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ABSTRACT 

Aiming to improve osteoporotic hip fracture risk detection, factors other than the largely adopted Bone 

Mineral Density (BMD) have been investigated as potential risk predictors. In particular Hip Structural 

Analysis (HSA)-derived parameters accounting for femur geometry, extracted from Dual-energy X-ray 

Absorptiometry (DXA) images, have been largely considered as geometric risk factors. However, HSA-

derived parameters represent discrete and cross-correlated quantities, unable to describe proximal 

femur geometry as a whole and tightly related to BMD. Focusing on a post-menopausal cohort (N=28), 

in this study statistical models of bone shape and BMD distribution have been developed to investigate 

their possible role in fracture risk. Due to unavailable retrospective patient-specific fracture risk 

information, here a surrogate fracture risk based on 3D computer simulations has been employed for 

the statistical framework construction. When considered separately, BMD distribution performed better 

than shape in explaining the surrogate fracture risk variability for the analysed cohort. However, the 

combination of BMD and femur shape quantities in a unique statistical model yielded better results. In 

detail, the first shape-intensity combined mode identified using a Partial Least Square (PLS) algorithm 

was able to explain 70% of the surrogate fracture risk variability, thus suggesting that a more effective 

patients stratification can be obtained applying a shape-intensity combination approach, compared to 

T-score. The findings of this study strongly advocate future research on the role of a combined shape-

BMD statistical framework in fracture risk determination. 

Keywords – Femur fracture, Osteoporosis, Fracture risk assessment, Principal Components Analysis, 

Partial Least Square analysis. 
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INTRODUCTION 

Osteoporosis is a metabolic condition which, entailing reduced bone mass and deteriorated 

microarchitecture, leads to increased bone fragility and, ultimately, to an increased risk of fracture [1]. 

In this regard, it has been reported that e.g. in the European Union 3.5 million fractures associated with 

osteoporosis are estimated to occur annually [2]. Osteoporotic fractures have gained progressive 

attention [3], owing to the increasing social and economic burden they are imposing on a rapidly ageing 

society [2], especially in western countries. Hip fractures, in particular, represent a major cause of 

mortality, disability, chronic pain and compromised quality of life [4]. 

Hip fractures most frequently occur after a fall in elderly people [5], a consequence of the combined 

reduced-with-age bone strength and of the increased probability of fall. Due to the growing global life 

expectancy, the incidence of hip fractures is expected to grow by 3.5 times by 2050, raising up to a 

total of 6.26 million [6], which emphasizes the urgent need for an accurate predictor of the risk of 

fracture.  

Currently, the areal Bone Mineral Density (BMD) derived from Dual X-rays Absorptiometry (DXA) 

represents the clinical standard to assess osteoporosis status and, therefore, the fracture risk. In 

particular, the presence of osteoporosis is assessed using T-score (WHO report, 1994), the gold-

standard derived comparing the patient-specific BMD value with the BMD value of a young, standard 

population. Nevertheless, the predictive performance of T-score has demonstrated to be moderate 

[8,9], with approximately half of the people suffering from a fracture presenting non-osteoporotic T-

score levels [10]. Distilling this into practice, the BMD predictive performance suggests that although 

bone mass does represent an indicator, other skeletal and non-skeletal factors should markedly 

contribute to define the risk of fracture [8]. 

Computed Tomography (CT)-based Finite Element (FE) models, extensively used in osteoporosis-

related research [11], would allow to reliably and comprehensively reproduce the three-dimensional 

patient-specific geometry and material properties, as well as load distribution. However, their cost-

effectiveness has not been proved yet [12]. Moreover, CT is not routinely performed for osteoporosis 

diagnosis purposes, which hinders the feasibility of using CT-based models in the clinical practice. 
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Therefore, with the purpose of identifying clinically attainable femur geometric features, Hip Structural 

Analysis (HSA) [13] has been largely applied [14]. HSA-derived parameters represent proximal femur 

geometry attributes extracted from routine DXA images, which could be readily integrated in the clinical 

decision process to support T-score-based risk of fracture prediction. However, HSA-based risk 

prediction improvement with respect to T-score is hindered by the fact that HSA-derived parameters 

(1) represent discrete measures unable to describe femur shape as a whole, (2) are highly cross-

correlated, and (3) are correlated with the BMD. In fact, HSA-derived parameters are extracted from 

the DXA bone mineral mass distribution [14] from which BMD and T-score derive as well. Moreover, 

HSA-derived parameters identified as the most relevant to femur fracture were not always reported to 

be consistent in literature [14,15]. 

In the last decades, statistical models as introduces by Cootes and co-workers [16] have received 

attention as powerful tools to investigate the morphometry of organs in relation to the diagnosis of 

diseases, and the bone research community has progressively realized their potential. Statistical 

Shape Models (SSMs) have been promisingly adopted to examine associations between the global 

morphometry variations in the femoral shape of an input cohort and the fracture incidence [17,18]. 

Similarly, the bone main BMD distribution variations have also been explored through Statistical 

Intensity Models (SIMs) for fracture discrimination [19–22]. In the afore-mentioned cases, the 

construction of the statistical models relied on Principal Component Analysis (PCA), aiming to 

retrospectively identify those geometric and densitometric attributes which are significantly different in 

fracture and non-fracture cohorts [17,18]. 

However, by definition PCA performs dimensionality reduction (PCA reduces the number of features 

by identifying the most important ones that still represent the entire dataset), but not necessarily it is 

optimal for classification, because it might conceal attributes which are relevant-to-fracture. In this 

context, Partial Least Square (PLS) algorithm [23,24] would represent a more suitable approach for 

the construction of statistical models aimed at diagnosis or fracture discrimination purposes, because 

PLS allows the extraction of the main attributes in the shape and BMD distribution which are 

simultaneously relevant to the fracture risk. 



5 
 

Taking advantage of the possibility given by a PLS-based approach, this study aims at building a 

modelling framework where statistical shape and intensity analysis are combined on DXA-based 

proximal femur geometric and densitometric data. The approach is applied to a cohort of 28 post-

menopausal female subjects for whom proximal femur DXA and CT images were available. Due to the 

lack of information on the cohort fracture status, estimates of the Femoral Strength (FS) based on 

patient specific computer models [25] were used as surrogates of the subject-specific fracture risks. 

Therefore, the ambition is not to straightforwardly achieve a model able to improve fracture risk 

discrimination. Rather, the scope of the here presented work is to provide a statistical modelling 

framework which, employing PLS-based approaches and including both clinically available anatomical 

and densitometric information, could be successfully adopted in the context of fracture risk prediction, 

where it might also shed light on the role geometry and material properties play in relation to the fracture 

risk. The advantage of the here presented statistical framework is that it can be easily applied using 

indicators of fracture risk as obtained from a retrospective cohort. 

In the following, statistical models construction is presented, together with technical remarks 

concerning the adopted strategies. The development of SSMs, SIMs and models gathering shape and 

BMD together will rely on both the standard PCA and the cutting-edge PLS approach. 

MATERIALS AND METHODS 

Subjects 

Twenty-eight post-menopausal female subjects, aged from 55 to 81 years (70 ± 6 years) and 

therefore considered at increased risk of an osteoporotic fracture, were treated in San Luigi Gonzaga 

Hospital, Orbassano, Italy, and involved in the study after signing an informed consent. Clinical, DXA-

derived data (acquired with a Discovery DXA system, Hologic) and CT scans acquired in the same 

year for diagnostic purposes not related to osteoporosis, were available for the whole cohort. Since the 

possible presence of bone metastasis might have affected bone strength, patients affected by cancer 

were not involved in the study. 

Patient-specific surrogate marker of fracture risk 
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The schematic overview of the study is presented in Fig. 1. The analysed cohort does not belong to 

a longitudinal study, so that the fracture status of patients is undetermined because of the absence of 

follow-up information. To overcome this limitation, herein, a patient-specific Finite Element (FE) 

approach was applied to evaluate the Femoral Strength (FS) as a surrogate indicator of risk. Developed 

from a more comprehensive dataset than DXA-based FE models [26], femur three-dimensional CT-

based FE models were used to calculate patient-specific FS values as the estimated failure loads in a 

sideways fall condition [25]. Technically, taking advantage of patient-specific FE models presented 

elsewhere [25], the impact load on the greater trochanter was linearly increased until fracture initiation, 

which was assessed based on principal strains failure criteria [27]. In particular here we considered 

fracture initiation when the number of contiguous failed cortical elements exceeded 0.3% of the total 

number of surface elements, as suggested elsewhere [28]. Details on FE models reconstruction and 

on the applied numerical settings, exhaustively reported elsewhere [25], are summarized in section 1 

of the Supplementary Material. The personalized FE-based estimates of FS were employed as 

surrogates of hip fracture risk to be used within the performed statistical analyses (Fig. 1), aiming to 

identify fracture-prone morphological and densitometric attributes.  
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Fig. 1. Schematic overview of the workflow. Geometric information contained in DXA images was used for 

statistical shape analysis purposes. In particular, the software Deformetrica was employed to extract non-

parametric shapes representations (the moment vectors), adopted as input for the SSMs construction. In 

addition, Deformetrica outputs were used in order to morph a unique mesh onto each patient-specific DXA 

image, so that a consistent sampling of the BMD values could be accomplished on the pixel-by-pixel BMD map 

extracted from the original DXA scans. The so obtained nodal BMD values were used as input for the SIMs 

construction. Eventually, the independent SSMs and SIMs could be unified in so called Statistical Shape-

Intensity Models (SSIMs). FS values from CT-based FE analyses were used as fracture risk surrogates within 

the statistical analyses. The procedure to assess the surrogate fracture risk is shown with a grey background. 
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Statistical modelling framework 

Pursuing the clinical applicability of the proposed methodologies, the whole statistical analysis 

involved DXA-based data: in spite of the availability of both DXA- and CT-derived proximal femur 

geometries and density distributions, the SSMs and SIMs were built on the two-dimensional profiles 

and pixel-by-pixel BMD maps extracted from DXA (Fig. 1), considering that they are currently both 

available in the clinical practice.  

Femur Shape representation 

In the here presented framework, the SSM approach relies on the mathematical framework 

proposed by Durrleman et al. [29], implemented in the open source code Deformetrica 

(http://www.deformetrica.org/). Contrary to the common parametric methods adopted for shape 

representation prior to statistical shape analysis of anatomical districts, the approach proposed in this 

study does not require landmarking nor point-to-point correspondence, as it relies on mathematical 

currents [30] to model shapes. Recalling that the current of a generic surface is defined as the flux of 

a test vector field across that surface, here currents act as surrogate representations of shapes and 

can be considered as shape indirect measures. A detailed description of the mathematical framework 

for shape representation is provided in section 2 of the Supplementary Material.  

In this study, the input to the SSM was represented by the realigned two-dimensional DXA-derived 

proximal femur external shapes (Fig. S4, Supplementary Material). In detail, taking one patient as the 

reference, the 2D shapes were first rotated and translated so that they could be realigned with respect 

to the mid-point of the femur distal edge (point O in Fig. S4, Supplementary Material) and the shaft 

axis. After the realignment step, based on the representation of shapes via mathematical currents a 

generic anatomical model was provided by Deformetrica, which is the ensemble of (1) an average 

shape of the analysed cohort, the so called template �̅�, and (2) the transformation functions Φ𝑖 mapping 

�̅� to each 𝑖𝑡ℎ (i=1….N) patient-specific shape 𝑇𝑖 [31,32]. Each subject-specific shape 𝑇𝑖 can be 

expressed in terms of a deformed version of the template �̅�, and of a term 𝜀𝑖, accounting for features 

not captured by the deformed template, according to: 

𝑇𝑖 = Φ𝑖 ∙ �̅� + 𝜀𝑖  (1) 
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The template deformation function Φ𝑖 is driven by a set of moment vectors 𝜷𝑖 centred at a grid of 

control points which are defined with respect to the template �̅�, and which encompass the 

morphological attributes of the 𝑖𝑡ℎ patient-specific shape (Fig. 2a).  

Before presenting the detailed SSMs and SIMs construction, technical remarks pertaining the two 

strategies adopted for developing the statistical models are provided. 

Remarks on statistical modelling  

SSMs and SIMs are modelling strategies based on the identification of (1) an average shape (in our 

case, femur shape) or intensity (in our case, the pixel-by-pixel BMD map), representing those shape 

features common to cohort under study, and (2) the main modes of variation from the average shape. 

Roughly, the idea at the basis of the statistical modelling is that by selecting a limited number of modes, 

the shape or the intensity distribution of any individual belonging to a specific population can be 

adequately described. In this study, two different approaches were implemented to build statistical 

shape and intensity models of the analysed femurs cohort, the Principal Component Analysis (PCA) 

and the Partial Least Square (PLS) analysis. 

Principal Components Analysis  

PCA, an exploratory multivariate statistical technique for simplifying complex datasets, was applied 

to extract the main shape and BMD distribution attributes from the cohort under study. Technically, 

given N observations on k variables, the PCA goal consists in reducing the dimensionality of the input 

data matrix by finding m new variables (with m < k-1), termed principal components, which together 

account for as much as possible of the variance in the original k variables while remaining mutually 

uncorrelated and orthogonal [33]. After identifying the directions, called principal modes, which 

maximise the variance of the original variables, the principal components are found by projecting the 

original k variables onto the principal modes. Here, each principal component discloses the mode 

contribution to the subject-specific femur shape or intensity. PCA theory and related mathematics are 

extensively detailed in section 3 of the Supplementary Material.  

Partial Least Square Analysis 
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Analogous to PCA, PLS performs dimensionality reduction, and here was applied to identify the 

main shape and BMD distribution attributes simultaneously relevant to the surrogate fracture risk. 

Given an input data matrix X and a response variable Y, PLS computes the directions in the space of 

the variables, termed PLS modes, where the covariance between X and Y is maximal. By projection of 

the original data matrix X onto the PLS modes, the PLS components are identified which best account 

for the variance of X, Y and the correlation between the two. Taking the surrogate fracture risk as the 

response variable, PLS allowed to identify the main shape and BMD distribution attributes 

simultaneously relevant to the surrogate fracture risk too.  

PLS theory and its implementation are extensively detailed in section 4 of the Supplementary 

Material.  

Statistical Shape Model 

The statistical shape analysis was built up on patient-specific moment vectors 𝜷𝑖, encompassing the 

proximal femur anatomical attributes of the 𝑖𝑡ℎ subject (Fig. 1). Prior to the SSMs construction, vectors 

𝜷𝑖 were used to build up the moment vectors matrix 𝑿𝛽 (Fig. 2a), on which PCA and PLS were 

implemented. PCA was performed to identify the main geometrical attributes observed in the cohort, 

and allowed the extraction of the deformation modes together with their respective variance [16] and 

corresponding shape principal components. Determined as projection of the original moment vectors 

matrix on the 𝑖𝑡ℎ PCA mode, principal components here describe the extent of the deformation the 

template undergoes along the 𝑖𝑡ℎ direction to match each subject’s shape. The principal components 

give therefore a quantitative representation of the subject-specific shape attributes encompassed in 

each mode. 

Subsequently, in order to identify fracture-prone proximal femur morphological attributes, PLS was 

applied to the moment vectors matrix 𝑿𝛽, taking the centred FS vector (FS = FS
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

- FS̅̅ ̅̅ ) as the 

response variable. The PLS shape modes were identified, automatically ordered by decreasing 

variance and correlation with respect to the response variable. Analogous to PCA, the 𝑖𝑡ℎ PLS 

components delineate the 𝑖𝑡ℎ PLS mode contribution to the patient-specific shape. 
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Fig. 2. Statistical analysis pipeline. As delineated in the lower portion of Fig. 1, the statistical shape and intensity 

analyses, here illustrated in greater detail, were based on the patient-specific moment vectors and nodal BMD 

values respectively. (a) Statistical Shape Analysis. The SSMs were developed using the N x 2k moment 

vectors matrix 𝑿𝛽 as input, with N being the total number of patients and k dependent on the number of control 

points. With PCA, the main deformation modes were identified, while with PLS, which took the FS array as an 

additional input too, the main deformation modes relevant to the FS were found. By projecting the original data 

matrix on the identified modes, the principal (bi) and PLS (ti) shape components for each ith mode (i = 1,…N-1) 

could be computed. (b) Statistical Intensity Analysis. The SIMs were developed using the N x n BMD matrix 

G, with N the total number of patients and n the number of mesh nodes on which the BMD was extracted. With 

PCA, the main intensity modes were identified, while with PLS, which took the FS array as an additional input, 

the main intensity modes relevant to the FS were found. By projecting the original data matrix on the identified 

modes, the principal (bi) and PLS (ti) intensity components for each ith mode (i = 1,…N-1) could be computed. 

Statistical Intensity Model 

Despite providing information regarding the shape, the SSM approach does not account for the 

density distribution within bones, the other crucial determinant of bone strength. To overcome this 

limitation, here a SIM approach is proposed, which requires local density information as well as a 

consistent spatial correspondence of the locations where the BMD is sampled in input patients. With 
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this aim, recalling Eq. 1, moment vectors 𝜷 were used to morph the meshed template (1 mm size 

triangular elements) towards each patient (Fig. 1). More in detail, moment vectors 𝜷 were used to 

morph a unique mesh onto each patient-specific DXA, so that the BMD value associated to each image 

pixel was assigned to the corresponding node located in the pixel. Therefore, BMD values were 

consistently sampled over the DXA images, and subsequently gathered in arrays 𝒈. The patient-

specific BMD arrays 𝒈 were organized in a N × n matrix 𝑮 (Fig. 2b), N being the number of observations 

(i.e. the patients), and n the number of variables, i.e. the total number of nodes. No density values 

normalization procedure [18] was performed, since the intensity values were actually BMD values 

instead of grey values.  

After centring the matrix with respect to the average BMD values array, PCA was performed on the 

matrix 𝑮 according to the method described elsewhere [16]. PCA intensity modes and their 

corresponding variance were obtained, together with the principal intensity components, describing the 

contribution of each principal mode of variation of BMD to the patient-specific 𝑖𝑡ℎ BMD distribution. 

Subsequently, PLS was performed on the patient-specific BMD vectors matrix 𝑮 taking the FS as 

the response variable, aiming to assess the BMD distribution attributes mostly related to the surrogate 

fracture risk. Hence, PLS intensity modes and the corresponding intensity PLS components (Fig. 2b) 

were identified.  

Combined Statistical Shape-Intensity Model 

With the purpose of unifying the previously presented independent statistical shape and intensity 

models, to make the representation more compact and complete, a so called Statistical Shape-Intensity 

Model (SSIM) [34] was built. This allowed to account for the shape and density distribution together. 

The procedure is based on the application of PCA and PLS on PCA- and PLS-based outcomes 

previously obtained considering shape and intensity features separately (Fig. 1). 

In the case of PCA, the shape and intensity principal components were gathered in two matrices 𝑩𝑆 

and 𝑩𝐺, respectively, containing the principal components as columns (Fig. 2a). The two matrices 𝑩𝑆 

and 𝑩𝐺 were concatenated into the matrix 𝑩: 
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𝑩 = (
𝑾𝑃𝐶𝐴𝑩𝑆

𝑩𝐺
) = (

𝑾𝑃𝐶𝐴𝚽𝑆′
𝑿𝛽

′

𝚽𝐺′
𝑮′

).  (2) 

where 𝑾𝑃𝐶𝐴 is a weighting factor matrix, expressed as: 

𝑾𝑃𝐶𝐴 = 𝑟 𝑰,  (3) 

where 𝑟 is the ratio between the total variance in only intensity and the total variance in only shape 

PCA modes [34], and 𝑰 is the identity matrix. The matrices 𝚽𝑆 and 𝚽𝐺 gather the only shape and only 

intensity modes, respectively, as previously extracted. By applying PCA onto the concatenated matrix 

𝑩, combined shape-intensity PCA modes were identified. Subsequently, by projection of the matrix 𝑩 

onto the identified PCA subspace, the patient-specific combined shape-intensity principal components 

were obtained.  

Analogously, in the PLS case, a concatenated shape and intensity PLS components matrix 𝑻 was 

built up, based upon the only shape and only intensity PLS components previously computed as 

follows: 

𝑻 = (
𝑾𝑃𝐿𝑆 𝐏𝑆′

𝑿𝛽
′

𝐏𝐺′
𝑮′

),  (4) 

where 𝑾𝑃𝐿𝑆 is the weighting factor matrix with the same expression as 𝑾𝑃𝐶𝐴, but declined to PLS, and 

𝐏𝑆 and 𝐏𝐺 the matrices containing the only shape and only intensity PLS modes as previously 

identified. By applying PLS onto the concatenated matrix 𝑻, combined shape-intensity PLS modes 

were identified. Subsequently, by projection of the matrix 𝑻 onto the identified PLS subspace, the 

patient-specific combined shape-intensity PLS components were obtained.  

RESULTS 

Statistical Shape Model  

A total number of 25 moment vectors 𝜷 (𝒙, 𝒚 pairs) per patient were obtained, and a 27×50 moment 

vectors matrix 𝑿𝛽 was built. One of the patients was indeed excluded from the whole statistical 

modelling since the shape reconstruction error was 4 times higher than the average error.  
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The first 7 PCA modes, able to explain almost the entire shape variance, can be visualized in Fig. 

S7 of the Supplementary Material. Mode 1, which embodies the most variable features within the 

considered cohort, can be related to the size. In addition, mode 1 and mode 2, are significantly 

correlated with the Hip Axis Length (HAL) (Table 1), thus suggesting that HAL is a highly variable 

feature in the observed cohort, the first two modes together gathering the 80% of the total shape 

variance. Interestingly, none of the 7 PCA modes was found to be correlated with the FS. The herein 

mentioned HSA-related parameters and regions are graphically displayed in Fig. S6 of the 

Supplementary Material.  

Table 1. Main significant correlations found between the SSMs modes and DXA-related parameters.  

HAL: Hip Axis length; NSA: Neck-Shaft Angle; nn: narrow-neck; it: intertrochanter. 

SSM: PCA SSM: PLS 

Variable R p Variable R p 

mode1 mode 3 

HAL -0.54 0.0035 HAL 0.48 0.0107 

mode 2 NSA -0.56 0.0026 

HAL 0.66 0.0002 nn Width 0.45 0.02 

it Width 0.42 0.0305 it Width 0.47 0.01 

   FS 0.36 0.049 
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Fig. 3. The cumulative percentage of variance explained by the PLS modes (left) and the first 6 PLS shape 

modes shown as deformations of the template along each mode between −3√𝜎2, 3√𝜎2, 𝜎2 being the 𝑚𝑡ℎ PLS 

mode variance (right). The first 6 modes disclose 93% of the shape and 54.6% of the FS variance. By 

construction, each mode moves towards +3𝜎 when the FS increases. Hence, the −3𝜎 deformation mode is here 

evidence of an increased risk of fracture. On the whole, 11 modes describe 98.16% of the variability in shape 

and 78.27% of the variability in the FS. In order to achieve 95% of the FS variability explained through shape-

based modes, 15 modes are necessary (explaining 99.2% of the shape variance). 

With a deep interest in the anatomical features most meaningful to the surrogate fracture risk, PLS 

was performed employing the FS risk indicator as the external response variable. It emerged that a 

total of 11 PLS modes explain at least 75% of the variance observed in the FS (Fig. 3). Fig. 3 presents 

the first 6 PLS modes. It can be noticed that although mode 1 explains most of the shape variance, the 

mode explaining the majority of the variability in the FS is mode 3 (Table 1), which combines alterations 

in the intertrochanter and neck width, as well as in the length and inclination of the neck, as witnessed 

by the identified significant correlations with the related HSA-derived parameters (Table 1). The 

analysis of PLS shape mode 3 vs. FS risk predictor is presented in Fig. 4a. In conjunction with the 

inconsistently explained shape and FS variability by the first PLS shape modes shown in Fig. 3, it may 

advocate a limited role of the femur shape in explaining the variations observed in the FS. 
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Fig. 4. The PLS components stratification performances. (a) The third PLS shape component vs. the FS (R = 

0.36, p = 0.049); (b) the first PLS intensity component vs. FS risk predictor. (R = 0.76, p < 0.0001). 

Statistical Intensity Model  

A total of 21 PCA modes were necessary to explain at least 95% of the density distribution variability 

(Fig. S8), and the first 8 PCA intensity modes are displayed in Fig. S8 of the Supplementary Material. 

The first PCA intensity mode, which highlights an overall variation in the BMD within the whole proximal 

femur, was (as expected) significantly correlated with the T-score (total femur) and BMD, but also with 

Buckling-Ratio and Cross-Sectional Moment of Inertia [13,35], confirming the tight link of these 

quantities with the intensity distribution on which their computation relies on (Table 2). At the same 

time, the first PCA intensity mode was also inversely correlated with FS (Table 2), suggesting that the 

material properties of the femur may play a crucial role in the context of a fracture. PCA intensity mode 

2 highlights a decreased BMD in the trochanteric fossa region, which also comes with a thicker cortex 

layer medially in the femur distal portion (Fig. S8, Supplementary Material). Similarly, PCA intensity 

mode 3 is representative of a decreased BMD area in the greater trochanter region. Interestingly, PCA 

intensity modes 2 and 3 were both correlated with HAL (Table 2).  

As far as the PLS intensity modes are concerned, the first 4 modes, displayed in Fig. 5, describe 

97.71% of the FS variability, but only 51.71% of the intensity variability. Interestingly, the PLS first 

intensity modes turned out to be very similar to the corresponding PCA ones, highlighting again, beyond 

the variability in the distribution of BMD as a whole, the variations at the intertrochanteric fossa and 

greater trochanter. In analogy with the PCA intensity modes obtained outcome, the PLS intensity mode 

1 was markedly correlated with BMD, with the BMD distribution-based HSA-derived parameters (e.g. 
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T-score, narrow-neck BMD, narrow-neck Buckling-Ratio, intertrochanteric BMD), as well as with FS 

(Table 2, see also Fig. 4b). Furthermore, also the PLS intensity mode 2 resulted significantly correlated 

with FS, while an association emerged between PLS intensity mode 4 and HAL (Table 2). In Fig. 4b 

PLS intensity mode 1 vs. FS risk predictor is presented, which points out PLS intensity mode 1 superior 

role with respect to PLS shape mode 3. 

 

Fig. 5. Visualization of the first 4 PLS intensity modes. For each mode, the BMD distribution is determined letting 

the average BMD distribution vary between −3√𝜎2, 3√𝜎2, 𝜎2 referring to the PLS intensity mode variance. The 

−3𝜎 direction, associated to a decreased strength, is that at higher risk. BMD is expressed in g/cm2. The 

cumulative percentage of variance explained by the PLS intensity modes is also shown in the bottom-right side. 

Table 2. Main significant correlations found between the SIMs modes and DXA-related parameters. 

BR: Buckling Ratio; CSMI: Cross-Sectional Moment of Inertia; HAL: Hip Axis length; nn: narrow-neck; it: 

intertrochanter. 

SIM: PCA SIM: PLS  

Variable R p Variable R P 

mode 1 mode 1 

T-score −0.90 < 0.0001 T-score 0.92 < 0.0001 

BMD −0.94 < 0.0001 BMD 0.95 < 0.0001 

nn BMD −0.93 < 0.0001 nn BMD 0.93 < 0.0001 
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it BMD -0.82 < 0.0001 it BMD 0.8 < 0.0001 

nn BR 0.78 < 0.0001 nn BR −0.78 < 0.0001 

it BR  0.75 < 0.0001 it BR  −0.78 <0.0001 

nn CSMI  −0.55 0.0027 nn CSMI  0.56 0.0026 

it CSMI −0.48 0.011 it CSMI 0.45 0.0184 

FS −0.69 < 0.0001 FS 0.76 < 0.0001 

mode 2 mode 2 

HAL 0.42 0.032 FS 0.48 0.01 

mode 3 mode 4 

HAL −0.61 < 0.001 HAL −0.46 0.02 

 

Combined Statistical Shape-Intensity Model  

A total of 18 PCA SSIM modes explained the 95% of the combined intensity and shape variance, 

the first 6 of them  accounting for the 75% of it (Fig. S9 of the Supplementary Material). Among them, 

only the second PCA SSIM mode was significantly correlated to FS. Analogous to the first PCA intensity 

mode, the second PCA SSIM mode carried the majority of the intensity-related information, strongly 

correlated to the T-score and BMD (Table 3).  

As for the PLS-based analysis the first three PLS SSIM modes explained 96.72% of FS variance 

and 56.75% of the combined intensity and shape variability (Fig. 6), with the first two PLS SSIM modes 

accounting for the 83% of the FS variance. It emerged from the analysis that the first two PLS SSIM 

modes were both significantly correlated with the FS (Table 3). 

Table 3. Main significant correlations found between the SSIMs modes and DXA-related parameters. 

HAL: Hip Axis length; BR: Buckling Ratio; CSMI: Cross-Sectional Moment of Inertia; nn: narrow-neck; it: 

intertrochanter. 
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SSIM: PCA  SSIM: PLS 

Variable R p Variable R P 

mode 1 mode 1 

HAL -0.51 0.0061 T-score 0.84 < 0.0001 

mode 2 BMD 0.84 < 0.0001 

T-score 0.86 < 0.0001 nn BMD 0.79 < 0.0001 

BMD 0.92 < 0.0001 it BMD 0.61 < 0.001 

nn BMD 0.93 < 0.0001 nn BR -0.62 < 0.001 

it BMD 0.81 < 0.0001 it BR -0.66 < 0.0002 

nn BR -0.78 < 0.0001 nn CSMI 0.58 0.0016 

it BR -0.75 < 0.0001 FS 0.82 < 0.0001 

nn CSMI 0.52 0.0054 mode 2 

it CSMI 0.44 0.0215 it BMD 0.47 0.0128 

FS 0.66 < 0.0002 nn BR -0.40 0.0372 

   FS 0.40 0.037 
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Fig. 6. The first 3 combined shape-intensity PLS modes. The −3𝜎 direction, associated to a decreased 

strength, is that at higher risk. 𝜎 refers to each mode standard deviation. BMD is expressed in g/cm2. 

The PLS SSIM first components vs. FS are depicted in Fig. 7a, while Fig. 7b presents the PLS SSIM 

first components vs. T-score. By projecting the patient-specific moment vectors and BMD values on 

the previously identified first PLS combined mode, the shape-intensity components of two additional 

patients who had fractured in the same year of their DXA could be computed and are displayed as 

empty circles. Notably, a good stratification is achieved for the osteopenic patients, with the two 

fractured patients located in the higher risk region (the lower the first SSIM components, the lower the 

FS and therefore the higher the risk of fracture, see Fig. 7a). Beyond the fractured patient, also other 

osteopenic patients would be judged at an increased risk of fracture.  
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Fig. 7. The PLS combined components stratification performances. (a) the first mode combined shape-intensity 

components vs the FS (R = 0.82, p < 0.0001). In all these cases, decreasing the weighting term of the respective 

modes, the FS decreases and thus the surrogate fracture risk increases. (b) Comparison between the first PLS 

combined shape-intensity mode shape components and T-score classification performances. The two fractured 

patients, whose shape-intensity components have been determined a posteriori based on the previously 

determined PLS space, are represented with empty circles. 

DISCUSSION 

In this study, a statistical modelling framework based on proximal femur geometric and densitometric 

data as obtained from DXA is presented. The main aim of this study was to test the effectiveness of a 

combined statistical framework (1) for the assessment of the hip risk of fracture, fostering its adoption 

in the context of the proximal femur fracture risk prediction, and (2) more in general, for investigating 

the role that geometry and BMD play in determining proximal femur fracture.  

The rationale at the basis of the proposed combined statistical approach is in the fact that: (1) in 

contrast to the discrete and cross-correlated geometric attributes representation given by the HSA-

derived parameters, statistical shape modelling allows to capture the global geometric heterogeneity 

in the cohort; (2) geometry attributes and intensity features dependence on bone tissue adaptation 

process [36] prompts the need to account for them together. 

Technically, the application of PCA highlighted the anatomical attributes and densitometric features 

disclosing most of the variability in the cohort. When accounting for the main anatomical attributes 

alone, no significant links to the FS emerged. This is consistent with the fact that PCA, per se, can 
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identify features suitable for representing information, though not necessarily optimal for classification 

purposes. From this perspective, when only the intensity distribution was considered, the first PCA 

mode turned out to be negatively correlated with FS (R = −0.69, p < 0.0001), pointing out a significant 

link between BMD distribution and the surrogate marker of fracture risk, ultimately suggesting that 

density might be able to explain the majority of the surrogate fracture risk variance. Moreover, the 

considerable number of PCA intensity modes necessary to disclose most of the intensity variability (21 

PCA modes explain 95% of the BMD distribution variability) suggests more complex inter-variability 

patterns in the BMD distribution, compared to geometry.  

In this light, unifying shape and intensity in a combined PCA-based SSIM, the combined mode 2 

emerged as strongly associated with BMD variability (corroborated by its strong correlation with the T-

score and BMD, as shown in Table 3), and explained most of the FS variability. The first PCA-based 

combined mode highlighted mainly the variability in femur shape, while carrying much less BMD 

variation. Nonetheless, in spite of the prevalent BMD role, the PCA-based combined second mode also 

encompassed changes in the femoral neck angle, width and length (Fig. S9). These findings agree 

with previous studies accomplished developing statistical shape and intensity individual modes in a 

retrospective cohort [21]. 

The dimensionality reduction obtained applying a PLS-based strategy highlighted that shape modes 

alone were moderately effective in explaining FS variability: the PLS-based shape first mode, alone 

able to describe more the 50% of the total shape variance, covered only a very small percentage of 

the FS variability (4.12%, Fig. 3); a total of 6 PLS-based shape modes, capturing more than 90% of 

the shape variance, were required to achieve a 50% explanation of FS variance. The PLS-based shape 

third mode was the one explaining the largest portion of FS variance (13%) combining, from a 

morphological perspective, variability in the neck inclination and length with variability in the 

intertrochanteric and shaft width.  

Focusing on PLS-based intensity analysis, shown in Fig. 5, a situation which appears reversed if 

compared to the PLS-based shape analysis is visible: only a few modes, although able to disclose only 

about 50% of the BMD distribution variability, explain a considerable percentage of the FS variability 
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(the first 4 modes explain 97.71% of the FS variability, but only 51.71% of the intensity variability). This 

appears as evidence of a pivotal role played by the material properties against the FS, suggesting a 

secondary role for the shape. It is therefore not surprising that the main PLS-based intensity modes 

appear markedly similar to PCA-based ones (given that the intensity variability in itself was already 

tightly related to that of the FS).  

The PLS-based combined model yielded interesting results. First of all, the PLS-based combined 

shape-intensity modes were effective in the stratification of the patients within the three T-score 

categories (osteoporosis: T-score<−2.5; osteopenia: −2.5<T-score<−1; non-osteoporosis: T-

score>−1), with the two fractured osteopenic patients reasonably located at high risk (Fig. 7b). On top 

of that, the combination of shape and intensity yielded an improvement in the proportion of FS variance 

explained with respect to the intensity alone. Looking at Fig. 7a indeed, the improved shape-intensity 

relation with the FS is visible: the first PLS-based intensity mode explained 57.18% of the FS variability 

(Fig. 4b), unquestionably better than the third shape mode (Fig. 4a). Nevertheless, the first PLS-based 

shape-intensity mode explained the 66.9% of FS variability (Fig. 7a). Although intensity appeared 

predominant in explaining most of the estimated FS and correlated to the most meaningful shape 

features, the inclusion of the PLS deformation modes still led to a marked improvement in risk 

prediction.  

This study presents limitations that may weaken the current findings. A possible limitation could be 

represented by the limited number of patients involved in the study. Dealing with the construction of 

statistical models, we acknowledge that the outcome of this study would have undoubtedly benefited 

from a larger cohort, which might have disclosed features here not accounted for. Moreover, the 

effectiveness of combined statistical model was tested adopting a surrogate indicator of the risk of 

fracture, FS, obtained from patient-specific FE simulations. This choice was dictated by the lack of 

follow up in the analysed cohort. In spite of the enclosed uncertainty associated with this judgement 

call, the use made of FS allowed to relatively estimate a patient-specific risk level and thus to obtain, 

from a relative intra-cohort perspective, reasonable results. Finally, it must be recalled that using PLS 

as a basis of representation does not necessarily assures orthogonality, and therefore independence 
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of modes. However, using the combined statistical framework based on PLS has allowed a further 

compression of the basis of representation, allowing shape-intensity similarities and differences to 

emerge in the dataset. This is confirmed by the fact that the combined PLS-based statistical framework 

ultimately focused on one only mode. 

Despite the afore-mentioned limitations, the herein presented combined statistical modelling 

approach  appears extremely encouraging from the perspective of the assessment of the risk of fracture 

of the proximal femur. Once the PLS-based combined shape-intensity space is built based on a training 

set, any new patient could be simply projected on this space in order to assess the patient-specific 

shape-intensity component, one unique number per mode gathering shape and BMD information 

together. Interestingly, the information required by this procedure would be currently attainable in the 

clinical practice. This would require, of course, a larger training set. As repeatedly claimed, the 

statistical framework is here built with reference to a surrogate marker of fracture risk, lacking 

retrospective information about the analysed cohort. However, the illustrated procedure has proved 

promising and attractive, with the potential to accomplish diagnostic improvement, and could be easily 

adopted on a larger cohort with available fracture status information. 

In conclusion, despite other studies have explored the use of DXA-based statistical shape and 

intensity models retrospectively, aiming to achieve through the adoption of PCA an improved 

osteoporotic fracture risk prediction [21,37,38], the interaction and inter-dependency between shape 

and density rarely investigated. Here, a combined shape-intensity PLS-based statistical model has 

demonstrated its potential in assessing the hip fracture risk, with findings supporting the hypothesis 

that the interplay between shape and BMD distribution should be explored more in depth, given the 

profound and complex interrelation existing between the shape and the BMD distribution in a living and 

continuously loaded tissue [36]. 
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