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INTRODUCTION 

Osteoporosis is a metabolic condition which, entailing reduced bone mass and deteriorated 

microarchitecture, leads to increased bone fragility and, ultimately, to an increased risk of fracture [1]. 

In this regard, it has been reported that e.g. in the European Union 3.5 million fractures associated with 

osteoporosis are estimated to occur annually [2]. Osteoporotic fractures have gained progressive 

attention [3], owing to the increasing social and economic burden they are imposing on a rapidly ageing 

society [2], especially in western countries. Hip fractures, in particular, represent a major cause of 

mortality, disability, chronic pain and compromised quality of life [4]. 

Hip fractures most frequently occur after a fall in elderly people [5], a consequence of the combined 

reduced-with-age bone strength and of the increased probability of fall. Due to the growing global life 

expectancy, the incidence of hip fractures is expected to grow by 3.5 times by 2050, raising up to a 

total of 6.26 million [6], which emphasizes the urgent need for an accurate predictor of the risk of 

fracture.  

Currently, the areal Bone Mineral Density (BMD) derived from Dual X-rays Absorptiometry (DXA) 

represents the clinical standard to assess osteoporosis status and, therefore, the fracture risk. In 

particular, the presence of osteoporosis is assessed using T-score (WHO report, 1994), the gold-

standard derived comparing the patient-specific BMD value with the BMD value of a young, standard 

population. Nevertheless, the predictive performance of T-score has demonstrated to be moderate 

[8,9], with approximately half of the people suffering from a fracture presenting non-osteoporotic T-

score levels [10]. Distilling this into practice, the BMD predictive performance suggests that although 

bone mass does represent an indicator, other skeletal and non-skeletal factors should markedly 

contribute to define the risk of fracture [8]. 

Computed Tomography (CT)-based Finite Element (FE) models, extensively used in osteoporosis-

related research [11], would allow to reliably and comprehensively reproduce the three-dimensional 

patient-specific geometry and material properties, as well as load distribution. However, their cost-

effectiveness has not been proved yet [12]. Moreover, CT is not routinely performed for osteoporosis 

diagnosis purposes, which hinders the feasibility of using CT-based models in the clinical practice. 
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Taking advantage of the possibility given by a PLS-based approach, this study aims at building a 

modelling framework where statistical shape and intensity analysis are combined on DXA-based 

proximal femur geometric and densitometric data. The approach is applied to a cohort of 28 post-

menopausal female subjects for whom proximal femur DXA and CT images were available. Due to the 

lack of information on the cohort fracture status, estimates of the Femoral Strength (FS) based on 

patient specific computer models [25] were used as surrogates of the subject-specific fracture risks. 

Therefore, the ambition is not to straightforwardly achieve a model able to improve fracture risk 

discrimination. Rather, the scope of the here presented work is to provide a statistical modelling 

framework which, employing PLS-based approaches and including both clinically available anatomical 

and densitometric information, could be successfully adopted in the context of fracture risk prediction, 

where it might also shed light on the role geometry and material properties play in relation to the fracture 

risk. The advantage of the here presented statistical framework is that it can be easily applied using 

indicators of fracture risk as obtained from a retrospective cohort. 

In the following, statistical models construction is presented, together with technical remarks 

concerning the adopted strategies. The development of SSMs, SIMs and models gathering shape and 

BMD together will rely on both the standard PCA and the cutting-edge PLS approach. 

MATERIALS AND METHODS 

Subjects 

Twenty-eight post-menopausal female subjects, aged from 55 to 81 years (70 ± 6 years) and 

therefore considered at increased risk of an osteoporotic fracture, were treated in San Luigi Gonzaga 

Hospital, Orbassano, Italy, and involved in the study after signing an informed consent. Clinical, DXA-

derived data (acquired with a Discovery DXA system, Hologic) and CT scans acquired in the same 

year for diagnostic purposes not related to osteoporosis, were available for the whole cohort. Since the 

possible presence of bone metastasis might have affected bone strength, patients affected by cancer 

were not involved in the study. 

Patient-specific surrogate marker of fracture risk 
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The schematic overview of the study is presented in Fig. 1. The analysed cohort does not belong to 

a longitudinal study, so that the fracture status of patients is undetermined because of the absence of 

follow-up information. To overcome this limitation, herein, a patient-specific Finite Element (FE) 

approach was applied to evaluate the Femoral Strength (FS) as a surrogate indicator of risk. Developed 

from a more comprehensive dataset than DXA-based FE models [26], femur three-dimensional CT-

based FE models were used to calculate patient-specific FS values as the estimated failure loads in a 

sideways fall condition [25]. Technically, taking advantage of patient-specific FE models presented 

elsewhere [25], the impact load on the greater trochanter was linearly increased until fracture initiation, 

which was assessed based on principal strains failure criteria [27]. In particular here we considered 

fracture initiation when the number of contiguous failed cortical elements exceeded 0.3% of the total 

number of surface elements, as suggested elsewhere [28]. Details on FE models reconstruction and 

on the applied numerical settings, exhaustively reported elsewhere [25], are summarized in section 1 

of the Supplementary Material. The personalized FE-based estimates of FS were employed as 

surrogates of hip fracture risk to be used within the performed statistical analyses (Fig. 1), aiming to 

identify fracture-prone morphological and densitometric attributes.  
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Fig. 1. Schematic overview of the workflow. Geometric information contained in DXA images was used for 

statistical shape analysis purposes. In particular, the software Deformetrica was employed to extract non-

parametric shapes representations (the moment vectors), adopted as input for the SSMs construction. In 

addition, Deformetrica outputs were used in order to morph a unique mesh onto each patient-specific DXA 

image, so that a consistent sampling of the BMD values could be accomplished on the pixel-by-pixel BMD map 

extracted from the original DXA scans. The so obtained nodal BMD values were used as input for the SIMs 

construction. Eventually, the independent SSMs and SIMs could be unified in so called Statistical Shape-

Intensity Models (SSIMs). FS values from CT-based FE analyses were used as fracture risk surrogates within 

the statistical analyses. The procedure to assess the surrogate fracture risk is shown with a grey background. 
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The first 7 PCA modes, able to explain almost the entire shape variance, can be visualized in Fig. 

S7 of the Supplementary Material. Mode 1, which embodies the most variable features within the 

considered cohort, can be related to the size. In addition, mode 1 and mode 2, are significantly 

correlated with the Hip Axis Length (HAL) (Table 1), thus suggesting that HAL is a highly variable 

feature in the observed cohort, the first two modes together gathering the 80% of the total shape 

variance. Interestingly, none of the 7 PCA modes was found to be correlated with the FS. The herein 

mentioned HSA-related parameters and regions are graphically displayed in Fig. S6 of the 

Supplementary Material.  

Table 1. Main significant correlations found between the SSMs modes and DXA-related parameters.  

HAL: Hip Axis length; NSA: Neck-Shaft Angle; nn: narrow-neck; it: intertrochanter. 

SSM: PCA SSM: PLS 

Variable R p Variable R p 

mode1 mode 3 

HAL -0.54 0.0035 HAL 0.48 0.0107 

mode 2 NSA -0.56 0.0026 

HAL 0.66 0.0002 nn Width 0.45 0.02 

it Width 0.42 0.0305 it Width 0.47 0.01 

   FS 0.36 0.049 
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Fig. 4. The PLS components stratification performances. (a) The third PLS shape component vs. the FS (R = 

0.36, p = 0.049); (b) the first PLS intensity component vs. FS risk predictor. (R = 0.76, p < 0.0001). 

Statistical Intensity Model  

A total of 21 PCA modes were necessary to explain at least 95% of the density distribution variability 

(Fig. S8), and the first 8 PCA intensity modes are displayed in Fig. S8 of the Supplementary Material. 

The first PCA intensity mode, which highlights an overall variation in the BMD within the whole proximal 

femur, was (as expected) significantly correlated with the T-score (total femur) and BMD, but also with 

Buckling-Ratio and Cross-Sectional Moment of Inertia [13,35], confirming the tight link of these 

quantities with the intensity distribution on which their computation relies on (Table 2). At the same 

time, the first PCA intensity mode was also inversely correlated with FS (Table 2), suggesting that the 

material properties of the femur may play a crucial role in the context of a fracture. PCA intensity mode 

2 highlights a decreased BMD in the trochanteric fossa region, which also comes with a thicker cortex 

layer medially in the femur distal portion (Fig. S8, Supplementary Material). Similarly, PCA intensity 

mode 3 is representative of a decreased BMD area in the greater trochanter region. Interestingly, PCA 

intensity modes 2 and 3 were both correlated with HAL (Table 2).  

As far as the PLS intensity modes are concerned, the first 4 modes, displayed in Fig. 5, describe 

97.71% of the FS variability, but only 51.71% of the intensity variability. Interestingly, the PLS first 

intensity modes turned out to be very similar to the corresponding PCA ones, highlighting again, beyond 

the variability in the distribution of BMD as a whole, the variations at the intertrochanteric fossa and 

greater trochanter. In analogy with the PCA intensity modes obtained outcome, the PLS intensity mode 

1 was markedly correlated with BMD, with the BMD distribution-based HSA-derived parameters (e.g. 
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SSIM: PCA  SSIM: PLS 

Variable R p Variable R P 

mode 1 mode 1 

HAL -0.51 0.0061 T-score 0.84 < 0.0001 

mode 2 BMD 0.84 < 0.0001 

T-score 0.86 < 0.0001 nn BMD 0.79 < 0.0001 

BMD 0.92 < 0.0001 it BMD 0.61 < 0.001 

nn BMD 0.93 < 0.0001 nn BR -0.62 < 0.001 

it BMD 0.81 < 0.0001 it BR -0.66 < 0.0002 

nn BR -0.78 < 0.0001 nn CSMI 0.58 0.0016 

it BR -0.75 < 0.0001 FS 0.82 < 0.0001 

nn CSMI 0.52 0.0054 mode 2 

it CSMI 0.44 0.0215 it BMD 0.47 0.0128 

FS 0.66 < 0.0002 nn BR -0.40 0.0372 

   FS 0.40 0.037 
























