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The incidence of periprosthetic fractures has rapidly increased in the last two decades

and has been the cause of a large number of revision surgeries and permanent physical

disability for many patients, as well as a significant socioeconomic burden for many

nations. This research deals with a periprosthetic femur fracture real event, occurred

following a total hip arthroplasty and treated with one of the most widespread internal

fixation methods: the implant of a periprosthetic femur plate system. A Finite Element

analysis was performed to investigate the implanted femur plate break after a short

follow-up and to understand the plate break causes. Such events are currently object

of forensic debate as more and more often hospitals, surgeons, and medical device

manufacturers are denounced by patients to whom similar events occur. In this work,

different load situations acting on the femur during daily and incidental activities were

simulated, in order to validate the correct behavior of the plate, according to the intended

use recommended by the manufacturer. The analysis demonstrates that the plate failure

can occur in situations of unconventional loading such as that caused by stumbling and

in presence of incomplete bone healing.

Keywords: periprosthetic fractures, FE analysis, fall loads, orthopedic plates, fractures types

INTRODUCTION

Periprosthetic fractures (PF) are bone accidents associated with an orthopedic implant, whether
a replacement device or an internal fixation device. In the last 20 years, due to the growth in the
percentage of elderly, there was an increase in the implanted hip prostheses and, consequently,
in the rate of total hip arthroplasty revisions. The most common post-operative PF localization
is the femur, with a higher incidence associated with total hip arthroplasty (THA) with respect
those related to total knee arthroplasty (TKA) (Schwarzkopf et al., 2013; Capone et al., 2017).
The periprosthetic femoral fractures (PFF) can range from minor injuries, with a minimal effect
on the patient’s outcome, to being catastrophic and drastically reduce the patient’s quality of life.
Furthermore, the increase of the PF related to THA during the last two decades, has been a
worldwide considerable economic burden for the national economies. A reference is given in a
study conducted by Lyons et al. that analyses the mean cost of the treatment per patient, ranging
from 14600.00e to 27000.00e (Lyons et al., 2018). The PFF can be classified into intraoperative or
post-operative: intraoperative PFF occurs during the surgical procedure, while post-operative PFF
occurs averagely in the first decade from the intervention and ismore frequent in patients with prior
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total knee or revision total hip arthroplasty. The incidence of
post-operative PFF, according to the actual available literature,
range from 0.1 to 18% of the primary total hip arthroplasty
interventions and from 4 to 11% of the hip replacement ones
(Schwarzkopf et al., 2013; Capone et al., 2017).

The risk factors influencing the occurrence of PFF can be
related to patient condition, surgical intervention type and
quality, and to implant features. The PFF are often determined
by the mechanical properties adjustment of the implant-
surrounding bone stock and the preoperative mechanical quality
of the bone structure itself. For this reason patient’s advanced
age, osteoporosis, rheumatoid arthritis and other pathologic bone
conditions are significant risks factors for tardive PFF, as well as
implant loosening, implantation technique and type of implant.
Body mass index, according to the current state of the art, do not
affect the probability of PFF (Singh et al., 2013). Approximately,
in the 75% of the cases, these fractures are caused by a low energy
trauma, such as a low energy fall from sitting or standing (Katz
et al., 2014; Frenzel et al., 2015).

Many PFF classification systems has been proposed that
generally provide information about fracture location, fracture
pattern, implant stability, and potential for loosening. Of all the
proposed classification techniques, the Vancouver one (Duncan
and Masri, 1995) is the most widely applied. It includes
information about fracture location, pattern and implant
stability. It is reliable, simple and reproducible and permits to
identify a treatment strategy basing on easily identifiable fracture
features (Marsland and Mears, 2012; Schwarzkopf et al., 2013). It
classifies the PFF associated with total hip replacement in three
types, according to the fracture location: A (around trochanteric
region), B (the bed supporting or adjacent to the implant is
involved and represent∼80% of the cases), and C (the diaphyseal
area distal respect to the bed of the implant is involved). The
Vancouver classification includes some general indications about
the recommended treatment for each fracture type. Despite
this, many treatment options are described in literature and no
single treatment for each type of fracture has shown to be the
gold standard.

In detail, type C fractures, object of this study, is currently
treated with open reduction and internal fixation (ORIF)
techniques, with the eventual add of cortical strut allograft
depending on the bone stock quality (Schwarzkopf et al., 2013).
The ORIF strategy involves the implant of an external plate fixed
upstream and downstream to the fracture site bymeans of screws,
cables or other strategies, in order to promote bone reduction. In
particular situations, it can be useful to implant an intramedullary
device. The total surgical revision rate after PFF treatment is
around 16.5% and, in almost all cases, failure occurs in the first
year after surgery. Generally, failure reasons are plate loosening
or breaking and infection for fracture treated with ORIF and
stem subsidence, hip dislocation and infection for fracture treated
with revision surgery. The mortality rate during the firsts 30 days
after surgery is around 1.6% and the 1-year mortality rate is
around 13.2%. After 1 year usually this value decrease with time.
The highest mortality failure rate is associated with Vancouver
type B fractures with bad bone stock quality (Füchtmeier et al.,
2015).

The structural analysis of skeletal body elements and of
biomechanical systems consisting of a bone element coupled
to a prosthesis, an implant or a fracture synthesis device, can
be performed both numerically and experimentally. There are
indeed many examples of clinical problems which have moved
from a qualitative assessment to a quantitative evaluation thanks
to computational modeling (Vitale et al., 2008; Zanetti and
Bignardi, 2013; Zanetti et al., 2017, 2018a; Aldieri et al., 2018b;
Calì et al., 2018; Putzer et al., 2018; Terzini et al., 2018, 2019;
Putame et al., 2019), to the application of classical experimental
methods of structural analysis in the evaluation of the efficacy
of procedures or surgical techniques (Bresciano et al., 2005;
Menicucci et al., 2006; Zanetti and Audenino, 2010; Zanetti
et al., 2012a, 2018b; Boero Baroncelli et al., 2013; Manzella
et al., 2013, 2016; Bignardi et al., 2018), or to the evaluation of
the mechanical characteristics of the materials used at different
scales of investigation (Peluccio et al., 2007; Bignardi et al.,
2010; Zanetti et al., 2012b; Terzini et al., 2016a,b; Aldieri et al.,
2018a). Computational modeling, more than experimental one,
finds natural application in forensic practice, as samples are often
unavailable for experimental investigations. In this framework,
it can be fundamental to determine whether an osteosynthesis
medical device break is the consequence of an unconventional
loading or of an error in designing or manufacturing the device.
A methodology for assessing the causes of a given scenario is
the use of Finite Element (FE) analysis. In the biomechanical
evaluation of osteosynthesis medical devices, many applications
can be found in the literature (Dubov et al., 2011; Noor et al.,
2013), but to the authors’ knowledge this is the first investigation
aimed at evaluating the causes of a real failure event after a
re-intervention following PFF. Such events are currently object
of forensic debate as more and more often hospitals, surgeons,
and medical device manufacturers are denounced by patients to
whom similar events occur.

This study aims to quantitatively analyse, by means of a FE
analysis, the possible causes of a real case of femoral plate break,
implanted following a PFF. Different load conditions acting on
the femur during daily and incidental activities were simulated,
in order to validate the correct behavior of the plate, according to
the intended use recommended by the manufacturer.

MATERIALS AND METHODS

Case Description
A patient (age range 70–80 years) with a total right hip
arthroplasty (THA), experienced, according to Vancouver
classification, a type C periprosthetic fracture (Duncan and
Masri, 1995) located in the distal femur; the fracture shape was
spiroid and the bone stock was of good quality. Informed consent
regarding the study of the clinical case and the publication of
the radiographic images related to the follow-up is available.
The reduction of the fracture was performed by means of a
classical model of distal femoral plate. The surgeon chose to use a
cerclage wire to secure to the bone the proximal region of the
plate. All the screws are fixed in a bi-cortical way, except for
the three proximal ones that are mono-cortical in order to avoid
the contact with the prosthesis stem. An interfragmentary screw,
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FIGURE 1 | Anteroposterior (Left) and lateral (Right) x-ray images of the

periprosthetic fracture.

crossing the fracture rime, was inserted. Diameters and lengths
of plate screws are known. Materials constituting plate and plate
screws are known while the material constituting the cerclage
wire and the interfragmentary screw, as well as the model of the
implanted prosthesis, are unknown.

The x-ray images of the femoral fracture are shown in
Figure 1, while Figure 2 shows the x-ray images after the plate
implant. After 3 months the plate suffered of catastrophic break
in the area where the healing bone was present, accompanied by
a further femoral fracture characterized by a profile similar to
the previous one (Figure 3). The context and reason of the break
are unknown.

The patient had no history of bone disease at the time of the
accident, and the patient weight is unknown.

Numerical Model
Aiming to analyse the structural behavior of the femur plate
in the studied condition, and to identify the possible cause of
its break, a 3D model replicating the configuration previously
described was implemented in Solidworks (Dassault Systèmes,
France) (Figure 4). A standard geometric model of an adult
right femur containing only the cortical region geometry was
used (Zanetti and Bignardi, 2009): the epiphyses were filled with
cortical bone while the diaphysis was considered empty. These
assumptions have negligible influence on the stresses on the plate,

FIGURE 2 | Anteroposterior (Left) and lateral (Right) x-ray images of the

reduced periprosthetic fracture after the plate implant.

the main object of investigation of the present study (Papini et al.,
2007). Using the software ImageJ (National Institutes of Health,
USA) some reference measures were taken on the x-ray images
in order to scale the standard femur model and adapt it to the
real anatomical case. To recreate the fracture profile, reference
points were identified on the x-ray images and reported on the
bone surface, so that the fracture shape could be reproduced. The
result is a fracture volume characterized by an average thickness
of 1 cm (Figure 5).

As there was no available information on the implanted
prosthesis, an available prosthetic stem model of appropriate size
was chosen. Prosthesis neck length and head diameter were then
modeled in Solidworks in order to respect the real joint center.

The femur plate implanted in the patient has 7 holes in the
condylar area and 11 along the diaphyseal one, and plate CAD
geometry was available. It was positioned relatively to the femur
according to the x-ray images. For the sake of clarity, the 18 plate
holes were numbered starting from the bottom and the zones
of the plate between each pair of the 11 diaphyseal holes were
numbered according to the distance from the bone fracture (–
in the proximal direction and + in the distal direction), which is
located at the 12th hole and extends downwards to the 10th hole
(Figure 5). Note that the real plate break occurred at the 11th hole
between S2 and S3 zones, as visible in Figure 3. Plate screws and
bushings geometries were simplified to avoid the formation of
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FIGURE 3 | Anteroposterior (Left) and lateral (Right) x-ray images of the plate

break.

too small and distracting elements during meshing, and therefore
optimizing the computational time. In detail, too small filets and
chamfers were removed from the bushings, and the threaded
portion of the screws was replaced by a cylindrical geometry
with a diameter equal to the screw core one. Screws length were
singled out through measurements on the x-ray images. As the
model of the implanted interfragmentary screw is unknown, a
simplified screw geometric model was used, and the material was
assumed to be the same of the plate screws. The presence of the
cerclage wire, located in the area comprised between the last two
proximal plate holes, was neglected as no screw failure in that
region was detected.

The so assembled model, composed of the fractured femur,
the prosthetic stem and head, the bushings, the plate screws, the
interfragmentary screw, and the femur plate, was imported into
the FE pre-processor software Hypermesh (Altair, USA). Table 1
lists the material properties assigned to each volume. A linear
elastic behavior was assumed for each component, and cortical
bone mechanical characteristics, considered homogeneous and
isotropic, were chosen according to Morgan et al. (2018).
Regarding the fracture bone callus, the mechanical properties
are dependent on the specific situation. Bone tissue, in fact,
has a remarkable ability for self-repair and regeneration after
an injury, and is able to completely restore its mechanical

FIGURE 4 | Resulting assembled geometrical model (Left) compared with the

corresponding x-ray image (Right).

function. The time needed for bone regeneration is patient
specific, and early controlled by intrinsic genetic factors.
Examining the research conducted by Manjubala et al. (2009)
regarding the evaluation of the nanoindentation modulus of
the callus formed during the bone healing, and considering
the uncertainty regarding the actual patient bone reduction,
different material properties were assigned to the fracture
volume. These values were selected according to a linear
proportionality factors of bone reduction starting from the
maximum value of Young’s modulus chosen for the healthy
cortical bone (100% bone reduction factor). Considering that
the fracture occurred after 3 months from the plate implant,
an elastic modulus value equal to half of the healthy bone one
was considered representative of the situation. Therefore, setting
a 50% bone reduction factor as the maximum elastic modulus
assignable to the fracture bone callus, decreasing percentages
of 50, 20, 10, and 2% were selected (Table 2). The Poisson’s
ratio was considered to be equal to that of healthy bone in all
the situations.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 June 2020 | Volume 8 | Article 619

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Terzini et al. Periprosthetic Fractures and Their Reduction

FIGURE 5 | Numbering assigned to holes and zones of the plate (Left); lateral

(Middle); and postero-anterior (Right) views of plate and bone callus volume.

The longitudinal extension of the fracture is pointed out, as well as the fracture

bone callus average thickness.

TABLE 1 | Materials assigned to the model components and mechanical

characteristics assumed (Srivastav, 2011).

Component Material Young’s modulus

[MPa]

Poisson’s ratio

Prosthetic head,

Prosthetic stem, Plate

Stainless steel

316LVM

210000.0 0.3

Femur Cortical bone 18160.0 0.3

Fractured zone Bone callus Variable

(see Table 2)

0.3

Plate bushings, Plate

screws, Single screw

Ti6Al4V 110000.0 0.3

According to Viceconti et al. (1998), Polgar et al. (2001), and
Ramos and Simões (2006), a tetrahedral mesh of 388652 elements
with a 2mm average edge length was created (Figure 6).

Given the aim of the research, in order to simplify the
FE model, a congruent mesh between each component was
preferred, thus generating a tie contact in the following

TABLE 2 | Mechanical properties of bone callus for different assumed bone

reduction factors.

Bone reduction factor [%] Young’s modulus [MPa]

50 9080.0

20 3632.0

10 1816.0

2 363.2

FIGURE 6 | Lateral (Left) and anteroposterior (Right) views of the obtained

mesh.

component pairs: bone-screw, bone-prosthesis, screw-bushing,
and bushing-plate. The bone-plate contact was neglected after
verifying that no contact occurred between the two components
under all load conditions.

To test the structural behavior of the plate, both daily and
incidental load conditions were simulated. Indeed, the evaluation
of stress and strain distributions in the plate under several
conditions, enable to identify the load configuration able to
overstress the plate beyond the breaking limit. In detail, three
load configurations were implemented (Figure 7): (1) walking
(according to Bergmann et al., 2001), (2) stumbling (according
to Bergmann et al., 2004), and (3) lateral falling (according
to Robinovitch and Hayes, 1991; Kheirollahi and Luo, 2015;
Aldieri et al., 2018b). In the walking configuration and in the
stumbling configuration the femur base was constrained along all
the degrees of freedom, while in the falling configuration it was
constrained with a hinge element that permits the only rotation
along the y axis.
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FIGURE 7 | Applied load conditions: walking (Left) (Bergmann et al., 2001), stumbling (Middle) (Bergmann et al., 2004), and falling (Right) (Aldieri et al., 2018b).

TABLE 3 | Simulated load conditions: walking (Bergmann et al., 2001), stumbling

(Bergmann et al., 2004), and lateral falling (Aldieri et al., 2018b).

Load condition Type of force Force component [N]

X Y Z

Walking FJ −2141.7 494.5 −297.1

Stumbling FS −6479.1 1495.9 −898.8

Lateral Falling FLF 0.0 −7688.6 0.0

FJ is the Joint force applied on the prosthesis head, FS is the force deriving from Stumbling

applied on the prosthesis head and FLF is the force deriving from the Lateral Falling applied

on the great trochanter.

In the walking configuration the instant of the walking cycle
in which the first of the two peaks of the contact force takes place
was considered. In his work, Bergmann et al. (2001), obtained
the contact force amplitude through experiments on four subjects
with instrumented hip, and expressed it as a percentage of body
weight. Here, the three force components were obtained based
on a supposed 95 kg patient body mass. The same procedure was
followed for the stumbling configuration.

In the falling configuration the prosthetic head was connected
to the ground through a spring element with a 10,000 N/mm

stiffness acting along the x-axis. The spring simulates the stiffness
of the soft tissues that surround the hip and damp the impact
that occurs during the fall. Also in this case, the body mass of
the patient was supposed equal to 95 kg, while the patient height
was supposed equal to 1.70m. Patient mass and height were
overestimated in order to verify the resistance of the plate in even
worse conditions than the real ones.

Loads applied in the three simulated conditions are listed in
Table 3. It should be noted that loads directions were implanted
according with the examined literature, and the used coordinate
systems are shown in Figure 7.

A total of 12 models were simulated, combining four
decreasing bone qualities of the fracture bone callus and three
load configurations. The numerical analyses were performed
by means of the Abaqus/Standard solver of Abaqus (Dassault
Systèmes, France).

RESULTS

For each of the load configurations considered, Von Mises
stress in the femur plate and its peak value were analyzed.
As regards the walking load configuration Von Mises stresses
distribution within the plate varies according to the level of
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FIGURE 8 | Von Mises stresses distribution (MPa) in the plate for the models with bone callus Young’s modulus 363.2 and 9080.0 MPa resulting from (A) the walking

condition, (B) the stumbling condition, and (C) the lateral falling condition.

healing achieved. For lower Young’s modulus values of the
fracture bone callus, the lateral surfaces belonging to the S2
zone are more stressed. As the bone callus stiffness increases, the
highest stresses move downwards, affecting the lateral surfaces
of the S4 and S5 zones (Figure 8A), while the Von Mises
stress values on the femur plate surface in the S2 zone reduce,
with initially precipitous progression as visible in Figure 9A.
In the S2 zone, the plate stress is distributed evenly between
the anterior and the posterior portions, with a slight prevalence
of the posterior area in the presence of lowest bone callus
stiffness. Conversely, the S5 zone is characterized by a slightly
decreasing trend both posteriorly and anteriorly, but with a
clear predominance of the posterior values compared to the
anterior ones.

In the less consolidated fracture situations, the applied load
is transferred to the lower constraint through the femur plate,
characterized by a Young’s modulus three orders of magnitude
higher than the fracture bone callus one. In the femur plate,
indeed, the zones reaching higher Von Mises stresses are located
between the 10th and the 13th holes, corresponding to the
fracture region. As the level of healing increases, the higher stress
region moves around S4 and S5 zones, where the bone cortical
thickness is minimal. Here the bending moment given by the
applied load is maximum, due to the greater distance from the
point of application of the load.

However, in the walking load configuration, the maximum
stress value reached in the most critical condition (i.e., the case
of a bone callus Young’s modulus equal to 363.2 MPa) is 248.0
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FIGURE 9 | Von Mises maximum stresses (MPa) varying the bone callus Young’s modulus resulting from (A) the walking load condition in the S2 and S5 zones

(posterior and anterior areas); (B) the stumbling load condition, in the S2 and S3 zones (posterior and anterior areas). Results regarding a bone callus Young’s

modulus equal to 726.4 MPa are highlighted in red. (C) The lateral falling load condition.

FIGURE 10 | Von Mises stresses (MPa) in the cross-section corresponding to the 11th hole, were the plate break occurred. Results for the three loading condition are

shown for the models with bone callus Young’s modulus 363.2 and 9080.0 MPa.

MPa, which settles far below the plate yield point (about 700.0
MPa for stainless steel 316LVM; Srivastav, 2011).

The force acting on the femur during stumbling from standing
position have the same direction as that during walking, but its
module is amplified. In this case the zones where Von Mises
stress is higher are S2 and S3, and in these zones the femur plate
yield point is exceeded for lower values of the fracture bone callus
Young’s modulus (Figures 8B, 9B). This is interesting because,
as previously stated, the real plate break occurred at the 11th
hole between S2 and S3 zones. For this reason, an additional
model was considered to better understand which level of bone
healing would correspond to the plate break. Here, the bone
callus Young’smodulus was set equal to 726.4MPa after few trials,
corresponding to a bone reduction factor of 4%, and Von Mises
stress results are represented in red in Figure 9B. The two stress
distributions around the hole section where the actual break
occurred show how the fracture bone callus Young’s modulus
influences the femur plate stress state (Figure 8B): indeed, as the
fracture bone callus Young’s modulus decreases, the higher stress

zone moves closer to the 11th hole. The consequent yield causes
the reduction of the plate section and the subsequent break. Being
the most representative or the real break event, for the stumbling
load condition a further model was considered in which a body
mass equal to 75 kg, representative with high probability of the
real situation, was addressed and the applied load was reduced
accordingly. The obtained Von Mises stresses distribution was
similar to the previous one, but as expected the stress peaks were
lower and reached the yield stress value for a fracture bone callus
Young’s modulus equal to 300.0 MPa.

Also regarding the falling load configuration, the stress
distribution within the femur plate varies according to the level
of bone callus. The highest stresses were found, in any case, in the
upper posterior side of the plate. These stresses grow and move
downwards when the bone callus Young’s modulus decreases
(Figures 8C, 9C). For a bone callus with Young’s modulus equal
to 363.2 MPa, the maximum stress area covers the posterior side
of the 12th hole, but the reached values settled below the plate
yield stress value.
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FIGURE 11 | X-ray image taken after 2 months from the surgery. The

non-consolidation of the bone fracture is pointed out.

DISCUSSION

Comparing the fracture bone callus Young’s modulus and the
locations of the stress peaks to which the plate would be subjected
in the analyzed daily and incidental activities, it was concluded
that, with a good probability, the break of the femur plate
occurred due to the application of a load higher than 6,000N
and characterized by a predominant vertical component. In fact,
this load condition would cause a concentration of the stress
converging toward the 11th hole in correspondence of which the
plate broke (Figure 10). These assumptions are valid for bone
callus Young’s modulus below ∼1,500 MPa. This value is low
compared to the level of bone healing reachable after 3 months
from the surgery in optimal conditions. However, observing an
x-ray acquired 2 months after the fixation (Figure 11), it seems
that the fracture reduction was absent in the posterior area as
the line that splits the bone fracture surfaces is clearly visible.
Some of the possible causes could have beenmalalignment during
surgery, incorrect distribution of stress that does not allow bone
healing or pathologies that reduce the bone metabolism. The
value of the bone callus Young’s modulus that simulates at the
best the real situation was however not known. Despite this lack,

it was deduced that a combination of insufficient bone healing
and unexpected high load applied to the prosthesis head with a
predominant vertical component is the most probable cause of
the plate break occurrence. In particular, the research highlighted
how the femur plate implanted during surgery is able to support
the loads deriving from daily activities, such as walking, even
considering high body masses, as long as an adequate bone
healing is granted.

CONCLUSIONS

In this work a FE model reproducing a femur plate implant
after a PFF event was implemented in order to investigate the
actual load condition that may have led to the break of the
femur plate. Since both the fracture bone callus healing status
and the load condition that led to the femur plate break are
unknown, three load configurations (walking, stumbling, and
lateral falling) and four bone reduction factors (50, 20, 10, and
2%) were examined. Comparisons between the Von Mises stress
distribution and peaks localization allowed for the identification
of the most probable load condition which led to the femur plate
breaking. Indeed, the occurrence of a load higher than 6,000N
and characterized by a predominant vertical component causes
convergence of the peak stress toward the 11th hole, where the
femur plate actually broke. This led to the conclusion that the
cause of the event was not a bad design of the osteosynthesis
medical device, which has proven to well-perform under the
intended use declared by the manufacturer, but a combination
of insufficient bone healing and unexpected high load.
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