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Figure 1: New Radio link-level simulator scheme

In this paper, we introduce a novel DL-based solution for
CSI information reduction and recovery in a 5G context. In
particular, we implement a deep convolutional neural network
(CNN), named NR-CsiNet, which substantially extends the
structure of the model presented in [3], but with some varia-
tions and new features that aim at generalizing the approach to
a wider and more practical range of use cases: first of all, we
try to make the model applicable also to multi-receiving an-
tenna scenarios, overcoming the restriction imposed by paper
[3], in which the study is limited to single receiving antenna
communications; moreover, we consider also the downlink
channel estimation, whereas this additional step is beyond the
scope of [3].

A similar approach for CSI feedack reporting and informa-
tion reduction has been adopted in [15], where the authors
propose a CSI compression feedback algorithm based on DL,
suitable for single-user and multi-user scenarios in massive
MIMO systems. Some differences arise w.r.t. our work: first,
the simulation environment in [15] is not 5G-NR compliant
since the transmitting and receiving chain does not include
some 5G processing blocks; secondly, a flat Rayleigh fading
channel model is adopted, while in our work we implement a
3GPP CDL model; thirdly, the CNN proposed in [15] presents
a different layered structure w.r.t. our NR-CsiNet; finally, re-
sults in [15] are presented with a fixed compression ratio (1/4),
while we provide results with four different compression ratios
(from 1/15 to 1/120).

For our experiments, we use the Tensorflow’s Keras API
[16] to build and train our CNN. Inside the link level simulator,
presented in Sec. I, we substitute the traditional feedback
reporting blocks with our DL-based alternatives.

A. System model
In [3], the authors consider a Multiple-Input-Single-Output

(MISO) system with N ! 1 transmitting antennas at the BS

and a single receiving antenna at the UE. This paper instead
presents a 5G-NR compliant MIMO system, with M antennas
at the receiver side. C̃ indicates the number of subcarriers
considered for the OFDM-based system. The signal received
at the m-th receiving antenna on the c-th subcarrier can be
expressed as

ym,c = hH
m,cvcxc + zm,c (1)

where:
• hm,c is the complex channel vector, of size N × 1,

corresponding to the m-th receiving antenna and to the
c-th subcarrier;

• vc, of size N × 1, is the complex precoding vector;
• xc is the complex data symbol transmitted on the c-th

subcarrier;
• zm,c denotes the additive noise on the c-th subcarrier

affecting the m-th receiving antenna.
The BS selects the proper precoding vector v = {vc :
c = 1, . . . , C̃} on the basis of the CSI feedback information
Hc = [h1, . . . , hM ] ∈ CN×M it receives. Thus, N × M × C̃
feedback values must be sent to the BS and, in some cases,
this could be an excessive quantity.
For each c-th subband, the M ym,c received symbols are then
combined at the receiver side and the final estimate ŷc is
derived as follows:

ŷc = uH
c yc (2)

where uc is an M × 1 combiner and yc = [y1,c, . . . , yM,c]T
is an M × 1 vector including all the received symbols on the
c-th subcarrier.

B. Downlink channel estimation
Paper [3] addresses the compression task, proposing a DL-

based model which is able to compress and decompress an
ideal downlink channel matrix minimizing the reconstruction
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Figure 2: Module of channel matrix |Hm|

Figure 3: Module of DFT-transofrmed channel matrix |H̃m|

error. With respect to this work, we introduce an important
novelty: instead of performing compression and decompres-
sion operations on the ideal channel realizations at the output
of the CDL channel block, our model learns efficient algo-
rithms which are able to work on noisy channel matrices,
estimated from specific reference signals, called Channel State
Information Reference Signals (CSI-RS) [17]. This means
that our solution addresses also the channel estimation task,
removing the noisy contribution to encode and reconstruct
the ideal channel matrices with the minimum error. Please
note that our NR simulator does not implement the uplink
transmission chain and thus, in all the experiments performed,
the noise affecting the uplink direction is not taken into
account.

For clarity, we have to distinguish two different instances
of the channel matrix H:

• an ideal channel matrix Hid, which represents the recon-
struction target of our NR-CsiNet model and is generated
by the CDL module of the software simulator;

• a noisy estimate of the perfect channel matrix HCSI-RS,

which represents the input of the NR-CsiNet model. It
is obtained by means of a simple interpolation process
operated on the known CSI-RS pilots for each trans-
mitting/receiving antenna pair; in particular, we exploit
a MATLAB predefined library to perform a cubic Radial
Basis Function (RBF) interpolation on the real and the
imaginary parts separately. Varying the SNR level of the
simulation, we collect different sets of HCSI-RS instances
and each of them is used to train a different NR-CsiNet
model.

Since all the processing steps described in the following
subsection have to be performed on both Hid and HCSI-RS, we
decide to lighten the notation by collapsing the two channel
instances in a single matrix H.

C. DFT-based preprocessing of CSI information
To sparsify the channel matrix H in the angular-delay

domai, the authors of [3] includes a 2D-Discrete Fourier
Transform (DFT) preprocessing operation. Our model extends
this DFT-based preprocessing, repeated for each receiving
antenna, as follows:

H̃m = FdHmFH
a (3)

where Fd and Fa are C̃ × C̃ and N × N DFT matrices
respectively and Hm is the C̃ × N spatial-frequency channel
matrix relative to the m-th receiving antenna. In Fig. 2 we
provide an example of Hm, with N = 8 and C̃ = 600.
It results evident that only a small portion of the matrices
H̃m contains significant values, while a consistent portion of
it consists of elements close to zero, since the interarrival
time between rays lies within a limited interval (Fig. 3).
In particular, only the central C < C̃ columns of H̃m are
relevant, allowing us to remove the remaining portion of the
matrix. So, after performing a truncation, H̃m is reduced to
a matrix of size C × N , denoted as H̃t

m. Each matrix H̃t
m is

then brought back in the spatial-frequency domain, by means
of an Inverse DFT (IDFT) operation, obtaining Ht

m matrices.
Despite not foreseen by the authors of [3], we decide to
introduce this additional step in order to let our CNN work
with smoother channel “images”, similar to the realization
shown in Fig. 2. This is justified by the fact that images
characterized by crisp and sharp lines, as in the case of Fig.
3, are generally more difficult to compress and reconstruct.
Finally, real and imaginary parts of each truncated matrix
Ht

m are scaled to range [0, 1]. In a specular way, a rescaling
operation, followed by a DFT and an inverse DFT operation,
are performed on the matrices at the output of the decoder.

D. Multiple antennas at the receiving side
Another interesting novelty of our approach with respect to

the one proposed in [3] is its applicability to MIMO scenarios.
Even if dealing with multiple receiving antennas, our model
maintains only two input channels, one for the real and one
for the imaginary parts of matrices HCSI-RS,t

m ; in other words,
matrices relative to distinct receiving antennas are conveyed
through the CNN on the same input channels. This approach
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allows us to avoid training a different CNN model for each
distinct antenna in reception; another considerable benefit,
especially in massive MIMO contexts, where M ! 1, is
that the number of learnable parameters of the CNN does
not increase with the number of receiving antennas (M ),
preventing from overfitting phenomena. Lastly, it is very likely
that our model will be able to exploit the spatial correlation
between the different receiving antennas, allowing us to adopt
smaller training datasets to produce efficient and generalized
network models.

E. NR-CsiNet encoder
Our NR-CsiNet encoder (Fig. 4a) is essentially a deep

convolutional neural network, whose input consists of the
real and imaginary parts of the truncated matrices HCSI-RS,t

m ,
where m is the index of the receiving antenna. The T variable
introduced in Fig. 4a is T = 2 · C · N . The NR-CsiNet
encoder adopts the structure of the CsiNet encoder proposed
in [3]: the first layer of the CNN is a convolutional layer with
3 × 3 × 2 filters, that generates 2 feature maps. Then, the 2
feature maps are vectorized performing a reshaping operation.
Finally, a fully connected layer outputs a vector (codeword) s
of size R for each receiving antenna, so that the comprehensive
compression ratio results equal to K = M ·R

C̃·N
.

F. NR-CsiNet decoder
The NR-CsiNet decoder (Fig. 4b) is a CNN, which takes

as input the codeword s, generated by the encoder and sent to
the BS. It utilizes the implementation scheme of the CsiNet
decoder presented in [3]: the first layer is a fully connected
layer that outputs an initial estimation of the real and imag-
inary parts of the matrix Hid,t

m . Then, these initial estimates
are fed into a series of RefineNet units, whose purpose is
to progressively refine the reconstruction. Each RefineNet
unit consists of an input layer and three convolutional layers
with a kernel of size 3 × 3: the second layer outputs 8
feature maps, the third 16 while the fourth generates the
final reconstruction of the Hid,t

m matrices. Exploiting a zero-
padding operation, the intermediate feature maps produced
inside a RefineNet unit result in having the same size as
the input channel matrix (C × N ). Moreover, each layer is
followed by a Rectified Linear Unit (ReLU) [18], [19] and a
Batch Normalization layer [20], [19]. After performing several
experiments, we can conclude that for our NR-CsiNet model,
as for the CsiNet one [3], adding further RefineNet units would
not significantly improve the reconstruction quality, leading
instead to a larger complexity. After the series of RefineNet
units, a final convolutional layer is followed by a softmax layer
[21], [19], which scales the values to the [0, 1] range.

G. Training process
By exploiting the same notation adopted in [3], we can

denote the set of trainable parameters as Θ = {Θen, Θde}.
The truncated input and output of the NR-CsiNet model for the
i-th patch are denoted as HCSI-RS,t

i and Ĥt
i = f(HCSI-RS,t

i ; Θ) =
fde(fen(HCSI-RS,t

i ; Θen); Θde) respectively.

The loss function is defined as

L(Θ) =
1
T

T∑

i=1

||f(HCSI-RS,t
i ; Θ) − Hid,t

i ||22 (4)

where T denotes the number of training samples and ||.||2 is
the Euclidean norm operator.

III. SIMULATION RESULTS

This section presents the results achieved by the NR-CsiNet
model described in the previous sections. The NR link level
simulator presented in Sec. I is used to carry out simulation
trials in order to collect performance statistics. For these sim-
ulations, the blocks for CSI feedback definition and reporting
are substituted with our CNNs. The precoding block at the
transmitter side takes in input the channel matrix at the output
of our decoder, reconstructed from the compressed feedback
sent back by the UE; a Single Value Decomposition (SVD)
operation is then performed and the eigenvector correspondent
to the higher eigenvalue of the matrix is selected as precoding
vector for the next downlink transmission. At the receiver
side, the spatial diversity of the M branches is exploited by
implementing a Maximal Ratio Combiner (MRC).

Tab. I collects the main parameters of interest concerning
the simulator settings:

Table I: Simulation parameters

NR Simulator parameters
System bandwidth 5 MHz

Time slot 1 ms

Carrier frequency 3.64 GHz

(Modulation, Coding rate) (64-QAM, 0.694)

TBS 19968 bit

C̃ 300

Transmission layers 1

Codewords 1

CSI reporting Type Type I

Channel model CDL-B

Delay Spread model Nominal

• a time slot is the time required to transmit a Transport
Block of data, which corresponds to the transmission time
of 14 OFDM symbols;

• TBS is the Transport Block Size, indicating the number
of bits transmitted in 1 slot;

• C̃ is the number of subcarriers used for data transmission;
it can be computed by subtracting the number of subcar-
riers composing the band guards from the total number
of OFDM subcarriers: in this case C̃ = 512 − 106 − 106.

• delay spread model defines the delay profile, which
determines the scaling factor for the time of arrival of
each cluster signal, this way creating a shorter or longer
delay spread.
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(a) NR-CsiNet encoder scheme (b) NR-CsiNet decoder scheme

Figure 4: NR-CsiNet scheme

We decide to keep the system bandwidth quite small and
the working frequency low, as it can be observed in Tab. I;
this choice is dictated uniquely by computational complexity
issues, since simulations with a larger bandwidth would last
much longer and the simulation time would increase propor-
tionally. The hyperparameters adopted for the training and
testing process of our model instead are listed in Tab. II.

Table II: NR-CsiNet model parameters

NR-CsiNet parameters

Training set 1000 sim of 100 slots
Validation set 100 sim of 100 slots

Testing set 100 sim of 100 slots
Learning rate 0.001
Loss function MSE

Optimizer Adam
Epochs 300

RefineNet units 2
KDFT 3

The DFT-compression factor KDFT is defined as:

KDFT =
C̃
C

(5)

where C̃ and C are the same parameters defined in Sec. II.
Please notice that this parameter should not be confused with
the final compression factor K, introduced in Subsec. II-E,

For our simulations, we consider a scenario with N = 8 and
M = 2, where the transmitting antenna system is of a 2×2 pla-
nar array made of dual-polarized antenna elements, while the
receiver equipment consists of a single dual-polarized antenna.
Clearly, we are not considering a Massive MIMO scenario,
since the number of antennas is quite small. An increase
in the number of antennas would cause a proportional and
unmanageable increase in simulation times; for this reason,
we decide to leave experiments with larger N and/or M for
future studies.

For our simulations, a single value of DFT-compression
factor is considered (KDFT = 3), while the SNR values selected
for the training process are two, i.e., 10 dB and 20 dB. We

(a) Throughput statistics

(b) BLER1 statistics

Figure 5: Performance statistics for NR-CsiNet model trained
at SNR = 20 dB

will show only the results obtained with the NR-CsiNet model
trained at 20 dB because experiments have led us to conclude
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that the system performances are almost independent of the
SNR level at which training data are collected.

Fig. 5 relative to throughput and BLER1 (i.e., Block Error
Rate at the first transmission attempt) are zoomed to the SNR
ranges [−5, 23] dB and [0, 23] dB respectively for resolution
improvement, but we test the model performances over a wider
SNR range ([−5, 35] dB). These graphs are useful to compare
our NR-CsiNet model with a PMI-based reporting technique,
that we refer to as follow PMI: adopting the follow PMI
procedure, the UE computes the Precoding Matrix Indicator
(PMI) [22], starting from some measurements of the channel
based on CSI-RS. The PMI selected, which is nothing but
an index pointing to a specific precoding vector inside the
precoding codebook, is transmitted to the BS, which adopts
the precoding vector corresponding to the PMI index received.

It seems reasonable to conclude that, in 8×2 scenarios, our
DL-based approach outperforms the follow PMI algorithm,
even when dealing with noisy channel estimates instead of
perfect channel matrices. In particular, the plots show that
above 20 dB of SNR, both NR-CsiNet and follow PMI
throughput curves reach the maximum limit imposed by the
Transport Block Size (TBS); at lower SNR, instead, all the
variants of our DL solution provide better performances.

It is worth noting that for all our experiments we adopt a
single variant of channel model CDL-B presented in Sec.I:
simulation results have shown that this type of channel model
usually presents a dominant cluster, which implicitly defines
a preferential direction for signal transmission. Therefore, the
follow PMI is expected to achieve good performance: in fact,
among a set of possible beams, the PMI index simply identifies
the one pointing to the receiver with more precision. Our
guess is that, in the case of “richer” channel realizations where
multipath is not dominated by a single cluster of paths, our
DL-based approach has all the potential to further gain ground
on the follow PMI algorithm.

IV. CONCLUSIONS

In this paper, we have investigated the potential use of neural
networks as an alternative to the traditional feedback reporting
block implemented inside a comprehensive New Radio link-
level simulator. Starting from the CNN proposed in [3], we
have developed a NR-CsiNet model that is applicable also to
MIMO systems and able to deal with the channel estimation
task. Simulation results, obtained by a 5G-NR compliant
physical layer simulator with CDL channel model, have shown
that our DL-based feedback system can outperform a system
that implements a traditional PMI-based reporting technique,
for a wide range of SNR values, as shown in Fig. 5.

Our work might be a starting point for future experiments,
in which different and more realistic simulation conditions
will be considered: a larger number of antennas, real channel
realizations instead of mathematical models, multiple trans-
mission layers, higher carrier frequencies and larger system
bandwidths, suitable for 5G-based communication systems.
We hope that our conclusions will provide useful guidelines

to address future research on this topic, which is attracting
considerable interest.
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