then used as an advective field for the heat equation. High
quality computation or reconstruction of the Darcy velocity may significantly
impact the temperature distribution. Moreover, in the heat equation the
transport part usually dominates the diffusion (Péclet greater than 1) and
stable or stabilized schemes are needed to avoid or limit spurious oscillations
that might compromise the accuracy of the solution. In the numerical tests,
we are considering several numerical schemes for the comparison to cover
most of the combinations discussed and try to assess their performances.
The aim of this work is thus twofold: establish a set of benchmark cases and
give guidance in the development of more advanced numerical schemes to
solve this problem.

The paper is organized as follow. In Section 2 the Darcy and heat models
are introduced and discussed, with particular focus on the coupling con-
ditions. Section 3 is devoted to the description of the proposed numerical
schemes. Three numerical examples are presented and discussed in Section 4,
comparing the performances of the considered numerical schemes. Finally, in
Section 5 we draw some conclusions and suggestions for future developments.

2. Mathematical model

In this section we introduce the mathematical model used to describe the
hydraulic head and Darcy velocity profiles in a discrete fracture network.
Once this problem is solved, the Darcy velocity is considered as advective
field to simulate the transport and diffusion of heat in DFNs.

Fractures are considered as non-overlapping planar objects, which can be
connected to other fractures through intersection segments, also called traces.
We consider NΩ fractures Ωi ⊂ R3 with boundary ∂Ωi, which compose the
discrete fracture network Ω = ∪NΩ

i=1Ωi, and we denote its boundary as ∂Ω
with outward unit normal next, defined on each fracture plane as the unit
vector normal to the fracture boundary pointing outward from the fracture
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Figure 1: Representation of two fractures Ωi and Ωj intersecting in Γk.

polygon. To keep the presentation clear, we make a distinction between
external boundaries, where we will impose data, and internal interfaces, i.e.
the traces, where we will couple the mathematical models on the fractures.

Given two distinct and intersecting fractures Ωi and Ωj, with i 6= j,
we indicate their intersection (trace) as Γk = Ωi ∩ Ωj. For simplicity, we
assume that a trace is formed only by two distinct fractures, however this
assumption can be relaxed. A natural order of indexes can be introduced
to numerate the traces Γk from 1 to NΓ, being the latter their cardinality.
We consider also the function t : {1, . . . , NΩ} × {1, . . . , NΩ} → {1, . . . , NΓ}
such that k = t(i, j) with Γk = Ωi ∩ Ωj. We have t(i, j) = t(j, i) and its
inverse t−1 is well defined such that (i, j) = t−1(k) where i < j. We indicate
with Γ = ∪NΓ

k=1Γk the union of all the traces and by ΓΩi
the set of traces

belonging to the fracture Ωi. Moreover, consider a fracture Ωi and a trace
Γk, with k ∈ ΓΩi

. Γk naturally subdivides Ωi in two sub-regions, indicated
by Ωk

i,+ and Ωk
i,−, such that Γk ⊂ (∂Ωk

i,+∩Ωk
i,−). To each of these sub-regions

we associate an outward unit normal perpendicular to Γk, denoted by ni,+

and ni,− (with ni,+ = −ni,−) and a trace operator, respectively denoted by
trki,+ and trki,−. Generic trace operators on fracture Ωi are denoted by tri.
An example of a simple DFN with the introduced nomenclature is given in
Figure 1.

We present the Darcy problem in strong and weak form in Subsection
2.1, to compute the hydraulic head and Darcy velocity, whereas the heat
equation is introduced along with its weak formulation and functional setting
in Subsection 2.2.

2.1. The Darcy model

This section is devoted to the presentation of the mathematical models
used to describe the hydraulic head field h and Darcy velocity u in a dis-
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crete fracture network, further details being available in [18, 19, 30, 32] and
references therein. Unknowns and parameters restricted to a fracture Ωi are
denoted by a subscript i.

For clarity in the exposition, we start considering a single fracture Ωi.
The Darcy model on Ωi reads: find (ui, hi) such that

ui +Ki∇hi = 0

∇ · ui = fi
in Ωi \ Γ (1a)

Variables, data and differential operators are defined on the tangent plane
of the fracture. Ki is the hydraulic conductivity tensor, which is symmetric
and positive definite, and fi is a scalar source/sink term. In our applications,
following lubrication theory [2, 51, 49], we consider a scalar permeability,
obtained by the cubic law: ki = ε2i /12, where εi is the fracture aperture.
Moreover, the hydraulic conductivity in (1a) is isotropic and defined as

Ki =
εikiρwg

µ
I ,

with ρw the fluid density, g the gravity acceleration, µ the dynamic viscosity
of the fluid.

The boundary conditions on Ωi are

tr∂i hi = hi on ∂Ωi,D

tr∂i ui · next = 0 on ∂Ωi,N

(1b)

where ∂Ωi,D and ∂Ωi,N are disjoint portions of the boundary of Ωi such that
∂Ωi = ∂Ωi,D ∪ ∂Ωi,N , and tr∂i gives the trace on the boundary of Ωi. The
data hi is the given pressure head at the boundary ∂Ωi,D and we model ∂Ωi,N

as impervious. Other boundary conditions are possible, however, in order to
keep the presentation as simple as possible and coherent with the examples
proposed in Section 4, we consider only these, being the generalization to
other boundary conditions straightforward. We assume, for a single fracture,
that ∂Ωi,D is not empty; in presence of intersecting fractures, instead, we can
have ∂Ωi,D = ∅ for all the fractures but one. Equations (1a) and (1b) are
well studied in the literature, refer to the aforementioned references.

Let us now consider two distinct fractures Ωi and Ωj forming an intersec-
tion Γk. On both fractures we apply Equations (1a) and (1b) and we assume
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continuous coupling conditions for the hydraulic head and the normal com-
ponent of the Darcy velocity at the trace. The coupling conditions between
two fractures Ωi and Ωj such that t(i, j) = k, read∑

l∈{i,j}

trkl,+ ul · nl,+ + trkl,− ul · nl,− = 0

trki,+ hi = trki,− hi = trkj,+ hj = trkj,− hj

on Γk . (1c)

The case of multiple fractures follows immediately from our assumptions.
The Darcy equation can be formalised in the following problem.

Problem 1 (Darcy equation on a DFN - mixed formulation). Given the set
of fractures Ω and traces Γ, find (u, h) such that (1a)-(1b)-(1c) are satisfied.

The weak formulation of Problem 1 requires the introduction of the func-
tional spaces on each Ωi, namely

Vi = H∇·(Ωi) =
{
v ∈

[
L2(Ωi)

]2
: ∇ · v ∈ L2(Ωi)

}
and Qi = L2(Ωi) ,

equipped with the natural norms that make them complete. The spaces for
the global network are

V =

v : vi ∈ Vi , tr∂i vi · next = 0 on ∂Ωi,N ∀i ,

∑
l∈{i,j}

trkl,+ ul · nl,+ + trkl,− ul · nl,− = 0 ∀k , t−1(k) = (i, j)

 ,

and Q =
⊕

iQi, both endowed with their natural norms. The following
linear forms are then introduced: ai : Vi × Vi → R, bi : Vi × Qi → R,

Gi :
(
H

1
2 (∂Ωi,D)

)′
→ R and Fi : Qi → R such that, ∀u,v ∈ Vi and ∀q ∈ Qi

ai(u,v) =
(
K
− 1

2
i u, K

− 1
2

i v
)

Ωi

, bi(u, q) = −(∇ · u, q)Ωi
,

Gi(v) = −〈hi, tri v · n〉∂Ωi,D
, Fi(q) = −(f, q)Ωi

.

We also require that f ∈ Qi, hi ∈ H
1
2 (∂Ωi,D), and Ki ∈ L∞(Ωi). The less

standard functional spaces associated with Gi are due to the low regularity
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of a H∇·-function at a boundary, as well as the duality pairing used instead
of a scalar product. The global forms a : V × V → R, b : V × Q → R,
G : H∗ → R, and F : Q → R are the sums of the respective local ones,

where we denoted by H∗ =
⊕

i

(
H

1
2 (∂Ωi,D)

)′
, the space associated to the

boundary term.

Problem 2 (Darcy equation on a DFN - mixed weak formulation). The weak
formulation of Problem 1 is: find (u, h) ∈ V ×Q such that

a(u,v) + b(v, h) = G(v) ∀v ∈ V
b(u, q) = F (q) ∀q ∈ Q

Some numerical formulations require the problem written in term of pres-
sure head alone, thus we consider also the primal formulation of Problem 1.
Given a fracture Ωi the model is: find hi such that

−∇ · (Ki∇hi) = fi in Ωi \ Γ

tri hi = hi on ∂Ωi,D

triKi∇hi · next = 0 on ∂Ωi,N

(2a)

Given a second distinct fracture Ωj which intersects Ωi in Γk, the following
coupling conditions are added:∑

l∈{i,j}

trl,+Kl∇hl · nl,+ + trl,−Kl∇hl · nl,− = 0

trki,+ hi = trki,− hi = trkj,+ hj = trkj,− hj

on Γk. (2b)

Once the pressure head is computed, the Darcy velocity is given by the
first equation of (1a). We can formalize also the primal formulation of the
Darcy equation in the following problem.

Problem 3 (Darcy equation on a DFN - primal formulation). Given the set
of fractures Ω and traces Γ, find h such that (2a)-(2b) are satisfied ∀i, k.

In this case, the weak formulation is simpler than the previous one. To
keep the notation standard and since we are introducing a separate formu-
lation of the Darcy problem, in the following we commit abuses in notation.
We introduce the functional spaces

Vi = {v ∈ H1(Ωi) : tr∂i v = hi on ∂Ωi,D} ,
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and Vi,0 in the special case of homogeneous head condition. The linear forms
now read: ai : Vi × Vi,0 → R and F : Vi,0 → R such that, ∀v ∈ Vi,0,

ai(h, v) = (K
1
2
i ∇h,K

1
2
i ∇v)Ωi

and Fi(v) = (f, v)Ωi
.

In this case, we ask f ∈ (Vi,0)′, hi ∈ H
1
2 (∂Ωi,D), and Ki ∈ L∞(Ωi). The

functional spaces on the whole network are

V =
{
v : vi ∈ Vi ∀i , trki,+ vi = trki,− vi = trkj,+ vj = trkj,− vj

∀k , t−1(k) = (i, j)
}
,

V0 =
{
v : vi ∈ Vi,0 ∀i , trki,+ vi = trki,− vi = trkj,+ vj = trkj,− vj

∀k , t−1(k) = (i, j)
}
,

with their natural norms. The global forms a : V × V0 → R and F : V0 → R
are the sums of the respective local ones.

Problem 4 (Darcy equation on a DFN - primal weak formulation). The
weak formulation of Problem 3 is: find h ∈ V such that

a(h, v) = F (v) ∀v ∈ V0 .

We note that to obtain symmetric forms in Problem 4 a lifting technique
of the Dirichlet datum can be considered.

2.2. The heat equation

In this part, we present the heat equation on the DFN. Once Problem 1
is solved, the Darcy velocity can be used as advective field in the transport
problem. We denote the temperature in a DFN as θ, and its restriction to
fracture Ωi as θi. The heat equation on Ωi reads: given ui find θi such that

ζi∂tθi +∇ · (uiθi −Di∇θi) + ιi(θi − θ̂i) = 0 in Ωi \ Γ× (0, T ] , (3a)

where T ∈ R is the end time of the simulation. Also in this case, the
variables, data, and differential operators are defined on the tangent plane of
the fracture. The relations to compute the physical parameters are [2, 51, 49]:

ζi =
εice,i
ρwcw

, Di =
εiλe,i
ρwcw

, ιi =
γe,i
ρwcw

,
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where εi is the fracture aperture, ρw the fluid density, cw the fluid specific
thermal capacity, ce,i = φiρwcw + (1− φi)ρmcm the fracture effective thermal
capacity, φi the fracture porosity, ρm the density of the rock matrix, cm the
specific thermal capacity of the rock matrix, λe,i = λφiw λ

1−φi
m the effective

thermal conductivity, γe,i the effective heat transfer coefficient between fluid

and rock, and, finally, θ̂i is the temperature of the rock matrix, acting as
external heat source/sink. When φi = 1 the fracture is completely open and
no sediments are present, whereas values of φi < 1 indicate that fracture is
partially filled with crystals/rocks. Equation (3a) is in conservative form,
being the total flux the conserved quantity.

For the sake of brevity and clarity of explanation we do not present bound-
ary conditions in the most general context, but conforming to the numerical
tests of Section 4; generalization is however again straightforward. Recall-
ing that ∂Ωi,D is the Dirichlet portion of the boundary of fracture Ωi for
the Darcy problem in Section 2.1, let us split ∂Ωi,D into two parts, namely
∂Ωinflow

i,D and ∂Ωoutflow
i,D . Thus, according to the computed Darcy velocity ui, on

each fracture Ωi, the inflow boundary ∂Ωinflow
i,D is the portion of ∂Ωi,D where

ui · next < 0 and conversely the outflow boundary is the portion of ∂Ωi,D

where ui · next > 0, thus linking the nature of the boundary to the solution
of the Darcy problem. Please note that ∂Ωinflow

i,D and ∂Ωoutflow
i,D might be both

empty for most of the fractures. Then boundary conditions on fracture Ωi

are:

tri θi = θi on ∂Ωinflow
i,D × (0, T ] ,

triDi∇θi · next = 0 on ∂Ωoutflow
i,D × (0, T ] ,

triDi∇θi · next = 0 on ∂Ωi,N × (0, T ] .

(3b)

By (1b), on the portion ∂Ωi,N both the diffusive and advective terms are
zero for θi, so ∂Ωi,N represents an impervious boundary also for the heat
equation. Finally, the initial condition on Ωi is given by

θi = θi in Ωi \ Γ× {0}. (3c)

We consider now two distinct fractures Ωi and Ωj with an intersection
Γk. On Ωi the temperature θi fulfils (3a), (3b), and (3c). The same for θj in
the fracture Ωj. The coupling conditions on Γk × (0, T ] are∑

l∈{i,j}

trl,+(ulθl −Dl∇θl) · nl,+ +trl,−(ulθl −Dl∇θl) · nl,−=0 ,

tri,+ θi = tri,− θi = trj,+ θj = trj,− θj .

(3d)
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Also in this case, in presence of multiple fractures the generalization of the
model is immediate. The heat equation can be formalized in the following
problem.

Problem 5 (Heat equation on a DFN). Given the set of fractures Ω and
traces Γ and the Darcy velocity u, find θ such that (3a)-(3b)-(3c)-(3d) are
satisfied.

To derive the weak formulation of Problem 5 we need to introduce the
Bochner space

W 0
i = L2

(
0, T ;

{
v ∈ H1(Ωi) : tri v (t) = θi (t) on ∂Ωinflow

i,D ∀t ∈ (0, T ]
})
,

while for the test functions we define

W 1
i = H1

(
0, T ;

{
v ∈ H1(Ωi) : tri v (t) = 0 on ∂Ωinflow

i,D ∀t ∈ (0, T ]
})

.

We need to introduce space-time forms associated to each fracture, in par-
ticular we have: mi, di, gi, ri which are defined on W 0

i × W 1
i → R, and

Si : W 1
i → R such that

mi(θ, v) = −
∫ T

0

(θ, ∂tζiv)Ωi
di(θ, v) =

∫ T

0

(D
1
2
i ∇θ,D

1
2
i ∇v)Ωi

gi(θ, v) =

∫ T

0

(∇ · (uiθ), v)Ωi
ri(θ, v) =

∫ T

0

(ιiθ, v)Ωi

Si(v) =

∫ T

0

(ιiθ̂i, v)Ωi
+ (θi, v(0))Ωi

The global functional spaces are

W 0 =
{
v : vi ∈ W 0

i ∀i , trki,+ vi(t) = trki,− vi(t) = trkj,+ vj(t) = trkj,− vj(t)

∀t ∈ (0, T ] , ∀k , t−1(k) = (i, j)
}
,

W 1 =
{
v : vi ∈ W 1

i ∀i , trki,+ vi(t) = trki,− vi(t) = trkj,+ vj(t) = trkj,− vj(t)

∀t ∈ (0, T ] , ∀k , t−1(k) = (i, j)
}
,

and the global bilinear forms m, d, g, r and S are the sum over all fractures
of the local ones. We finally have the weak formulation of the problem.

Problem 6 (Heat equation on a DFN - weak formulation). The weak for-
mulation of Problem 5 is: find θ ∈ W 0 such that

m(θ, v) + d(θ, v) + g(θ, v) + r(θ, v) = S(v) ∀v ∈ W 1 .

Also in this case to obtain a symmetric problem we can use a lifting
technique of the Dirichlet datum.
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3. Numerical discretization

In this section, we present various discretization strategies, both well
established, both unconventional, that can be used to solve the models de-
scribed in Section 2. These strategies have similarities and differences that
can be used to categorize them. A first point concerns the computational
mesh and, in particular, how the meshing is performed at fracture intersec-
tions: it is possible to have a matching or non-matching grids. In the former
case fracture grids are conforming to the intersections among fractures, while
in the latter, grid elements arbitrarily cross intersections. A second issue is
related to mass conservation: in computing the Darcy velocity, some schemes
are locally mass conservative and some other are only globally conservative,
and this property may impact the subsequent solution of the heat problem.
Also, some numerical schemes are characterized by high numerical diffusivity
which might impact the solution but also avoids nonphysical spurious oscil-
lations in advection dominated flow regimes, whereas other schemes need to
adopt stabilitazion techniques.

Six different approaches are considered in the present work, given as the
combination of a numerical scheme for the computation of the Darcy velocity
and a numerical scheme for the spatial semi-discretization of the subsequent
non-stationary advection-diffusion-reaction problem (shortly denoted as Heat
equation). The implicit Euler method is used, instead, in all cases, for time
evolution. The approaches are listed in Table 1. The scheme tagged tp-
faup is given by the combination of the Two Point Flux Approximation
(tpfa) method for the Darcy problem and the TPFA with upwinding for the
advection term (tpfa+upwind) for the Heat equation. Scheme mfemup
uses, instead mixed finite elements (mfem) for the Darcy equation and again
tpfa+upwind for the Heat equation. The method mvemup, uses instead
the Virtual Element Method in mixed formulation (mvem) for the Darcy
problem, on matching polygonal meshes. These schemes are implemented in
PorePy, a simulation tool written in Python for fractured and deformable
porous media, see [41, 40]. PorePy is freely available on GitHub along with
the numerical tests proposed in Section 4. The method labeled mfemsupg
is based on mixed standard finite elements for the numerical resolution of
the Darcy problem and on standard finite elements (fem) with Streamline
Upwind Petrov-Galerkin (supg) stabilization [28] for the Heat equation. Fi-
nally methods femsupg and xfemsupg use a non-conventional optimiza-
tion based approach for the Darcy equation and, with supg stabilization
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Tag Darcy eq. Heat eq. Grid
tpfaup tpfa tpfa + upwind Matching triangles

mfemup mfem tpfa + upwind Matching triangles

mvemup mvem tpfa + upwind Matching polygons

mfemsupg mfem fem + supg Matching triangles

femsupg opt-fem opt-fem + supg Non-match. triangles

xfemsupg opt-xfem opt-xfem + supg Non-match. triangles

Table 1: List of numerical schemes proposed to solve the Darcy and heat problems, with
the type of meshes used.

also for the Heat equation. The optimization approach can adopt different
baseline discretization methods: here we consider the variants using stan-
dard finite elements (opt-fem) and extended finite elements (opt-xfem).
Methods mfemsupg femsupg and xfemsupg are implemented in C++ and
Matlabr.

The forthcoming parts describe in more details the previous approaches,
grouping them according to the coupling at the traces: matching coupling at
traces in Subsection 3.1 and non-matching coupling in Subsection 3.2.

3.1. Matching discretization at traces

Here advantages and drawbacks of a conforming discretization at the
traces are discussed. As mentioned before in a conforming grid, the meshes
of both the intersecting fractures match the trace with their geometry. The
trace is thus entirely covered by contiguous cell edges of the two fractures, see
Figure 2a-2b as an example. This approach has the clear advantage of an easy
applicability to most of the existing and well established numerical methods
(finite volumes, finite elements). However, in the case of complex geometries
the computational cost might increase and become a severe constraint in
complex fracture networks.

To solve the Darcy problem, we rely on different classes of numerical
schemes: finite volumes, finite elements in primal and mixed formulation,
and virtual elements in mixed formulation. For the finite volume class, we
choose the two-point flux approximation tpfa on simplicial grids, applied to
Problem 4, see [1] for details. This scheme is well known in the industry field
and widely used for its velocity in assembling the discrete problem and for
having a narrow matrix stencil. The scheme is locally conservative and robust
with respect to strong variations of the hydraulic conductivity coefficient,
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(a) matching triangles
(b) matching polygons ob-
tained by coarsening

(c) non-matching triangles

Figure 2: Examples of matching meshes.

however it is consistent only for K-orthogonal grids. Regarding the class
of finite elements, we consider mixed finite elements with the pair of spaces
RT0 − P0 for the Darcy velocity and piecewise constants for the hydraulic
head, denoted by mfem, defined on a simplicial grid, for further references
see [47, 48]. It is well known that RT0 − P0 is locally conservative and more
robust than primal P1 finite elements with respect to strong variations on the
hydraulic conductivity coefficient. On the other hand, it gives a larger linear
system, with a saddle-point structure. The mfem scheme solves the Darcy
problem in the form presented in Problem 2. In some particular scenarios the
regularity requirements on meshes formed by triangles are too restrictive and
schemes able to handle generally shaped cells are more suitable. In these cases
we rely on the new class of virtual element methods, which are variational
methods where the basis functions of the discrete spaces are not prescribed a-
priori, and are defined implicitly on general star-shaped elements as solutions
of suitable local PDEs. See the seminal works [3, 22, 5, 6] and those related
to DFN [8, 7, 9, 10, 30]. In our analysis we consider only the lowest order
mixed (mvem) formulation, which can be viewed as a generalization RT0−P0

mixed finite elements on generally shaped cells, solving Problem 2. Virtual
element methods share many properties with their finite element counterpart:
indeed, mvem are locally conservative, robust with respect to the hydraulic
conductivity variation and have the same grid stencil of the RT0 − P0. Here
we use mvem on polygonal grids, obtained by coarsening a mesh originally
made of triangular elements in order to reduce the number of cells required
in the simulation for complex geometries, as described in [30, 29].
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To solve the heat equation (Problem 6), we use a tpfa scheme for the
diffusive term and a weighted upwind scheme for the advective term. The
advantage of this choice is that we obtain a stable scheme which respects the
maximum and minimum principle, without oscillation due to high grid-Péclet
numbers. However, for some applications the obtained scheme might be too
diffusive. Finally, we consider also standard P1 finite elements, with a supg
stabilized discrete variational formulation, which is a globally conservative
numerical scheme.

Since in all the above cases we have matching meshes, and thus the degrees
of freedom on the trace of one fracture correspond to the degrees of freedom
of the intersecting one, coupling conditions can be imposed strongly.

Methods tpfaup, mfemup and mfemsupg are considered here standard
reference approaches of different discretization strategies (finite volume and
finite element based), and are used to benchmark the behavior of the other
less conventional approaches, based e.g. on polygonal or non-matching dis-
cretizations.

3.2. Non-matching discretization at traces

When dealing with huge networks, the generation of conforming meshes
may require a large computational cost. Then, it is worth considering a class
of methods that do not require any kind of conformity of the fracture meshes
to traces, see, for example, Figure 2c.

In [16, 17, 18, 19, 13, 14] a PDE-constrained optimization approach is
proposed, based on non-conforming meshes, that can be applied both to
Problem 4 and Problem 6. In this framework, the problem is rewritten as a
minimization problem for a functional measuring the error in fulfilling match-
ing conditions, constrained by local PDEs on each fracture. This approach
provides not only a numerical approximation of the solution but also a di-
rectly computed approximation of the flux exchanged at traces, which is of
interest for many applications. The discretization can be based on different
methods: standard P1 finite elements are the simplest choice, and the result-
ing scheme is denoted as opt-fem. However, as mesh elements arbitrarily
cross the traces, the jump of the co-normal derivative of the solution at frac-
ture intersections, still directly computed by the method, can not be correctly
represented by non conforming P1 finite elements. Thus the use of local ex-
tended finite elements is also considered, being at the basis of the method
denoted opt-xfem. When used for advection dominated flow regimes, the
supg-stabilized versions of the method are used (femsupg, xfemsupg).
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The resulting numerical schemes inherit the mass-conservation properties
of the local discrete formulations, thus they are globally but not locally con-
servative. A huge advantage of this method is that the matrices resulting
from the local discrete problems can be computed in parallel, and also the
solution can be computed strongly relying on parallel computing. In [20]
a MPI-based parallel algorithm is proposed for assembling and solving the
discrete problem using the conjugate gradient method on huge networks of
fractures, whereas in [15] an implementation suitable for GPGPUs is pre-
sented.

4. Examples

In this section, we present three test cases with the aim of validating and
comparing the previously introduced models. Extending the work proposed
in [32], here we analyse the various approaches for time dependent problems
of advection-diffusion-reaction, where the advection velocity is computed by
means of the same approach solving a diffusion problem. The key aspects
of the various schemes will be highlighted and investigated, along with the
impact of the lack of conservation of fluxes, both locally and through a trace,
that characterizes some of the proposed approaches. For the considered test
cases, both local and global quantities will be computed at different time
steps, and used to assess and compare the behaviour of the various ap-
proaches, such as i) the integral mean in space of the temperature on a
fracture Ω, denoted as 〈θ〉Ω; ii) the total flux mismatch on a trace, δΦΓ de-
fined as the integral of the sum of the net total fluxes ΦΓ,i and ΦΓ,j entering
or leaving the two fractures Ωi and Ωj meeting at trace Γ, respectively, i.e.
δΦ = |ΦΓ,i + ΦΓ,j|,

ΦΓ,i = −
∫

Γ

([[triDi∇θi · niΓ]]Γ + [[tri θi tri ui · niΓ]]Γ)

with niΓ the unit normal vectors to Γ, with fixed orientation on Ωi; and iii)
the averaged θ on the outflow boundary, ∂Ωoutflow

D , denoted as

〈θ〉outflow :=
1

|∂Ωoutflow
D |

∫
∂Ωoutflow

D

tr θ.

The considered test cases are designed in order to challenge the proposed
approaches with complex geometries and/or realistic models. In Subsec-
tion 4.1 we consider the effect of vanishing trace from a simple network,
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by a sequence of simulations. In the second example presented in Subsec-
tion 4.2 a synthetic small network of 10 fractures is considered, to analyse
the behaviour of the methods on a more general, yet simple configuration.
We finally conclude with a realistic example in Subsection 4.3, where a net-
work of 89 fractures is generated from an extrusion of an interpreted natural
outcrop and physically sound values for the various parameters are used.

With the purpose of establishing a standard reference for the analysis of
numerical schemes for flow in fractures, test cases in Subsections 4.1 and 4.3
are borrowed from [32] and adapted to the present context, all the geometrical
data being available in [33].

4.1. Vanishing trace between intersecting fractures

As a first test case, named Test Case 1, the same setting of the prob-
lem proposed in the example of [32, Subsection 4.3.1] is considered. In the
reference, the Darcy problem was tackled, whereas here a non-stationary
advection-diffusion problem for the passive scalar θ is solved.

In this test case the same problem is solved on different geometries. Let
us consider a network composed of three fractures, named Ωl, Ωr, and Ωc, as
shown in Figure 3. Fracture Ωl has a fixed position, whereas fractures Ωr,
and Ωc are displaced, for each different geometry of a same distance along the
z-direction, such that the length of the intersection line between fractures Ωl

and Ωr, denoted as Γ0, progressively reduces from the configuration shown
in Figure 5, being instead fixed the intersection between Ωr, and Ωc, denoted
as Γ1. In such a way 21 different configurations are obtained, with the length
of the vanishing trace Γ0 ranging from 0.6 at configuration C0, as shown in
Figure 3, to 0.01, at configuration C20. The geometries corresponding to
configurations C0, C10 and C20 are shown in Figure 5. For each configura-
tion, the Darcy problem, formulated as in 2 or 4, depending on the method,
is first solved in order to compute the Darcy velocity u, with a null source
term. A unitary hydraulic conductivity K is used for all the fractures and
pressure head boundary conditions are prescribed on the bottom part of ∂Ωl

(inflow) and ∂Ωr (outflow) equal to 1 and 0, respectively (see Figure 3). On
the other portions of the boundary a no-flux boundary condition is imposed.
Subsequently, an advection-diffusion problem is solved, obtained from Prob-
lem 6 setting the reaction operator r(·, ·) ≡ 0, and with null source. We
assume a unitary coefficient ζ, a diffusion coefficient D equal to 10−4 and a
constant in time unitary Dirichlet boundary condition on the inflow part of
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the domain boundary, whereas homogeneous Neumann boundary condition
are set on the rest of the boundary.

Ωl
Ωr

Ωc

inflow

outflow

x

z

y

Figure 3: Geometry of Test Case 1. The inflow and outflow portions of the boundary are
represented by red and blue lines, respectively.

The meshes used for the space discretization are different for conforming-
triangular, conforming-polygonal and non-matching strategies, as discussed
above. The mesh for the conforming schemes are generated using the Gmsh
[36] library, and two different mesh parameters are used, corresponding to
about 103 and 104 elements for the configuration C0. Clearly, as the length
of trace Γ0 progressively reduces from configuration C0 to C20, the mesh
generation tool tends to increase the number of elements in order to meet
the conformity requirement without compromising mesh quality. This pro-
cess inevitably leads to a large increment of the number of elements from
configuration C0 to C20, for each of the three initial refinement levels. The
mesh for the non-matching schemes is obtained through the Triangle [50]
software, using two mesh parameters, again corresponding to about 103, and
104 elements. In this case, instead, since the mesh is independent from the
traces, the number of elements is practically unaffected by the change of the
geometry from configurations C0 to C20 (small oscillations of few elements
are observed as a consequence of the change of the coordinates of fracture Ωl).
The polygonal mesh for the mvem approach is finally built gluing together
the triangular elements of the conforming mesh, thus aiming at mitigating
the increase of mesh elements and degrees of freedom. The number of ele-
ments for the various schemes, for each geometrical configuration is reported
in Figure 4, on the leftmost column, for the coarse (top) and fine (bottom)
meshes. The centre and right columns of Figure 4 report instead the number
of degrees of freedom corresponding to each method, which can be used as
an indication of the corresponding computational cost. We remark, however,
that the computational cost is also largely affected by the approach used to
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Figure 4: Number of cells (left), number of DOFs for the Darcy problem (middle) and
number of DOFs for the dispersion problem (right) against configuration id for the two
mesh parameters of Test Case 1, coarse mesh on the top and fine mesh on the bottom
grids.

solve linear systems: some of the proposed methods, e.g., have efficient paral-
lel solvers, other take advantage of standard domain decomposition strategies
to achieve computational efficiency. Also, the availability of effective precon-
ditioners should be taken into account. Here, however, the main focus is on
the analysis of the response of the methods in terms of prediction accuracy
versus geometrical and model complexities typical of DFN simulations, thus
we refer to the literature of each method for further details on computational
efficiency issues.

In the following of this test case, for brevity, the mesh with 103 cells on
configuration C0 will be denoted as coarse mesh and the mesh with 104 cells
on C0 as the fine. For time discretization an equally spaced mesh with time-
step equal to 0.05 is considered and 300 time-steps are performed, starting
from an all zero initial condition.

The solution obtained with the scheme mfem is reported, as an example,
in Figure 5 on configurations C0, C10 and C20. On the leftmost column the
pressure head distribution in the network is shown for the three geometries,
whereas the remaining columns depict the temperature distribution θ at three
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Figure 5: Solution of Test Case 1. On the pressure head solution is shown on the leftmost
column at configurations C0, C10 and C20. On the remaining columns the solution θ is
represented at t = {1.25, 2.5, 5}, respectively. The colour scale spans from 0 to 1.

time-steps corresponding to a time t = 1.25, t = 2.5 and t = 5, respectively.
We can notice that, as the trace between fractures Ωl and Ωr vanishes, the
pressure head distribution displays a steeper gradient around the intersection,
and the effective permeability of the network reduces, thus also reducing the
penetration depth of the higher temperature zone in the network at fixed time
frames. From a computational point of view, simulations become more and
more challenging as the solution starts to display steep gradients, especially
for methods built on non-conforming meshes, that are not adapted to the
geometry, as shown in Figure 6.

For all the proposed numerical schemes, at each time-step, the following
quantities are computed: the average temperature 〈θ〉Ω, the average temper-
ature 〈θ〉outflow on the outflow portion of the boundary, and, for non-locally
conservative schemes, as the optimization-based methods, the total flux mis-
match δΦΓ at each trace.
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Figure 6: Mesh for Test Case 1 on configuration C20 for conforming (left) non-conforming
(middle) and coarsened (right) schemes

A reference solution is computed using the mfem method on a mesh
much finer than the three considered here for the simulations, counting about
6.3× 105 cells, almost independently from the configuration id, as cell size is
capable of resolving the smallest length of the vanishing trace.

The plots in Figure 7 propose a comparison of average temperature for
all the proposed methods against time, on three selected configuration, for
all the considered meshes. In the picture, dashed black lines represent rela-
tive errors with respect to the reference solution. As expected, all the curves
are in very good agreement, also on the coarsest mesh, for configuration C0,
whereas small discrepancies appear for configuration C10 on the coarse mesh
that however disappear as the mesh is refined. Larger differences appear, for
methods femsupg and xfemsupg, instead for the simulations on configu-
ration C20. This is expected, since, as mentioned, when the varying trace
becomes very small, methods built on non-matching meshes can not rely on
the effect of mesh refinement around the vanishing trace which clearly im-
proves representation capabilities of conforming methods. We observe that
method mvemup retains good approximation capabilities despite the coars-
ening.

In order to quantify what is the effect of mesh adaptation due to confor-
mity requirements on the quality of the solution with respect to the effect of
the approximations introduced by the non-matching schemes themselves, in
Figure 8 (left) the outflow average temperature for the methods opt-xfem
and opt-fem is reported against time, for configuration C20 on a perturba-
tion of the coarse mesh used for the conforming methods for configuration
C20, overlapped to the curves of the other schemes, in transparency, on the
original meshes. We observe that the curves of methods opt-fem and opt-
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Figure 7: Average temperature on curves against time for Test Case 1 on the coarsest
(first six pictures) and finest (last six pictures) for selected fracture and configurations.
Columns refer to the same geometrical configuration: C0 on column 1, C10 on column 2
and C20 on column 3. The average temperature curves refer to fracture Ωm.
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Figure 8: Outflow average temperature curve with opt-xfem and opt-fem approaches
(left), and solution with opt-xfem at t = 15 with a zoom of the mesh around Γ0 (right),
both on on the perturbed mesh of configuration C20.

xfem on the perturbed adapted mesh are now much closer to the curves of
other conforming approaches, thus clearly showing the effect of mesh adapta-
tion on the quality of the solution. The solution obtained with the opt-xfem
approach on the perturbed mesh at t = 15 is reported in Figure 8, on the
right, along with a detail of the mesh around Γ0, clearly showing the non
conformity of the mesh. Two aspects are to be remarked: first, the non-
conforming approaches are capable of producing reasonable approximations
of the solution also on the coarse mesh, which can be greatly improved refin-
ing the mesh and still using a fraction of the degrees of freedom required by
the conforming approaches, see, e.g., the last two plots in the third column
of Figure 7; second, non-conforming approaches allow to freely choose the
refinement level of the mesh, thus allowing to efficiently use mesh adapta-
tion strategies, only refining the mesh where required, independently of the
geometrical constraints [14].

As the non-conforming approaches opt-xfem and opt-fem are non lo-
cally conservative, Figure 9 report the value of δΦ against time on the coars-
est mesh for the two traces of this example at configurations C0, C10 and
C20, from left to right, respectively, results with the opt-xfem approach
are on the top, results with opt-fem on the bottom. The maximum-in-
time absolute values of the total flux on traces Γ0 and Γ1 are reported in
Table 2, computed on the finest mesh as ΦΓ0 = maxt

1
2

(ΦΓ0,l + ΦΓ0,c), and
ΦΓ1 = maxt

1
2

(ΦΓ1,c + ΦΓ1,r). We can see that relative values of less than
1% are obtained for all times for both methods, with the higher values cor-
responding to the configuration C20, as expected. Moreover, for the larger
times, mismatch values tend to decrease or to remain constant at a fixed
value. Thus this non-local-conservation has a negligible impact on the com-
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Figure 9: Total flux mismatch against time for Test Case 1 on traces Γ0 (top) and Γ1

(bottom) for configuration C0 (left), C10 (middle) and C20 (right)

Table 2: Maximum value in time of total fluxes ΦΓ0
and ΦΓ1

on traces Γ0 and Γ1 of Test
Case 1, respectively, computed with the xfemsupg method on configurations C0, C10
and C20.

C0 C10 C20
ΦΓ0 0.6072 0.4725 0.251
ΦΓ1 0.876 0.912 1.300

puted solution. Further, mismatch errors can be reduced by refining the
mesh.

The mesh Péclet number for this problem ranges between a maximum
of about 6 × 102 to a minimum of about 100 on the computational meshes
for opt-xfem, opt-fem and mfem methods, thus a Streamline-Upwind-
Petrov-Galerkin (supg) stabilization strategy was adopted. As a conse-
quence small overshoots/undershoots in the solution are observed in supg
stabilized methods, as well known in the literature, whereas the intrinsic dif-
fusive behavior of methods using upwinding for advection prevents this kind
of phenomena.
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4.2. Synthetic network

In the second test, labeled Test Case 2, we consider a more complex
network composed of 10 fractures with 14 traces, thus being more similar
to (a portion of) realistic DFNs, still remaining simple enough to perform
analyses on the solutions obtained with the considered schemes. The network
is represented in Figure 10, where the inflow and outflow portions of the
boundary are also marked. Also in this case the Darcy velocity u is first
computed solving problem 2 or 4, depending on the chosen numerical scheme,
with constant hydraulic conductivity equal to one on all fractures and null
source term. A unitary pressure head drop is imposed between the inflow and
outflow portions of the border, all other fracture edges being insulated. The
Darcy velocity is then used as an input for an advection-diffusion problem for
a scalar quantity θ, as formulated in 6, with null source and reaction terms.
A coefficient ζ = 1 is chosen, whereas the diffusion coefficient is D = 10−4. A
unitary Dirichlet boundary condition is prescribed on the inflow border and
all other edges are insulated.

inflow

outflow

Figure 10: Geometry of Test Case 2 and two views of the network. A red line represents
the inflow and a blue thick line the outflow part of the boundary, respectively.

Two meshes are used also for Test Case 2 counting about 103 elements
(coarse mesh) and 4 × 104 elements (fine mesh), respectively. The mesh
Péclet number, related to the coarse mesh for supg stabilized methods, is
of about 100. An equally-spaced mesh is then used for time discretization
with 500 steps of length 0.05. Also in this case, the initial solution is the
null function. An example of the obtained numerical solution with the tpfa
method is shown in Figure 11: in the first column on the left the pressure
head distribution in the network is represented, solution of the Darcy prob-
lem on the coarse (top) and fine (bottom) meshes; the remaining columns
depict the solution θ of the dispersion problem at three selected time frames,
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corresponding to t = 3.35, t = 6.25 and t = 12.5, again on the coarse (top)
and fine (bottom) mesh. Coherently the heat flows from the inflow to the
outflow by following a tortuous path given by the complex disposition of the
fractures and traces. The solution on the coarse grid has a spreader front
than on the fine grid due to the artificial diffusivity of the scheme.

Figure 11: Solution of the test case in Subsection 4.2. On the first column the pressure
head solution for the two grid refinements. The other columns show θ at different time:
3.35, 6.25, and 12.5, respectively, for both level of refinement. In all cases the solution is
rescaled in the range [0, 1].

As previously, the average temperature 〈θ〉Ω on selected fractures, the
average outflow temperature 〈θ〉outflow and flux mismatch δΦΓ at traces are
used to compare and assess the approximation capabilities of the various
schemes. The curves of 〈θ〉Ω1 , 〈θ〉Ω3 and 〈θ〉outflow are reported in Figure 12.
A reference solution is computed with the mfemsupg method on a mesh
counting about 2 × 104 cells, and relative error curves with respect to this
solution are shown in dashed lines in the Figure 12. We can observe that, de-
spite the network has a larger number of fractures and fracture intersections
with respect to Test Case 1, all the methods, in absence of severe geometri-
cal features have good approximation properties, that further improve with
mesh refinement. The larger differences are observed for the average out-
flow temperature curve related to the mvemup approach on the coarse mesh
and for the average temperature curves of femsupg again on the coarse
mesh. In both cases differences slightly exceed 10% of the reference, and
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Figure 12: Average temperature on two selected fractures (left and middle columns) and
at outflow (right column) curves against time for Test Case 2. Coarse mesh on top, fine
mesh at the bottom.

are reduced by mesh refinement. Concerning the mvemup the difference is
caused by the coarsening process which reduces the number of elements of
the original mesh to about one half. Also, the tpfa method used for ad-
vection is observed to have poor performances on irregular polygonal cells,
as the ones generated by the coarsening method. Concerning the femsupg
method, some discrepancies with respect to the reference are to be expected,
as the approach is designed to be computationally inexpensive, nonetheless
it is capable of providing satisfactory predictions.

Curves of the total flux mismatch at the traces are reported against time
in Figure 13 for the femsupg and xfemsupg methods. In this picture
values of δΦΓ are shown, without labels, for all the traces in the network,
highlighting that, in all cases, the errors remain limited in time. Further,
maximum-in-time mismatch values are lower than 1% of the total flux, for
all the traces; values of the maximum flux with respect to time on each trace
are reported in Table 3, computed with the xfemsupg method on the finest
mesh.
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Figure 13: Total flux mismatch against time for all the traces of the network of Test Case
2 on the coarse mesh with methods femsupg (left) and xfemsupg (right).

Table 3: Maximum value in time of total flux across each trace of the DFN for Test Case
2 computed with the xfemsupg method on the fine mesh.

ΦΓ1 ΦΓ2 ΦΓ3 ΦΓ4 ΦΓ5 ΦΓ6 ΦΓ7

0.040 0.079 0.150 0.260 0.284 0.047 0.074

ΦΓ8 ΦΓ9 ΦΓ10 ΦΓ11 ΦΓ12 ΦΓ13 ΦΓ14

0.020 0.393 0.163 0.443 0.061 0.058 0.063
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4.3. Extruded real outcrop

In this last test case we consider a fracture network generated from an
extruded outcrop, located in Western Norway. The test case is inspired by
Section 4.4 of [32]. The network is composed by 89 intersecting fractures
resulting in 166 traces. There are 7 non-connected fractures and with no
flow boundary conditions, which will not contribute to the solution. The
geometry is depicted in Figure 14. The aim of this test case is to validate
the proposed numerical schemes in presence of realistic physical parameters
of a real fracture network. However, we assume that all the fractures share
the same values of hydraulic conductivity and heat diffusion coefficient.

inflow

outflow

Ω0

Ω1

inflow
outflow

Ω0

Ω1

Figure 14: Geometry of the test case in Subsection 4.3. On the top two screenshot of
the geometry of the network. On the bottom a sketch of the network with only the
largest fractures to present the boundary conditions: on the left in the case of inflow and
outflow imposed on two different fractures, on the right on the same fracture. The inflow
is represented in red and the outflow in blue.

We consider two distinct problems, that differ from each other from the
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Water Rock
Dynamic viscosity µ = 3.55 Pa s –
Thermal conductivity λw = 0.667 W/(m K) λm = 3.07 W/(m K)
Density ρw = 1000 kg/m3 ρm = 2700 kg/m3

Specific heat capacity cw = 4099 J/(kg K) cm = 790 J/(kg K)
Heat transfer coefficient γ = 1.25× 10−3 W/(m2 K)

Table 4: List of rock and water coefficients for the example in Subsection 4.3.

position of the inflow and outflow boundaries. In the first case (denoted as
case 1 ) the inflow and outflow are imposed on two different fractures, while
in the second case (case 2 ) they belong to the same fracture. See Figure
14 where a sketch of the network is shown with the position of the inflow
and outflow boundaries. On the other portions of the boundaries a no flow
boundary condition is given. In both cases, we require a simulation grid with
roughly 70k elements.

Fractures are immersed in granite and we assume that at the beginning
of the simulation the water contained in the fractures is at 353.15 K (80 ◦C).
The relations to compute the physical parameters for the simulations are the
ones presented in Subsection 2.2. We assume εi = 2 mm ∀i, and φi = 0.95
∀i. The water and rock physical parameters are reported in Table 4. From
these data we obtain, ∀i = 1, . . . , NΩ,

Ki ≈ 1.84× 10−6 m2/s , ce,i ≈ 4 000 700 J/(m3 K) ,

λe,i ≈ 0.72 W/(m K) , ζi ≈ 1.95× 10−3 m ,

Di ≈ 0.35× 10−9 m3/s , ιi ≈ 3.05× 10−10 m/s .

Regarding boundary conditions, for the Darcy problem we impose a pres-
sure head equal to 2.5 km at the inflow boundary and 0 m at the outflow
boundary, while for the heat problem we impose 303.15 K (30 ◦C) at the in-
flow and zero diffusive flux at the outflow. The simulation time is a year
(3.154× 107 s), divided in 200 time steps.

The conforming computational mesh counts about 7×104 elements, while
the non-matching computational mesh has 2 × 104 cells and are shown in
Figure 15. It is possible to notice, how, in order to meet the conformity
requirement, mesh elements of the conforming mesh are concentrated near
the traces, whereas, the non-matching mesh has all elements of equal size
evenly distributed in the network. The non matching mesh is characterized
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Figure 15: Conforming (left) and non-matching (right) mesh for Test Case 3

by a mesh Péclet number of about 3× 104 for case 1 and 6.6× 104 for case
2, reached on fracture Ω0, in both cases. The non-adapted mesh and the
high mesh Péclet number make this example extremely complex for methods
built on non-conforming meshes and relying on stabilization for advection
dominated flow regimes.

The computed solution with the mfemup scheme is reported in Figure 16
where we display the solution of the Darcy problem on the left and the
solution at the end of time evolution on the right, for both the setting of case
1, on top and case 2, at the bottom.

Figure 17 shows the curves against time of the average temperature on the
inflow (Ω0) and outflow (Ω1) fractures, along with the average temperature
on the outflow boundary. Despite the complexity of the geometry and of the
model, curves appear in good agreement. For this last example no coarsening
was used for the mvemup method, as the poor performances of the tpfa
method on polygonal cells, already observed in Test Case 2, have a strong
impact on the quality of the solution in this more complex case. The curves
related to the mvemup approach on triangular meshes are almost perfectly
overlapped to the curves of the mfemup method. Curves of xfemsupg and
femsupg are in good agreement with those of the other methods.

5. Conclusions

In this work, we presented a detailed comparative study of several solution
strategies for single-phase flow and transport in discrete fracture networks.
The proposed numerical schemes are challenged with networks of increasing
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Figure 16: Solution with the mfemup scheme for the Test Case 3: case 1 on the top; case
2 at the bottom. The first column shows the pressure head solution, the second column
the temperature distribution at the end of time-evolution.
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Figure 17: Curves of average theta on fractures Ω0 (left) and Ω1 and at outflow (right)
against time for Test Case 3: case 1 top, case 2 bottom.

geometrical complexity and with unsteady advection-reaction-diffusion prob-
lems. The characteristics of the various approaches are compared in terms of
flexibility in handling geometrical complexity, local and global conservativity
and stability to high Péclet numbers.

Methods based on matching grids at the traces trade simplicity in im-
posing coupling conditions with the lack of control on the number of mesh
elements, which is actually constrained by the conformity requirement. On
the other hand, non-matching and polygonal based approaches demand ad-
hoc discretization strategies but allow full flexibility in meshing. Non-locally
conservative schemes might be susceptible to loss in mass in particular at the
intersection of fractures. The proposed examples showed that this quantity is
small and, for many practical problems it is possible to conclude that it might
be acceptable compared to the usual uncertainty in the model parameters.
Finally, we have compared schemes that are naturally stable with respect to
high Péclet number, with schemes that require a stabilization term to avoid
spurious oscillations. Also in this case the obtained solutions are coherent
with respect to each other. We can conclude that numerical schemes based
on polygonal or non-matching meshes give a good balance in terms of com-
putational cost and accuracy with less limitations compared to the matching
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cases on more standard grids.
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for discrete fracture network simulations. Finite Elements in Analysis
and Design, 134:55–67, 2017.

[11] M.F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, and S. Scialò. Order
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