
10 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FUNCODE: Effective Device-to-System Analysis of Field Coupled Nanocomputing Circuit Designs / Garlando, U.;
Riente, F.; Graziano, M.. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS
AND SYSTEMS. - ISSN 0278-0070. - 40:3(2021), pp. 467-478. [10.1109/TCAD.2020.3001389]

Original

FUNCODE: Effective Device-to-System Analysis of Field Coupled Nanocomputing Circuit Designs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCAD.2020.3001389

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2854099 since: 2021-03-12T16:00:46Z

Institute of Electrical and Electronics Engineers Inc.

1

FUNCODE: Effective Device-to-System Analysis of

Field Coupled Nanocomputing Circuit Designs
U. Garlando, Member, IEEE, F. Riente, Member, IEEE, and M. Graziano, Member, IEEE

Abstract—Many beyond-CMOS technologies, based on differ-
ent switching mechanisms, are arising. Field-coupled technologies
are the most promising as they can guarantee an extremely low-
power consumption and combine logic and memory into the same
device. However, circuit-level explorations, like layout verification
and analysis of the circuit performance, considering the con-
straints of the target technology, cannot be done using existing
tools. Here, we propose a methodology to take on this challenge.
We present FUNCODE (FUNction & COnnection DEtection),
an algorithm that can detect element connections, functions and
errors of custom-layouts and generate its corresponding VHDL
netlist. It is proposed for in-plane and perpendicular Nano
Magnetic Logic as a case study. FUNCODE netlists, which take
into account the physical behavior of the technology, were verified
using circuits with increasing complexity, from 6 up to 1400 gates
with a number of layout elements varying from 200 to 2.3e6.

Keywords—Emerging technologies, beyond CMOS, system anal-
ysis, circuit design, algorithm

I. INTRODUCTION

THE continued scaling of CMOS transistor feature sizes
is approaching not only the physical limit [1], but it

also faces economic and technological challenges [2]. Many
emerging devices are arising based on different switching
mechanisms [3], ferroelectric FETs [4] and RRAM [5] are
just one example. Among them, field-coupled technologies
are the most promising [6] due to their extremely low power
consumption, the ability to combine logic and memory into the
same device [7] and the possibility to monolithically integrate
such functional layers within the same device. These charac-
teristics perfectly fit the Logic-in-Memory principle that can
take great advantages from these technologies. Researchers are
working on the device level [8] [9] [10], making technological
progresses towards more reliable thin films, the possibility
to support 3D integration [11] and compatibility with CMOS
[12] [13]. However, the exploration of architectural solutions
using these devices to find suitable applications [14] [15] is
important, even at the early stage of development. Micromag-
netic simulations cannot be used for this kind of analysis.
A high-level design approach is mandatory for this purpose.
The study of an emerging technology starts from the device.
However, the single device, or the small circuit with few
elements, is not enough to determine the real potential and
drawbacks of the technology. The system-level analysis gives
another point of view, which makes it possible to discover
the benefits and disadvantages of emerging technologies [16]

U. Garlando, F. Riente and M. Graziare are with the Department of
Electronics and Telecommunication Engineering, Politecnico di Torino, 10129
Torino, Italia. Corresponding author: F.Riente (fabrizio.riente@polito.it).

[17]. Furthermore, the analysis should be performed taking
into account all the technological properties of the devices. It
is important to study the effect of device parameters at the
architectural level. Combining all these aspects it is possible
to derive the features of a technology and also give feedback
to the technologist to improve it. We think that system-level
explorations are as important as low-level studies to identify
killer applications for a particular technology.
We propose a solution that enables quick architectural investi-
gations, using the high-level description language VHDL (Very
high speed integrated Circuits Hardware Description Lan-
guage), without ignoring the physical constraints introduced
by the technology. For this reason, we propose FUNCODE
(FUNction & COnnection DEtection), a netlist generation
algorithm that can detect element connections, functions and
errors of custom-made layouts. Here it is proposed for two
emerging technologies, in-plane Nano Magnetic Logic (iNML)
[18][19] and perpendicular Nano Magnetic Logic (pNML)
[20] [21]. However, the algorithm can be extended to new
interesting devices if their element interactions are known and
their connections can be defined. FUNCODE was introduced
in the custom layout editor MagCAD and is compatible with
the ToPoliNano framework. It was tested on a variety of
circuits, with increasing complexity. The remaining part of
this paper is organized as follows. Section II provides the
technological background of investigated technologies (iNML
and pNML). Section III presents the methodology adopted and
the contexts it was applied to. In section IV the details of the
FUNCODE algorithm are described. Section V reports the
execution time considering different circuits as benchmarks.
Finally, conclusions are given in section VI.

II. BACKGROUND

In this section, an overview of the computational paradigm
behind NML technology is provided. The information propa-
gation mechanism is at the basis of the algorithm proposed.
Differences between the iNML and pNML implementations
are highlighted to clarify how the algorithm adapts to their
behavior according to the signal flow.

A. in-plane Nano Magnetic Logic

In this technology, single domain nanomagnets are used as a
basic computational cell. The shape anisotropy is exploited to
encode the binary information. Rectangular shaped nanomag-
nets are usually preferred with a dimension of (50x100x20)nm
or (60x90x20)nm [18]. They show only two stable config-
urations, which represent the logic 0 and logic 1 (Fig.1.A).
Thus, the magnetization vector lies parallel to the plane where

2

the magnets are placed [22]. The magneto-dynamic interaction
among neighboring devices makes it possible to propagate the
digital information through the circuit. Magnets arranged in a
row try to reach the minimum energy configuration, i.e. they
are antiferromagnetic (AF) coupled and align themselves in an
antiparallel way (Fig. 1.B). On the other hand, nanomagnets
aligned vertically are coupled ferromagnetically (F) (Fig. 1.C).
As described in [23], the coupling among neighboring cells

Logic 1 Logic 0

A) B) C)

AF Coupling

F Coupling

HOLD SWITCH RESET

Zone 1 Zone 2 Zone 3

RESET HOLD SWITCH

SWITCH RESET HOLD

H3H2

t t

Time
Step 1

Time
Step 2

Time
Step 0

H1

t

Time
Step 3

InputD)

Fig. 1. A) iNML basic cells; B) Chain of nanomagnets antiferromagnetically
coupled; C) Vertically aligned nanomagnets ferromagnetically coupled; D)
iNML three phase clock system;

is not enough to obtain the switching of the nanomagnets.
The energy barrier introduced by the shape anisotropy is too
high to be overcome by the dipole-dipole interaction. Hence,
magnets need to be forced into a metastable state to propagate
the information correctly. An external field generated by a
current wire buried inside the substrate is usually used to force
the magnets into an unstable state, which is called the reset
state. This external agent is called the clock and rotate the
magnetization vector along the short axis by 90◦ [24]. Once
the external field is released, the magnets re-align themselves
according to the dipole-dipole interaction. Unfortunately, due
to the thermal noise the number of magnets that can be
cascaded is limited to five or six [18]. In the literature, several
clocking mechanisms have been proposed to overcome this
limitation. The most common is a three-phase clock scheme,
where three partially overlapped clock signals are alternatively
applied as depicted in Fig. 1.D. The picture summarizes the
topology of common iNML circuit that in this particular case is
a magnetic wire. The layout is divided in slices, named clock
zones, and by applying in sequence the three clock signals
the digital information propagates towards the output. Time

step 0 shows the initial configuration of the magnets. At time
step 1, the clock signal H1 is applied to the zone 1, forcing
the magnets belonging to that zone into the metastable state
(RESET). At time step 2, the clock signal is released from
zone 1, consequently the magnets from that zone go into the
SWITCH state, while zone 2 is forced into the reset state. In a
similar way, at time step 3, zone 1 is retains its magnetization
(HOLD state), zone 2 is switches, while zone 3 moves into
the reset state.
Logic operations are achieved by iNML gates that are ob-
tained by properly arranging the nanomagnets in the layout or
changing their geometry. The basic gates are majority voters
and inverters: the former is achieved by surrounding a central
element with three magnets (Fig. 3.A). The latter, is obtained
by chaining an odd number of magnets in the clock zone.
Finally AND and OR gates are obtained with magnets with a
slanted edge [25], in this way a preferred direction is set, and
the logic function is defined.

Logic 1 Logic 0

A) FIBB)

C) D)

AF Coupling F Coupling

t

Input

0.5T

T

1.5T

0T

t

t

t

Hz

Hz

Hz

Hz

ANC

E)

Fig. 2. A) pNML basic cells; B) Artificial nucleation center definition using
FIB irradiation; C) Chain of nanomagnets antiferromagnetically coupled; D)
Vertically aligned nanomagnets ferromagnetically coupled can transfer the
information to adjacent layers; E) pNML clock system example;

B. perpendicular Nano Magnetic Logic

In pNML technology, the elementary cell is characterized
by a perpendicular magnetic anisotropy obtained with a multi-
layer stack of Co/Pt or Co/Ni [26]. The thickness and the

3

Simple Magnet AND Cross Wire

A)

OR Coupler

Nucleation Center Pad T-Connection

B)

X

Corner Magnet Inverter

Majority Voter

Inverter

X-Connection

X possible intra-layer input connection

possible intra-layer output connection

Fig. 3. A) iNML elements and corresponding available connections. Inputs are blue, while outputs are the red arrows. B) pNML elements and relative
connections. Blue crosses show input coming from another layer, while red circles are output interconnections towards adjacent planes.

number of layers define the magnetic properties of the device
[27]. Even this implementation shows two stable configu-
rations, which encode the binary values. In contrast to the
iNML implementation, here the magnetization vector points
out-of-plane and the magnet’s behavior does not depend on its
shape. The magnetization pointing upwards represents logic
1, whereas logic 0 is represented by the downwards magneti-
zation vector (Fig. 2.A). To control the switching behavior
of the nanomagnets one side of the magnet is Focus Ion
Beam (FIB) irradiated during the fabrication process (Fig. 2.B).
The irradiated spot shows a locally reduced anisotropy and
determines the region where the domain wall nucleates. It is
named the artificial nucleation center (ANC) and defines the
propagation direction of the information. As can be observed
from Fig. 2.C, magnets lying on the same physical plane are
coupled antiferromagnetically (AF). The ferromagnetic cou-
pling is exploited to transfer the digital information from one
physical plane to another (Fig. 2.D). Moreover, pNML makes
it possible to design monolithically integrated 3D circuits as
experimentally demonstrated in [11] [12]. However, even in
this technology, the coupling field is not strong enough to
reverse the magnetization of neighboring cells. In this case,
a single, global and perpendicular clock field is needed to
lower the energy barrier and switch the magnets. The working
principle is depicted in Fig. 2.E. At time step 0, there is
no clock field applied and the input magnet is magnetized
upwards. During the first half clock cycle, a negative field is
applied and the magnet close to the input flips its magnetization
(AF coupling). When the positive field is applied (1T) the
second magnet switches. The example depicted in Fig. 2.E
demonstrates the relevance of the ANC to define the signal
flow. The basic computational cells are the inverter and the N-
input minority voter (also called negated majority). The former

can be simply achieved by cascading two nanomagnets, the
latter can be obtained by surrounding the ANC by an odd
number of inputs. The 3D integrability offered by the pNML
technology offers more flexibility in the minority gate design
[11]. Inputs can be arranged on the same physical plane of the
output, or in different planes which exploits both AF and F
coupling [28].

III. METHODOLOGY

In this section, the methodolody adopted for the VHDL
generation algorithm is described. The proposed solution is
used to extract a VHDL netlist from a custom layout designed
using MagCAD [29]. MagCAD is a custom circuit design tool
and the user can select a technology and design a new circuit
simply by placing the building block of the technology in the
drawing area. The user has complete freedom of choice during
the design phase, thus errors could occur. This approach makes
it possible to quickly investigate architectural solutions using
these emerging technologies. Moreover, the whole algorithm
has been designed in a general way so that it may be easily
extended to new devices. The effort for the introduction of a
new technology requires the development of a software plugin.
The plugin requires the definition of:

• the building blocks of the technology, their graphical
representation and their compact model

• the connectivity that each building block supports
• how to resolve signal propagation ambiguity inside the

circuit if any

The software plugin is implemented starting from the base
classes available in MagCAD. The plugin interacts with FUN-
CODE and is completely developed in C++. Instead, the
compact model of every block can be implemented in VHDL.
This language is preferable in order to exploit existing VHDL

4

Plugin

DesignBuilding
Blocks

Error Log

Components

Layout Netlist

FUNCODE

Algorithm

Compact
Model

Connectivity

Fig. 4. Design methodology in which the FUNCODE algorithm has been
introduced

simulators. The algorithm, with these information, determines
the function implemented by groups of building blocks. In-
deed, according to the surrounding elements and the signal
direction, specific logic functions can be implemented.
First, the connectivity of the custom layout is verified ac-
cording to technology-dependent rules. Fig. 3 reports the
connections allowed for every building block of both iNML
and pNML technology. For example, in Fig. 3.A the central
magnet of the Coupler and the Majority Voter implement
a different function according to the neighboring elements.
Moreover, many building blocks do not have a predefined
connection. Thus, the final connectivity can be determined with
an overview of the whole layout by looking at how the digital
information moves from input to output.
As an example, in the iNML wire described in Fig. 1.D, the
clock zone sequence can be helpful for determining the signal
propagation. A similar approach can be applied to pNML
circuits. The signal flows from ANC to the opposite side of
the magnetic nanowire.
After defining the connectivity of the building blocks, the basic
gates are identified before writing the final VHDL netlist.
Fig. 4 summarizes the design flow in which the proposed
solution has been adopted. It is possible to use previous
designed circuits, stored in a user library, as building blocks.
In this case too, the connections are defined by the algorithm
and a hierarchical netlist is provided to the user. The generated
netlist could be simulated using a standard VHDL simulator,
like ModelSim [30]. In the following sections, a detailed
description of the main steps is presented.

IV. FUNCODE ALGORITHM

The proposed algorithm, FUNCODE (FUNction & COn-
nection DEtection), can be used for circuits based on both the
technologies presented in section II-A and II-B. The general
flow of the algorithm is summarized in Fig. 5. It starts from
the inputs of the design, correctly connects each element of
the circuit, determines the function implemented by an element
based on the neighboring cells and then writes the final VHDL
netlist.

Error LogHDL Netlist

Connection
Detection

Handling
Technological issues

Function
Detection

Write Netlist

Translate into
HDL-Elements

Input Pins

Fig. 5. FUNCODE flow chart

Firstly, all the elements of the layout are translated into their
corresponding HDL-Element. This data structure and the list
of circuit inputs are taken as input by the algorithm. The HDL-
Element stores the information about the available connections.
The connectable cells are set according to the source element.
As an example, the Simple Magnet in iNML technology has
a total of eight possible connections. Each side of the magnet
can be both input or output (Fig. 3.A). On the contrary, the
pNML Magnet has four connections available, which means
that only two sides can be connected (Fig. 3.B). However, in
both cases it is not possible to determine in advance which is
the input and therefore the output.

Fig. 3 shows examples of connections for the elements
of both iNML and pNML technology. From this figure it
is possible to observe that some elements have pre-defined
connectivity.
Each time an element in the layout is translated, an HDL-
Element is allocated in the memory. As the circuit gets bigger,
the matrices become incredibly large and sparse. Therefore,
the position of the HDL-Element is inserted into two special
table structures, which henceforth are called sparse matrices,
(Fig. 6.C). In the case of multi-layer (3D) layouts, a vector
of these sparse matrices is used, where the layer number
is used as the index in the vector. The sparse matrices are
implemented as vectors and a binary search is used to insert
and read the data. This approach has been preferred in order
to limit the required memory to just the actual number of
elements in the layout. Fig. 6.B and Fig. 6.C show the HDL-
Elements translation, comparing the matrix and sparse matrix
representations respectively. Even if the circuit reported in
Fig. 6.A is quite simple, it is possible to observe that for large
circuits a lot of memory can be saved. Usually the number of
building blocks enclosed within the bounding box of the circuit
is much smaller than the total number of cells in the grid.

5

M4

M4

M2 M3

M1

M5

M2 M3 O1

M1

M5 O2

0 " 2 3

0

1

2

0

1

2

0

1

2

M2
(1)

M3
(2)

O1
(3)

M1
(1)

M4
(1)

M5
(2)

O2
(3)

M2
(1)

M3
(2)

A
(0)

M1
(1)

M4
(1)

M5
(1)

M4

M2 M3

A M1

M5

Input Pin Matrix Output Pin Matrix

0 1 2 3

0

1

2

Input Pin Sparse Matrix Output Pin Sparse Matrix

Row Col ColRow

A)

B)

C)

O2

O1

A

Fig. 6. Example of how to circuit is translated in memory. A) Example of
iNML coupler; B) Example of translation using two matrices; C) Example of
translation using two vectors.

Furthermore, some elements are not in both the input/output
data structures. As an example, input pins are only available in
the output sparse matrix, while output ones only in the input
(Fig. 6.B). This distinction is necessary due to the fact that
from the netlist point of view, inputs can provide an output
connection, while outputs can receive an input connection from
a neighboring cell. The vector representations are used for fast
look-up during the element connections: the structure can be
accessed with the coordinates of the element in the layout and
the output is available in logarithmic time.
When this setup phase is completed, the main algorithm can
start.

A. Connection Detection

The first step of the algorithm is responsible for the detecting
the real connections among elements and therefore how the
information propagates inside the circuit. The pseudocode is
summarized in algorithm 1. Only some elements have their
inputs and outputs pre-determined, while the others have their
direction defined as they are linked to their neighboring cells.
Since each element has different connection, at line 2 the

Algorithm 1 Connection detection pseudocode

Precondition: Inputs and Outputs are the two sparse matrices, start is
the list of the input pins of the circuit.

1: for each element ∈ start do
2: connectable ← element.GetConnectableCells()
3: for each cell ∈ connectable do

4: if inputs.contains(cell) then

5: input ← inputs[cell]
6: if cell.canConnect(input) then

7: CreateConnection()
8: input.SetEffectiveDirection()
9: start.insert(outputs[cell])

10: else

11: return ConnectionError
12: end if
13: else

14: return ConnectionMissing
15: end if
16: end for

17: end for

connectable cells are extracted. The list of connectable cells,
with all the directions available for output interconnections,
is used to access the input sparse matrix. Considering the
layout in Fig. 6.A, pin “A” is the only element of start. This
pin, according to its orientation, can be only be connected
to its right. The input sparse matrix is accessed at (1, 1)
and “M1” is returned. The function at line 6 is used to
determine if it is possible to create a connection between the
current pin and the one extracted from the sparse matrix. The
presence of the cell in the sparse matrix is not enough to
determine if a connection is possible. The input connection
of the target pin could already be occupied. Moreover, the
orientation of the element in the layout provides information
about its connectable sides. Indeed, the connection cannot be
achieved with an element on a non-connectable side. When it is
not possible to create a new connection, an error is generated.
The error is used to provide a report message to the user. On
the contrary, if the connection is available, it is formed. Each
HDL-Element has the name of its output signal. In order to
form a connection, the output name is inserted in the vector
of input of the target cell. This information is useful when
writing the VHDL netlist. In particular, the signal name is
used in the port map of the corresponding cell. Once the new
connection is defined, an element-specific function is called to
define the propagation direction (line 8). These operations are
repeated for all the possible outputs of the current cell, and
each new connected element is added to the start list. When
an output pin is reached, nothing is added to the start list, thus
nothing is present in the corresponding position in the output
sparse matrix. Therefore, the loop ends when all the elements
have been visited.
As an example, consider Fig. 7.A. The X-Connection has
connectable pins in every direction. As introduced in section
III, the number of pins is doubled, i.e. each side could be both
input or output. During the execution of the algorithm, the
left input comes from an input pin of the circuit. When that
connection is defined (Fig. 7.B), the redundant pins need to be
removed. The one connected is the only available input and

6

A)

A A

A

B

A

B

A

A

B

Error!

B) C)

D) E) F)

(

�

Inputs

InverterA

B

InverterA

B Error!
)� *�

Error!

A A

Fig. 7. Elements connectivity examples. A) shows a portion of a pNML circuit with two elements and one input pin. B) highlights the connection available
for the elements and C) shows the correct connection detection. D) represents the same circuit with an extra input. E shows the connection available and F)
is an example of output-output error. G) shows a portion of iNML circuit where an inverter has two neighboring pins. H) highlights the error due to multiple
input connection to a single input element. I) is a pNML corner with a pin placed where there are no available connections, generating the error in L).

the others are set as outputs, as shown in Fig. 7.C.
Fig. 7.D shows an example of an incorrect layout. Two input
pins are placed close to the X-Connection element. The first
connected input sets the actual direction of the Nucleation
Center cell. Subsequently, input “B” is connected defining the
actual direction of the X-Connection. At this point, when it
tries to connect the two elements, an output/output error occurs
(Fig. 7.F). Another possible error is shown in Fig. 7.G: the
first pin will be connected and since the inverter has only one
possible input, the second will trigger an error. Finally, an input
mismatch is shown in Fig. 7.H.
This part of the algorithm is common to both the technologies.
Some elements need particular attention: the Simple Magnet in
iNML and Nucleation Center in pNML. They are handled by
the Handling Technological Issues blocks, which are described
in sections IV-C and IV-D. Before entering into the details
of this step, the function detection, still common to both the
technologies, is described.

B. Function Detection

Once the connections have been defined for all the elements
and no errors have been generated, no more entries are
available in the start list. The execution moves to the next step,
the function detection, whose implementation is summarized
by pseudocode 2. The VHDL netlist is based on a library of

Algorithm 2 Function detection pseudocode

Precondition: Elements is the list of all the HDL-Element of the layout.

1: for each element ∈ Elements do

2: if element.outputs 6= connected then

3: return OutputDisconnected
4: end if

5: if element.inputs 6= connected then

6: return InputDisconnected
7: end if
8: EvaluateFunctionality(element.connections)
9: WriteV HDL()

10: end for

technological components. The library embeds the description
of all the gates and building blocks supported. During the
final phase, each layout element is associated to one of the
library elements, depending on its function. Some elements
have a one-to-one mapping in the library: an AND element
in the layout is mapped into an AND gate in VHDL. A
Simple Magnet in iNML could either be a Majority Voter,
a Coupler or a Simple Magnet based on its interconnections.
Each element is therefore analyzed. The first check is made on
the output interconnections: if an output pin is not connected
to any other element an error is generated. The same test
is done on the input pins. If both tests fail, the function at

7

line 8 is executed. This function has specific implementation
for each HDL-Element. The number of input and output
connections is used to determine the function. Once detected,
the correct library component is associated to the cell. For
example, if a Simple Magnet, in iNML, has three inputs and
one output, a Majority Voter is associated to the element and
the corresponding VHDL netlist is written. On the contrary, if
the same element has one input and two or three outputs, a
Coupler is instantiated. Similarly, for the Nucleation Center in
pNML, three inputs identify a Majority Voter, while one input
identifies an inverter. Another example is the pNML Pad, but
outputs are considered in this case. The components Pad, T-
Connection or X-Connection are associated to one, two or three
outputs respectively. Finally, during the VHDL writing step,
the coupling among cells needs to be evaluated. The relative
position between the interconnected elements is used and the
inverters are inferred in the netlist in order to model the correct
coupling.
The previous part of this section described the general al-
gorithm adopted for connection and function detection. In
the following, two sub-sections will describe the technology-
dependent aspects of the proposed solution.

C. Handling iNML Technological Issues

In iNML technology, the Simple Magnet is the most critical
element during the process of detecting the connection. When
it is first connected, the number of surrounding elements is
evaluated. If only one or two neighboring cells are available,
the proper number of connections are created and the process
continues to the next element. If a Simple Magnet has all
the connectable positions occupied by other elements, it is
marked as “ambiguous” and added to a specific list called
AmbiguousItems. No connections are defined and the start
list is not updated. After completing the analysis of the non-
ambiguous elements, the AmbiguousItems list is checked
with the pseudocode presented in 3. In order to understand
the connection of an ambiguous element, all the neighboring
elements are analyzed. Each neighbor can be ambiguous, thus
this connection is marked as undetermined, or non-ambiguous.
In the case of non-ambiguous elements, a connection with
a new element could be evaluated. If the new element has
a fixed direction for input/output (it is an AND gate for
example) or belongs to a different clock zone, the direction
of the connection can be determined (line 12). Otherwise, this
element becomes the new neighbor until the direction is fixed
(line 9). When all the directions are completed, the if-then-
else statement at line 19 is used to extract the actual number
of connections. Since the resolution of an ambiguous pin could
solve other connection uncertainty, the loop is interrupted as
soon as a new function is identified. The resolved element
is removed from the AmbiguousItems list and added to start.
Thus, the normal connection algorithm 1 is executed with
the updated start list. On the contrary, if it is impossible to
determine the function of an element, the next one in the
AmbiguousItems list is analyzed. If no ambiguous elements are
resolved during the loop on the list, the number of iterations is
increased and therefore the condition at line 29 becomes true.

Algorithm 3 Ambiguous element resolution

Precondition: AmbiguousItems is the list of all the ambiguous elements
found. start is the list of the non-ambiguous elements.

1: Iterations ← 0
2: while iterations ≤ 2 do
3: for each element ∈ AmbiguousItems do

4: for each neighbor ∈ element.getConnectable() do

5: while neighbor 6= fixedDirection do

6: if neighbor.outputs > 1 then
7: neighbor ← Undetermined
8: else

9: neighbor ← neighbor.output
10: end if
11: end while

12: element.defineNeighborDirection()
13: end for
14:

15: inputs ← element.inputs
16: outputs ← element.outputs
17: undetermined ← element.undetermined
18:

19: if inputs = 3 | (inputs = 2 & undetermined = 1) then

20: element ← MajorityV oter
21: start.append(element)
22: AmbiguousItems.pop(element)
23: break

24: else if (inputs = 1 & undetermined < 2) | (outputs > 1
& undetermined = 1) then

25: element ← Coupler
26: start.append(element)
27: AmbiguousItems.pop(element)
28: break

29: else if (inputs+ undetermined) = 3 & outputs = 1 &
iteration 6= 0 then

30: element ← MajorityV oter
31: start.append(element)
32: AmbiguousItems.pop(element)
33: break
34: end if

35: end for

36: Iterations ← Iteration + 1
37: end while

This condition, lines 29-32, is used to “guess” the function of
an element. The Majority Voter function is assigned to the first
ambiguous element with exactly one output and a total of three
connections, considering inputs and undetermined neighbors.
Usually this situation is very uncommon and correct circuits
are solved avoiding the need of two subsequent analyses of the
AmbiguousItems list. If a guess is needed, there is probably an
error in the layout. Indeed, this solution is able to detect errors.
After guessing the function, the algorithm tries to connect all
the neighboring cells as outputs, and conflicts appear in the
circuit. Exceptions exist but are very uncommon: a symmetric
circuit belonging to a single clock zone is correctly solved by
the algorithm, but the function assignment is unpredictable. As
mentioned, these kinds of circuits have been used as a corner
case during the verification of the algorithm and without any
practical function.

D. Handling pNML Technological Issues

In pNML technology the critical element is the Nucleation
Center. Thanks to the fixed direction of all the pNML ele-

8

ments, in this technology the solution is simpler compared
to iNML. During the connection generation, it is important
to know the number of inputs for all the Nucleation Centers
in the circuit. In the case of an even number of inputs, an
error is present in the layout. To handle this issue, a Set data
structure storing the ambiguous Nucleation Center has been
introduced. When a Nucleation Center is connected, if the
number of connections is even, its position is added to the Set.
On the contrary, it is removed from the Set if an odd number
of connections is present. When the start list is empty, all the
positions stored inside the Set are marked as error and added
to the output log file.

V. RESULTS

The presented algorithm was tested generating the netlist
of several circuits with increasing complexity. Fig. 8 shows

Layout

ToPoliNano MagCAD

FunCoDe

HDL Simulation

Results in textual format

Verification Script

Fig. 8. Methodology adopted to verify the correct behavior of the proposed
FUNCODE algorithm.

the flow adopted to test the algorithm. Different layouts were
used, designed by hand with MagCAD [29] or generated with
ToPoliNano [31] starting from a structural description. The
FUNCODE algorithm was used to extract the VHDL netlists
from the circuit layouts. The generated netlists are associated
to compact models of the technology presented in [32] [29].
These models are based on physical experiments, when avail-
able or micromagnetic simulations [33] [34] [23]. The models
represent an approximation of the physical behavior of the
circuits, therefore there are simplifications.

This approach, which makes use of VHDL simulations,
reduces drastically the simulation time and enables the explo-
ration of large circuits. These kind of simulations are based on
approximations and can give some insight on the performance
of large architectures that would not be possible to explore with
low level simulators. Moreover, with this approach, it possible
not only to get information on the performance but also to
verify the logical correctness of the design circuit. The main
limitation of this approach is that the long-range integration
among neighboring cells is not considered. Therefore, the user
should have a good understanding of the technology when

designing a circuit, since the tool gives complete freedom to
the designer. The output waveforms are used to verify the
logical correctness of the simulated circuits, considering the
physical characteristics of the technological elements. All the
simulations were performed using ModelSim from Menthor
Graphics [30]. Fig. 9.A shows an example of circuit in iNML
technology. It has three inputs (A, B and C) and two outputs
(O1 and O2). It is composed of several Simple Magnet items
and one inverter. Furthermore, two groups of magnets (the blue
squares in the figure) implement the Coupler and the Majority
Voter gates. Once the layout is processed by FUNCODE, it
produces the VHDL nestlit, of which an excerpt is shown
in Fig. 9.B. The highlighted cells report the automatically
detected functions. Each cell label is named with its position,
and a different library element is associated to it. For exam-
ple cell5 2 is associated to a NML cell and the number of
interconnections is specified using the generic map directive
of VHDL. In the port map, the corresponding connections are
made. Two issues can be noticed by observing the connections
of the Majority Voter by name associations. First, a negated
function is inserted to model the AF coupling of the input on
the left. Second, the signal naming format. The signal ls4 2o1
inverted is assigned to CELL IN(0). For each cell connection
one signal is defined in VHDL. The name is constructed with
the format ls + cellposition + o + outputnumber. The
interconnections to the Majority Voter come from the cell on
the left, above and below. For the Coupler the same type of
cell is used but different interconnections are specified in the
generic map. A different cell is instead used for the inverter.
The simulation of the generated VHDL is shown in Fig. 9.C.
The majority between A, B, C determines the O1 output,
whereas the output O2 is the inverted value of input C. It
is possible to observe that the output signals take into account
the signal delays introduced by the clock scheme. The circles
highlight the input-output correlation. The latency is due to
the clock mechanism. Inputs have to travel through the circuit
before reaching the outputs. Therefore, the generated VHDL
takes into account the physical behavior in terms of timing
introduced by the target technology.

The same approach was used for all circuits discussed in this
section. Before starting the analysis of the results, the selected
circuits are presented. The layouts for the iNML technology
have been generated using ToPoliNano. We adopted two
synthesis approaches to generate the circuits. The first is based
on standard AND, OR and inverters gates. The second approach
is based on majority gate synthesis. This approach makes larger
circuits possible. The full adder, the Ripple Carry Adders
(RCA) with different data parallelism and the array multiplier
belong to first category. Furthermore, the c17, c432, c880 and
c499 circuits from the ISCAS85 benchmark suit [35] were
generated using the same strategy. The remaining circuits are
based on the second approach, performed with SIS and ABC
[36], two tools developed at University of California, Berkeley.
The circuits based on the majority gate synthesis are part of the
design of an Advance Encription Standard (AES) Substitution-
BOX (S-BOX). The S-BOX is composed of the following
sub-circuits: a 4-bit xor (xor4), a matrix multiplication circuit
(affine transformation), a Galois Field Isomorphic Mapping

9

C

Inverter

A

B O1

CLK (0) CLK (1) CLK (2)

O2

CLK(0)

CLK(1)

CLK(2)

A

B

C

O1

O2

3 6 9 12 15 18 21 24

A) B)

C)

[ck cycle]

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

1

0

1

0

1

1

1

1

1

0

1

0

1

0

1

1

1

0

0

1

0

1

0

1

0

Fig. 9. A) Example of iNML layout; B) Excerpt of the generated VHDL that show the automatically detected functional blocks; C) Simulation of the sample
circuit that take into account the latency introduced by the target technology.

circuit (GFMap), a 4-bit Galois Field multiplication (gfmul4),
a Galois Field Inversion circuit (GFInv), a circuit performing
square exponential computation plus constant multiplication
(SquareEX) and finally the inversion of the Galois Field
Isomorphic Mapping (GFmapinv).
The pNML circuits were manually designed using MagCAD.
In pNML technology, the Majority Voter and the inverter are
used to perform all the logic functions. Therefore, the number
of gates in the same circuit is different with respect to the
iNML version. The ripple carry adders with different input
parallelism were used. The 32-bit version of the RCA has been
presented in [37]. Furthermore, a decoder with two inputs and
four outputs and a memory array 4x4, presented in [38], were
used. Other circuits adopted are a finite state machine (FSM)
with four states and a programmable logic array (PLA) with
three inputs, four minterms and four maxterms, both presented
in [37]. A circuit implementing the summed area table [28]
(SAT) algorithm was analyzed. Finally, a hierarchical version
of a 4-bit carry select adder (CSA) circuit was designed: the
building blocks used are 2to1 multiplexers and 2-bit RCA.
We performed VHDL simulations to verify the correct logic
behavior of the generated netlists. Given the complexity of the
benchmark circuits, the process was automated via a script.
A behavioral code, or model in case of custom circuits, was
simulated and the output was saved on a file. The extracted
FUNCODE netlists were fed with the same input and all the
produced output were written into file. The latency introduced
in the new structures led to a larger file, with many more

output lines. A script was used to extract the useful data in the
simulation output and to compare these with the data obtained
with the model. Two data are needed in order to run the script:
circuit latency and number of clock cycles without changing
the input vectors. The circuit latency is used to remove the
firsts outputs, where no data is present since inputs are still
loading the pipeline. The number of clock cycles is used to
skip clock cycles where the outputs would have been equal.
Table I shows an example of the verification process for c432
circuit. Circuit c432 is a 27-channel interrupt controller. The
input channels are grouped into three 9-bit buses (named A,
B and C), where the bit position within each bus determines
the interrupt request priority. A forth 9-bit input bus, named E,
enables and disables interrupt requests within the respective bit
positions. The seven outputs PA, PB, PC and Chan[3:0] specify
which channels have acknowledged interrupt requests. Only
the channel of highest priority in the requesting bus of highest
priority is acknowledged. The input vectors are listed in the
first column of Table I. Since the circuit is combinational the
outputs of the reference description are immediately available
without any latency. They are reported in the second column.
The output file of the FUNCODE netlist was elaborated
through the script and the resulting values are reported in the
third column.

All the analyses reported in this section were performed on
a Intel Core i-7 7700, equipped with 16GB of RAM, running
CentOS 7 operating system.
The results show that the algorithm complexity is linear with

10

TABLE I. VERIFICATION EXAMPLE OF CIRCUIT C432. INPUTS ARE

APPLIED TO BOTH THE MODEL AND THE FUNCODE GENERATED

NETLIST, OUTPUTS ARE COLLECTED AND ANALYZED.

Inputs Vectors Model

outputs

FUNCODE

netlist

outputs

E[8;0] A[8;0] B[8;0] C[8;0] PA PB PC Chan[3;0]

111111111 011111111 011111111 011111111 1 1 1 0000 1 1 1 0000

111111111 101111111 101111111 101111111 1 1 1 1111 1 1 1 1111

111111111 110111111 110111111 110111111 1 1 1 1110 1 1 1 1110

111111111 111011111 111011111 111011111 1 1 1 1101 1 1 1 1101

111111111 111101111 111101111 111101111 1 1 1 1100 1 1 1 1100

111111111 111110111 111110111 111110111 1 1 1 1011 1 1 1 1011

111111111 111111011 111111011 111111011 1 1 1 1010 1 1 1 1010

111111111 111111101 111111101 111111101 1 1 1 1001 1 1 1 1001

111111111 111111110 111111110 111111110 1 1 1 1000 1 1 1 1000

111111111 111111111 010011111 101111111 0 1 0 0110 0 1 0 0110

111111111 111111111 101111111 010000000 0 1 0 1111 0 1 0 1111

111111111 111111111 110110101 111111111 0 1 0 1110 0 1 0 1110

111111111 111111111 111010111 111111111 0 1 0 1101 0 1 0 1101

111111111 111111111 111100111 111111111 0 1 0 1100 0 1 0 1100

111111111 111111111 111110111 111111111 0 1 0 1011 0 1 0 1011

111111111 111111111 111111011 111111111 0 1 0 1010 0 1 0 1010

111111111 111111111 111111101 111111111 0 1 0 1001 0 1 0 1001

111111111 111111111 111111110 111111111 0 1 0 1000 0 1 0 1000

111111111 111111111 111111111 011111111 0 0 1 0000 0 0 1 0000

111111111 111111111 111111111 101111111 0 0 1 1111 0 0 1 1111

111111111 111111111 111111111 110111111 0 0 1 1110 0 0 1 1110

111111111 111111111 111111111 111011111 0 0 1 1101 0 0 1 1101

111111111 111111111 111111111 111101111 0 0 1 1100 0 0 1 1100

111111111 111111111 111111111 111110111 0 0 1 1011 0 0 1 1011

111111111 111111111 111111111 111111011 0 0 1 1010 0 0 1 1010

100000010 100000010 100000010 100000000 0 0 1 1001 0 0 1 1001

011111101 011111101 011111101 011111100 0 0 1 1000 0 0 1 1000

111111111 111011011 000100100 000100100 1 0 0 1101 1 0 0 1101

111111111 111101001 111111111 111111111 1 0 0 1100 1 0 0 1100

111111111 011111111 100000000 100000000 1 0 0 0000 1 0 0 0000

111111111 001111111 111111111 001111111 1 0 1 0111 1 0 1 0111

000000000 000000000 000000000 000000000 0 0 0 0000 0 0 0 0000

the number of elements in the circuit. Fig. 10 shows an analysis
of the execution time for the different parts of the algorithm for
the two technologies. The performance of the iNML version
are reported in Fig. 10.A. The different circuits are listed on
the x-axis. The line shows the number of elements of the
circuit and is plotted on the secondary y-axis. The stacked
bars show the time needed to execute the algorithm. The graph
shows that the total execution time increases linearly with the
number of elements. Furthermore, the different parts of the
algorithm are associated to different portions of the stacked
bars. The translation to the HDL-Elements is in green, while
the connection detection is in blue. The connection time also
includes the handling of the technological issues. The function
detection and the VHDL netlist writing are represented by the
orange part of the bars. The bars reveal that the translation
time is the longest, and is almost half of the total time. In
fact, during the translation, different data structures are allo-
cated and different operations are performed on each element.
Furthermore, the connection detection execution impacts the
total time for approximately the 37%. Finally, the function
detection is the shortest. Once all the connection have been
defined, the function is assigned according to the connected
elements. A similar analysis was performed for the pNML
technology. Fig. 10.B shows the trend of the execution time
over the number of elements. As expected, also for the pNML
case, a linear complexity is achieved since the core of the

A)

B)

Fig. 10. A) iNML FUNCODE execution time as a function of the total
number of elements; B) pNML FUNCODE execution time as a function of
the total number of elements.

algorithm is shared by both the technologies. Differently from
iNML technology, the most time consuming portion of the
algorithm is the connection detection, which is almost 45%
on average. The translation time is about 38% of the total
time and the function detection only impacts 18% of the time.
The differences between the two technologies derive from the
fact that the Simple Magnet in iNML technology, the most
common item in the circuits, has a high connectivity. In fact,
during translation a huge number of redundant connections are
generated, and the ambiguous situations need to be resolved.
This impacts on the final performance of the iNML version,
which is slower than the pNML implementation. By contrast,
in pNML technology the global clock mechanism increases the
complexity of the interconnection detection: without the con-
straint of sequentiality given by the clock zones an additional
degree of freedom is present.
Tables II and III show the results for iNML and pNML
technology respectively. The tables are organized as follows.
The first column is the circuit name. Circuit details, such as
number of gates, inputs, outputs and elements are shown in the
subsequent columns. In the fifth column the approach, flat or
hierarchical, is presented. The last columns are used to show
the time performance of the algorithm. As in Fig. 10, the times

11

TABLE II. GENERATION ALGORITHM TIMING REPORT USING DIFFERENT INML ARCHITECTURES WITH AN INCREASING NUMBER OF ELEMENTS.

Circuit Name #Gates #Inputs/#Outputs #Elements Design

Approach

Translation

Elements

[ms]

Connection

Detection

[ms]

Function

Detection

[ms]

Total

Time

[ms]

c17 6 5/2 233 flat 2 2 1 5

xor4 20 8/4 260 flat 5 3 1 9

squareXE 14 4/4 1688 flat 59 22 19 100

rca2 26 5/3 2687 flat 39 26 23 88

rca4 52 9/5 11987 flat 198 128 92 418

GFInv 34 4/4 16645 flat 291 195 129 615

GFmapinv 55 8/8 37145 flat 578 369 228 1175

array mul4 148 8/8 47972 flat 594 404 201 1199

GFmap 56 8/8 55864 flat 782 487 235 1504

rca8 104 17/9 57502 flat 815 525 324 1664

affine transform 70 8/8 85206 flat 1341 883 496 2720

c432 160 36/7 161114 flat 2236 1500 634 4370

rca16 208 33/17 285874 flat 4209 2727 1202 8138

gfmolt4 199 8/4 379258 flat 5753 4035 1528 11334

c880 383 60/26 1093246 flat 18031 13574 5242 37027

rca32 416 65/33 1935112 flat 31135 23641 7747 62523

c499 202 41/32 2348735 flat 37431 29635 9921 76987

TABLE III. GENERATION ALGORITHM TIMING REPORT USING DIFFERENT PNML ARCHITECTURES WITH AN INCREASING NUMBER OF ELEMENTS.

Circuit Name #Gates #Inputs/#Outputs #Elements Design

Approach

Translation

Elements

[ms]

Connection

Detection

[ms]

Function

Detection

[ms]

Total

Time

[ms]

mux2to1 13 2/1 36 flat 0 0 1 1

full-adder 8 3/2 55 flat 0 1 0 1

decoder2to4 21 2/4 94 flat 0 1 1 2

rca2 21 5/4 94 flat 0 1 1 2

mux2to1x3 49 7/3 162 hier 0 1 0 1

rca4 43 9/5 194 flat 2 2 2 6

carry select 149 9/5 838 hier 2 2 1 5

rca8 156 17/9 886 flat 17 15 4 36

fsm 116 5/12 1438 flat 14 19 7 40

pla 513 51/14 2939 flat 24 26 12 62

rca16 461 33/17 3199 flat 20 26 14 60

memory4x4 972 5/14 3294 flat 27 30 9 66

sat 1050 10/19 4662 flat 48 39 22 109

rca32 1391 65/33 11745 flat 68 94 35 197

are divided in translation, connection and function detection.
The last column is the total time needed by the algorithm.

VI. CONCLUSION

With this paper, we have presented a general algorithm
for the connection and function detection of custom layouts.
FUNCODE was integrated in the latest version of MagCAD.
We tested the algorithm with several circuits with an increasing
complexity. This approach can simplify the investigation of
device-aware architectural solutions. Here, iNML and pNML
were considered as case studies. In the future, this algorithm
will be extended to other promising technologies. The aim is
to have a unified approach for their analysis, which takes into
account the timing behavior and layout constraints. Researches
that are interested in exploiting this approach on new devices
could contact us.

ACKNOWLEDGMENT

The authors would like to thank Riccardo Chiola for his
support in the development of the presented algorithm.

REFERENCES

[1] T. Chen, “Overcoming research challenges for cmos scaling: industry
directions,” in 2006 8th International Conference on Solid-State and

Integrated Circuit Technology Proceedings, Oct 2006, pp. 4–7.

[2] “International Technology Roadmap of Semiconductors,” 2015,
https://www.semiconductors.org/resources/2015-international-
technology-roadmap-for-semiconductors-itrs/.

[3] D. E. Nikonov and I. A. Young, “Overview of beyond-cmos devices
and a uniform methodology for their benchmarking,” Proceedings of

the IEEE, 2013.

[4] X. Yin, X. Chen, M. Niemier, and X. S. Hu, “Ferroelectric fets-based
nonvolatile logic-in-memory circuits,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 27, no. 1, pp. 159–172, 2019.

[5] Z. Yang and L. Wei, “Logic circuit and memory design for in-
memory computing applications using bipolar rrams,” in 2019 IEEE

International Symposium on Circuits and Systems (ISCAS), 2019, pp.
1–5.

[6] R. L. Stamps, S. Breitkreutz, J. kerman, A. V. Chumak, Y. Otani,
G. E. W. Bauer, J.-U. Thiele, M. Bowen, S. A. Majetich, M. Klui, and
et al., “The 2014 magnetism roadmap,” Journal of Physics D: Applied

Physics, vol. 47, no. 33, p. 333001, Jul 2014.

[7] F. Riente, G. Ziemys, C. Mattersdorfer, S. Boche, G. Turvani,
W. Raberg, S. Luber, and S. Breitkreutz-v. Gamm, “Controlled data
storage for non-volatile memory cells embedded in nano magnetic
logic,” AIP Advances, vol. 7, no. 5, p. 055910, 2017.

[8] V. Jamshidi and M. Fazeli, “Pure magnetic logic circuits: A reliability
analysis,” IEEE Transactions on Magnetics, vol. 54, no. 10, pp. 1–10,
Oct 2018.

[9] G. Ziemys, V. Ahrens, S. Mendisch, G. Csaba, and M. Becherer,
“Speeding up nanomagnetic logic by dmi enhanced pt/co/ir films,” AIP

Advances, vol. 8, no. 5, p. 056310, 2018.

[10] M. Gonelli, S. Fin, G. Carlotti, H. Dey, G. Csaba, W. Porod, G. H.

12

Bernstein, and D. Bisero, “Robustness of majority gates based on
nanomagnet logic,” Journal of Magnetism and Magnetic Materials, vol.
460, pp. 432 – 437, 2018.

[11] I. Eichwald, S. Breitkreutz, J. Kiermaier, G. Csaba, D. Schmitt-
Landsiedel, and M. Becherer, “Signal crossing in perpendicular nano-
magnetic logic,” Journal of Applied Physics, vol. 115, 2014.

[12] A. Papp, M. Niemier, A. Csurgay, M. Becherer, S. Breitkreutz, J. Kier-
maier, I. Eichwald, X. Hu, X. Ju, W. Porod, and G. Csaba, “Threshold
gate-based circuits from nanomagnetic logic,” Nanotechnology, IEEE

Transactions on, vol. 13, no. 5, pp. 990–996, Sept 2014.

[13] M. Becherer, G. Csaba, and G. iemys, “3d nanomagnetic logic: How far
beyond cmos?” in 2017 IEEE SOI-3D-Subthreshold Microelectronics

Technology Unified Conference (S3S), Oct 2017, pp. 1–2.

[14] J. F. Chaves, M. A. Ribeiro, F. S. Torres, and O. P. Vilela Neto,
“Enhancing fundamental energy limits of field-coupled nanocomputing
circuits,” in 2018 IEEE International Symposium on Circuits and

Systems (ISCAS), May 2018, pp. 1–5.

[15] J. Das, S. Alam, and S. Bhanja, “Addressing The Layout Constraint
Problem when Cascading Logic Gates in Nanomagnetic Logic ,” Aug.
2012.

[16] H. A. D. Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, and D. Fey,
“Memristive devices for computing: Beyond cmos and beyond von
neumann,” in 2017 IFIP/IEEE International Conference on Very Large

Scale Integration (VLSI-SoC), Oct 2017, pp. 1–10.

[17] A. Chen, “Cooptimization of emerging devices and architectures for
energy-efficient computing,” in 2017 IEEE 12th International Confer-

ence on ASIC (ASICON), Oct 2017, pp. 136–139.

[18] M. Niemier and al., “Nanomagnet logic: progress toward system-level
integration,” J. Phys.: Condens. Matter, vol. 23, p. 34, Nov. 2011.

[19] G. Causapruno, F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zam-
boni, and M. Graziano, “Reconfigurable systolic array: From architec-
ture to physical design for nml,” IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–10, 2016.

[20] M. Niemier, X. Ju, M. Becherer, G. Csaba, X. S. Hu, D. Schmitt-
Landsiedel, P. Lugli, and W. Porod, “Systolic architectures and applica-
tions for nanomagnet logic,” Silicon Nanoelectronics Workshop (SNW),
pp. 1,2, 2012.

[21] S. Breitkreutz, I. Eichwald, J. Kiermaier, A. Papp, G. Csaba,
M. Niemier, W. Porod, D. Schmitt-Landsiedel, and M. Becherer, “1-bit
full adder in perpendicular nanomagnetic logic using a novel 5-input
majority gate,” EPJ Web of Conferences, vol. 75, no. 05001, July 2014.

[22] A. Imre, L. Ji, G. Csaba, A.O. Orlov, G. Bernstein, and W. Porod,
“Magnetic Logic Devices Based on Field-Coupled Nanomagnets,” 2005

International Semiconductor Device Research Symposium, p. 25, De-
cember 2005.

[23] E. Varga, M. T. Niemier, G. Csaba, G. H. Bernstein, and W. Porod,
“Experimental realization of a nanomagnet full adderusing slanted-edge
magnets,” IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 4452–
4455, July 2013.

[24] M. Vacca, F. Cairo, G. Turvani, F. Riente, M. Zamboni, and
M. Graziano, “Virtual clocking for nanomagnet logic,” IEEE Trans-

actions on Nanotechnology, vol. 15, no. 6, pp. 962–970, 2016.

[25] W. Porod, G. H. Bernstein, G. Csaba, S. X. Hu, J. Nahas, M. T. Niemier,
and A. Orlov, Nanomagnet Logic (NML). Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 21–32.

[26] X. Ju, S. Wartenburg, J. Rezgani, M. Becherer, J. Kiermaier, S. Bre-
itkreutz, D. Schmitt-Landsiedel, W. Porod, P. Lugli, and G. Csaba,
“Nanomagnet logic from partially irradiated co/pt nanomagnets,” IEEE

Transactions on Nanotechnology, vol. 11, no. 1, pp. 97–104, Jan 2012.

[27] S. Breitkreutz, J. Kiermaier, C. Yilmaz, X. Ju, G. Csaba, D. Schmitt-
Landsiedel, and M. Becherer, “Nanomagnetic logic: compact modeling
of field-coupled computing devices for system investigations,” Journal

on Computational Electronics, 2011.

[28] F. Riente, D. Melis, and M. Vacca, “Exploring the 3-d integrability
of perpendicular nanomagnet logic technology,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 27, no. 7, pp. 1711–
1719, July 2019.

[29] F. Riente, U. Garlando, G. Turvani, M. Vacca, M. Ruo Roch, and
M. Graziano, “Magcad: Tool for the design of 3-d magnetic circuits,”
IEEE Journal on Exploratory Solid-State Computational Devices and

Circuits, vol. 3, pp. 65–73, Dec 2017.

[30] “Mentor Graphics,” http://www.modelsim.com.

[31] F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and
M. Graziano, “Topolinano: A cad tool for nano magnetic logic,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 36, no. 7, pp. 1061–1074, July 2017.

[32] G. Turvani, F. Riente, E. Plozner, D. Schmitt-Landsiedel, and S. B.
v. Gamm, “A compact physical model for the simulation of pnml-based
architectures,” AIP Advances, vol. 7, no. 5, p. 056005, 2017.

[33] G. Turvani, F. Riente, F. Cairo, M. Vacca, U. Garlando, M. Zamboni,
and M. Graziano, “Efficient and reliable fault analysis methodology
for nanomagnetic circuits,” International Journal of Circuit Theory and

Applications, pp. n/a–n/a, 2016.

[34] S. Breitkreutz and al., “Experimental demonstration of a 1-bit full
adder in perpendicular nanomagnetic logic,” Magnetics, IEEE Tran. on,
vol. 49, no. 7, pp. 4464–4467, July 2013.

[35] D. Bryan, “ISCAS ’85 benchmark circuits and netlist format,” in
International Symposium on Circuits and Systems. Kyoto: IEEE, 1985.

[36] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Proceedings of the 22Nd International Conference

on Computer Aided Verification, ser. CAV’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 24–40.

[37] U. Garlando, F. Riente, G. Turvani, A. Ferrara, G. Santoro, M. Vacca,
and M. Graziano, “Architectural exploration of perpendicular nano
magnetic logic based circuits,” Integration, vol. 63, pp. 275 – 282, 2018.

[38] A. Ferrara, U. Garlando, L. Gnoli, G. Santoro, and M. Zamboni, “3d
design of a pnml random access memory,” in 2017 13th Conference

on Ph.D. Research in Microelectronics and Electronics (PRIME), June
2017, pp. 5–8.

Umberto Garlando He received the B.S and M.S degree in electronic
engineering, in 2013 and 2015 respectively, from Politecnico di Torino, where
he is currently working towards e Ph.D. degree. His research activities mainly
focus on developing Computer Aided Design tools for digital circuits based
on emerging technologies, in particular magnetic and molecular devices.

Fabrizio Riente He received his M.Sc. Degree with honors (Magna Cum
Laude) in Electronic Engineering in 2012 and the Ph.D. degree in 2016 from
the Politecnico di Torino. He has been Postdoctoral Research Associate at
the Technical University of Munich in 2016. He is currently Postdoctoral
Research Associate at the Politecnico di Torino. His primary research interests
are device modeling, circuit design for nano-computing, with particular interest
on magnetic QCA. His interests cover also the development of EDA tool for
beyond-CMOS technologies, with the main focus on the physical design.

Mariagrazia Graziano received the Dr.Eng. and Ph.D degrees in electronics
engineering from the Politecnico di Torino in 1997 and 2001, respectively.
Since 2002, she has been an Assistant Professor at the Politecnico di Torino.
Since 2008, she has been adjunct Faculty at the University of Illinois at
Chicago and since 2014 she is a Marie-Curie fellow at the London Centre
for Nanoelectronics. She works on beyond CMOS devices, circuits and
architectures.

	Introduction
	Background
	in-plane Nano Magnetic Logic
	perpendicular Nano Magnetic Logic

	Methodology
	FUNCODE Algorithm
	Connection Detection
	Function Detection
	Handling iNML Technological Issues
	Handling pNML Technological Issues

	Results
	Conclusion
	References
	Biographies
	Umberto Garlando
	Fabrizio Riente
	Mariagrazia Graziano

