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Abstract. The numerical simulation of shock waves in supersonic 
ows is challenging because
of several instabilities which can a�ect the solution. Among them, the carbuncle phenomenon
can introduce nonphysical perturbations in captured shock waves. In the present work, a
hybrid numerical 
ux is proposed for the evaluation of the convective 
uxes that avoids car-
buncle and keeps high-accuracy on shocks and boundary layers. In particular, the proposed

ux is a combination between an upwind approximate Riemann problem solver and the Local
Lax-Friedrichs scheme. A simple strategy to mix the two 
uxes is proposed and tested in
the framework of a discontinuous Galerkin discretisation. The approach is investigated on
the subsonic 
ow in a channel, on the supersonic 
ow around a cylinder, on the supersonic

ow on a 
at plate and on the 
ow in a overexpanded rocket nozzle.

Keywords: hybrid 
ux; carbuncle; shock capturing; supersonic 
ow; discontinuous Galerkin

1. Introduction

The numerical simulation of supersonic 
ows represents a fundamental tool for the de-
sign of aerospace propulsion systems (rocket nozzles, transonic compressors and turbines
in air breathing engines) and re-entry space vehicles. The shock waves, which can be ob-
served in supersonic 
ows, introduce several numerical problems that increase the di�culty
of the simulation: order of accuracy reduction, convergence problems, instabilities. Among
the di�erent numerical instabilities which can be triggered by shock waves, the carbuncle
phenomenon is one of the most investigated. The carbuncle consists in the development of
nonphysical distortions in the structure of the shock wave. This instability, which is observed
in both 2D and 3D 
ows, can dramatically a�ect the numerical prediction of the bow shock
wave in front of a re-entry vehicle or the shape of the Mach disk in an over-expanded rocket
nozzle. The consequences of this numerical artefact can be quite important in several appli-
cations: for example, the maximum heat 
ux at which a blunt body is subjected is observed
in the stagnation point but the solution in this crucial point can be signi�cantly a�ected by
the carbuncle.
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The carbuncle instability a�ects the existing numerical 
uxes in di�erent ways. A compar-
ison of the behaviour of several numerical 
uxes was reported by Pandol� and D’Ambrosio
(2001). Some upwind 
uxes like the ones proposed by Osher and Solomon (1982), Pandol�
(1984) and Roe (1981) seem to be particularly prone to this instability. On the contrary,
there are some other classical 
uxes like the local Lax-Friedrichs or Rusanov (1962) 
ux,
the 
ux vector splitting of Van Leer (1997) or the AUSM+ Liou (1996) which are immune
or weakly a�ected from this problem. Often, the ability to avoid carbuncle is associated to
large numerical dissipation as can be observed by the local Lax-Friedrichs scheme. For this
reason, several e�orts for the development of new carbuncle-free methods, which introduce
low dissipation, have been done.
The mechanism behind the development of the carbuncle instability seems to be related to
the lack of numerical dissipation in the direction tangential to the shock wave as shown by
Pandol� and D’Ambrosio (2001). In order to �x this problem, rotated numerical 
uxes have
been proposed. In particular, Nishikawa and Kitamura (2008) proposed a rotated 
ux which
combines the Roe and the HLLC 
uxes in order to add more dissipation in the required direc-
tion: their approach requires to solve two di�erent Riemann problems along perpendicular
directions and to combine the obtained 
uxes. Jaisankar and Sheshadri (2013) proposed the
Directional Di�usion Regulator for some numerical solvers of hyperbolic conservation laws
with the purpose of maximise the dissipation of the numerical scheme only in the normal
direction to a probable discontinuity. Wang et al. (2016) developed a hybrid numerical 
ux
in which the Rusanov scheme is used near shock waves while the Roe 
ux is used in smooth
regions. Recently, Guo and Tao (2018) proposed a hybrid AUSM+-FVS 
ux which combines
the accuracy of the AUSM+ in boundary layers with the robustness of FVS in shock regions.
An alternative strategy was proposed by Hu and Yuan (2014): they introduced a hybrid 
ux
obtained by combining the HLLC and the FORCE scheme.
The present work describes a strategy which is similar in spirit to the approach of Hu and
Yuan (2014) but uses a simpler blending method. Furthermore, in the present work the
hybrid strategy will be applied by mixing the Flux Di�erence Splitting (FDS) approach (de-
�ned according to Pandol� (1984) or Osher and Solomon (1982)) and the local Lax-Friedrichs
or Rusanov (1962) 
ux. The obtained numerical 
ux will be used to approximate convec-
tive 
uxes in the framework of a discontinuous Galerkin discretisation. However, the same
numerical 
ux can be used in �nite volume discretisations. The behaviour of the proposed
method will be investigated in both viscous and inviscid supersonic 
ows.

2. Physical model

The test cases considered in this work are described by the 2D compressible Navier-
Stokes equations or by the 2D Euler equations.The compressible Navier-Stokes equations
are reported in the following:

@�
@t

+r � (�u) = 0 (1)
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@
@t

(�u) +r � (�uu) = �rP +r � � (2)

@E
@t

+r � (u(E + P )) = r � (� � u� q) (3)

where �, u, P , E, � , x and t are density, velocity, pressure, total energy per unit
volume, viscous stresses, spatial position and time, respectively. A 
uid with constant speci�c
heat ratio 
 and constant viscosity is considered. The following equation for the energy is
considered:

E =
P


 � 1
+

1
2
�u � u (4)

where 
 is the speci�c heat ratio.
The viscous stress tensor � is de�ned as:

�ij = �
��

@ui
@xj

+
@uj
@xi

�
�

2
3
@uk
@xk

�ij
�

(5)

where � is the dynamic viscosity which is hear assumed constant.
The 2D Navier-Stokes equations can be rewritten in compact form:

@u
@t

+r � F = 0 (6)

where u is the vector of conservative variables and F contains the 
uxes. The 
ow in the
nozzle studied in Section 6.3 will be assumed axisymmetric. The 2D axisymmetric Navier-
Stokes equations can be written as:

@(ru)
@t

+r � (rF ) = rs (7)

where r is the radial coordinate. As a consequence of the axisymmetric assumption, the
source term s = (0; 0; (p � ���)=r; 0)T is introduced. More details can be found in the work
of Bassi et al. (2011). The Euler equations are obtained from the set of Equations 1-3 by
neglecting the di�usive terms.

3. Numerical framework

The governing equations (Euler or Navier-Stokes equations) which describe the problems
considered in this work are discretised by means of the method of lines. The spatial discreti-
sation is performed by a second order accurate Discontinuous Galerkin (DG) method while
time integration is performed with the �rst order explicit Euler scheme. Since steady prob-
lems are considered in this work, the steady solution is obtained by marching in time. The
domain is discretised by unstructured grids with both triangular and quadrilateral elements
using the Gmsh software described by Geuzaine and Remacle (2009).
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The DG method is a 
exible approach which allows to manage complex geometry with arbi-
trary discretisation order. The basic idea behind this method is related to the introduction
of several degrees of freedom inside each element. In this way, the stencil of the discretisation
remains compact even when high order schemes are considered: this simpli�ed signi�cantly
the parallel implementation of the method or the management of hanging-nodes in the mesh
because only the �rst neighbour elements are required to update the solution. Several al-
ternatives methods have been proposed for compressible 
ows. Traditional ENO/WENO
�nite volume schemes by Liu et al. (1994) represent a very robust approach and they have
been successfully used in several problems. However, their implementation in the presence
of unstructured meshes is not trivial because of the large stencil. A comparison of several
recent methods for compressible 
ows can be found in the books related to the ADIGMA
and IDIHOM European projects, written by Kroll et al. (2010) and Kroll et al. (2015). The
reader can also �nd a quantitative comparison of the performances of several schemes in a
series of workshops devoted to high order methods, summarised by Wang et al. (2013).

The DG spatial discretisation is obtained by writing the governing equations in a vari-
ational form. The procedure is here described for the 2D Navier-Stokes equations but an
equivalent approach should be followed for the 2D axisymmetric equations. The spatial do-
main 
 can be discretised with a set of elements 
e. The solution inside each element is
described by introducing a local modal hierarchical basis. In particular a basis obtained by
the orthonormalisation of a set of monomials is chosen, following the approach of Bassi et al.
(2012): three degrees of freedom per elements (Ne = 3) are used in order to get a linear
reconstruction with second order accuracy. The modal basis adopted for this work is built in
the same way for all the elements and so the size of the basis is the same for both triangular
and quadrilateral elements. The discrete solution inside each element is then expressed in
terms of basis functions �i and degrees of freedom ~ui :

uh(x; t) =
NeX

i=1

~ui�i (8)

When the discrete solution is introduced into the conservative equation (Eq. 6) the residuals
Rh are obtained:

Rh =
@uh
@t

+r � F h (9)

The variational formulation is obtained by setting to zero the projection of the residuals with
respect to a generic function � which belongs to the space Vh spanned by the basis functions
�i:

Z


e

Rh�dxdy =
Z


e

@uh
@t

�dxdy +
Z


e

r � F h�dxdy = 0 8� 2 Vh (10)

Finally, integration by parts is used in order to put in evidence the 
uxes F̂ h across the
interfaces between elements:

Z


e

@uh
@t

�dxdy +
Z

@
e

(F̂ h � n)�ds�
Z


e

r�F hdxdy = 0 (11)
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where n is the outward-pointing unit normal vector and s is the element boundary curve.
Di�erent schemes are here considered for the computation of the convective part of the 
uxes:
the local Lax-Friedrichs or Rusanov (1962) 
ux, the Flux-Di�erence Splitting approach by
Osher and Solomon (1982), Pandol� (1984) or the hybrid 
ux proposed in this work. More
details on the di�erent schemes will be reported in the Section 5. Di�usive 
uxes are evalu-
ated by means of the Enhanced Stability Recovery method proposed by Ferrero et al. (2015).
The solution in the presence of shock waves is stabilised through a �ltering strategy following
Ferrero and Larocca (2016). The 
exibility of the scheme can be easily exploited in the frame-
work of automatic adaptive approaches, in which both the size (h-adaptivity, Hartmann and
Houston (2002), Remacle et al. (2003), Zenoni et al. (2017), Ferrero et al. (2017)), the order
(p-adaptivity Burbeau and Sagaut (2005), Giorgiani et al. (2013), Ampellio et al. (2016))
or both properties (hp-adaptivity, Eskilsson (2011), Ferrero and Larocca (2017), Chalmers
et al. (2019)) can be locally adapted following some error indicators.

The projection represented by Eq. (11) must be evaluated for all the basis functions of
the elements: this gives a set of Ordinary Di�erential Equations in time which describes the
evolution of the numerical solution:

Z


e

NeX

i=1

@~ui
@t

�i�jdxdy +
Z

@
e

F̂ h � n�jds�
Z


e

r�jF hdxdy = 0 1 � j � Ne (12)

The Eq. 12 can be integrated with di�erent strategies. In this work, a simple �rst order
explicit Euler scheme is used since the considered problems are characterised by steady
solutions and so the �rst order integrator does not in
uence the accuracy of the solution.

4. HLLC-FORCE Hybrid Flux

Hu and Yuan Hu and Yuan (2014) introduced a numerical 
ux obtained by a mix of
the HLLC and FORCE 
uxes in a grid aligned framework. Consider the numerical approx-
imation of the convective 
uxes for a 2D problem across a generic interface of the mesh.
The 
ux vector is de�ned as F̂ = fF̂1; F̂2; F̂3; F̂4gT , where the components refer to mass,
momentum in the shock normal direction, momentum in the shock tangential direction and
energy. The hybrid 
ux proposed in Hu and Yuan (2014) is equal to the HLLC 
ux for the
energy equation and for the momentum equation in the direction normal to the shock. In
contrast, a linear combination of the two 
uxes is performed for the density and momentum
equation in the direction tangential to the shock. The coe�cients of the combination are
computed by comparing the interface normal and the shock normal which is approximated
by the velocity vector jump across the interface Hu and Yuan (2014).

F̂1 = !FHLLC1 + (1� !)FFORCE1 (13)
F̂2 = !FHLLC2 (14)
F̂3 = !FHLLC3 + (1� !)FFORCE3 (15)
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F̂4 = !FHLLC4 (16)

! =
1
2

+
1
2

�1

�1 + �2
; �1 = jn � nsj ; �2 =

q
1� �2

1 (17)

where n is the interface normal and ns is an estimate of the shock normal direction
obtained as

ns =

(
�u
j�uj ; j�uj > �
n; j�uj <= �

(18)

where �u is the velocity vector jump across the interface and � is a small constant to avoid
division by zero.

5. Proposed FDS-LLF Hybrid Flux

5.1 The FDS numerical 
ux

The FDS is based on the solution of a Riemann problem in the interface normal direction:
the initial condition which de�nes the Riemann problem is generated by the discontinuous
reconstruction at the interface that is observed in both �nite volume and DG methods. The
idea behind FDS is to introduce the numerical dissipation required to stabilise the scheme by
following the physics of wave propagation related to the hyperbolic nature of the convective
terms. The name of the scheme derives from the approach used to compute the 
uxes at the
interface: they are obtained by considering the 
ux evaluated in the left (or right) state and
removing the contributions from all the waves which travel to the left (or right).
This method derives from the original Godunov (1959) work in which the 
ux at the interface
is computed by solving exactly the Riemann problem at each interface. Since the solution can
involve shock waves, the non-linear Rankine-Hugoniot relations must be used in the solution
process: this requires the introduction of iterative procedures to get the exact solutions. An
example of exact solution of a Riemann problem in the space-time diagram is reported in
Figure 1a. Osher and Solomon (1982) and Pandol� (1984) proposed an alternative approach
in which an approximate solution of the Riemann problem is found. In particular, they avoid
the use of the Rankine-Hugoniot relations by approximating the shock waves which appear
in the solution with isentropic compression fans: in this way, the solution of the problem can
be obtained by enforcing the conservation of the Riemann invariant between the di�erent
�elds. An example of approximate solution of a Riemann problem in the space-time diagram
is reported in Figure 1b.

5.2 The LLF numerical 
ux

The Local Lax-Friedrichs (or Rusanov) 
ux can be seen as a central scheme plus a
dissipation term:

F̂LLF =
FL + FR

2
�
�
2

(uB � uA) (19)
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(a) (b)

Fig. 1 Exact (a) and approximate (b) solution of a Riemann problem in the interface normal direction

The �rst term is the average between the 
uxes computed from the left (FL) and right (FR)
sides while the second term contains the jump in the conservative variables (uB � uA) and
the maximum spectral radius of the Jacobian between the two sides �:

� = max (~uL + aL; ~uR + aR) (20)

where ~u and a represent the normal velocity component and the speed of sound, respectively.

5.3 Proposed FDS-LLF Hybrid Flux

In the present work an alternative hybrid 
ux is proposed by introducing a linear combi-
nation of the Flux Di�erence Splitting (FDS) Pandol� (1984) and the Local Lax-Friedrichs
(LLF)Rusanov (1962) 
uxes. The idea is to combine the accuracy of the FDS 
ux with the
robustness of the LLF 
ux. While in the approach proposed by Hu and Yuan (2014) the
blending of the 
uxes is performed only for two equations, here the same linear combination
is performed for all the components of the 
ux vector:

F̂ = (1� �)F F DS + �FLLF (21)

� = �� (22)

� =

(
1� j�u�nj

j�uj ; j�uj > �
0; j�uj <= �

(23)

� = min

 �
j�uj

min(aL; aR)

�1=4
; 1

!

(24)

where � is a small constant to avoid division by zero (here set to � = 10�6), n is the
interface normal and �u is the velocity vector jump across the interface. The blending
function, �, is obtained by the product between the terms � and �. The idea behind the
term � is that the velocity jump direction identi�es the normal to the shock wave: when the
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interface is aligned to the shock wave the FDS 
ux should be used but when the interface
is normal to the shock wave the LLF 
ux should be chosen. In this way, more dissipation
is added in the direction tangential to the shock and carbuncle is avoided keeping a sharp
shock wave pro�le.
A �rst version of the hybrid 
ux, which contained only the term �, was proposed at the
ICNAAM 2019 conference by Ferrero and D’Ambrosio (2020). However, that version was
characterised by two problems. First of all, the very dissipative LLF 
ux was selected for
every interface in which the velocity jump vector was aligned to the interface, even in smooth
regions without shock waves. Secondly, the presence of the arbitrary constant � can intro-
duce some problems when the hybrid 
ux is used together with an implicit time integrator
based on a numerical evaluation of the Jacobian: in particular, it was observed that the
perturbations used to numerically evaluate the Jacobian could trigger the switch between
the LLF 
ux and the FDS 
ux, if the threshold � is chosen too small. This can leads to
inaccurate estimations of the derivatives which appear in the Jacobian matrix and makes
di�cult to perform implicit time integration. In order to avoid these two problems, the term
� is introduced in the present work. This term measures the velocity jump magnitude. Since
the jump at the interface between two DG elements tends to zero when the mesh is re�ned
and the solution is smooth, this jump is a good sensor for shock waves. In this way, the term
� tends to zero in smooth regions and the FDS solver is recovered. The exponent 1=4 which
appears in Eq. 24 is introduced after some tests in order to make a compromise between the
need to keep the e�ects of the term � in shock regions and the goal of recovering the FDS in
the smooth regions. The expression in Eq. 24 contains also a max function which guarantees
that the term � remains limited to 1: this is necessary to assure that a convex combination
of FDS and LLF is achieved. The e�ects of the term � is similar to the pressure switch used
by Wang et al. (2016) in their hybrid scheme.

The algorithm is local and can be easily implemented in both Finite Volume and Discon-
tinuous Galerkin Finite Element codes. Since the cost of the LLF 
ux is signi�cantly lower
with respect to the FDS 
ux, the proposed hybrid approach does not increase signi�cantly
the computational cost with respect to the original FDS 
ux. However, the robustness is
strongly improved. Furthermore, the hybrid approach does not introduce any memory over-
load because it works on variables which are already available from the original numerical

uxes.

6. Results

The proposed approach is tested on four di�erent test cases and it is compared with the
results provided by the FDS approach and the LLF approach. The considered test cases are
characterised by compressible 
ows with both viscous and inviscid 
uids.

6.1 Inviscid Flow in a channel with a smooth bump

This 2D test case is widely used for veri�cation purposes and has been proposed as a
benchmark in several editions of the International Workshop on High-Order CFD methods,
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Table 1 L2 entropy error convergence for channel 
ow

lc=h Ne L2s LLF Order
LLF

L2s FDS Order
FDS

L2s
hybrid

Order
hybrid

0.25 63 5.43E-03 - 2.59E-03 - 4.29E-03 -
0.125 247 2.86E-03 0.92 1.24E-03 1.06 1.86E-03 1.20
0.0625 966 9.86E-04 1.54 4.15E-04 1.58 5.60E-04 1.73
0.03125 3846 2.44E-04 2.02 1.05E-04 1.98 1.27E-04 2.13
0.015625 15283 4.93E-05 2.31 2.22E-05 2.25 2.46E-05 2.37

as reported by Wang et al. (2013). It is characterised by an inviscid 
ow of an ideal gas
with speci�c heat ratio 
 = 1:4 in a channel with a gaussian bump on the bottom wall. The
extension of the computational domain in the horizontal direction is bounded in the interval
�1:875 � x=h � 1:875 where h is the height of the channel at the inlet. The bottom wall is
described by the equation y=h = 0:078125e�25x2 . The inlet and the outlet are subsonic: total
temperature, total pressure and inlet angle are imposed on the inlet while static pressure
is imposed on the outlet. The exit static pressure corresponds to the exit Mach number
M2 = 0:5. Slip boundary conditions are imposed on the top and bottom walls.
The 
ow is studied on a sequence of unstructured grids containing both triangular and
quadrilateral elements. The number of elements Ne in the di�erent meshes is increased by
reducing the characteristic length lc of the elements. The �nest mesh and the corresponding
Mach �eld obtained by the FDS solver is reported in Figure 2.
Since this test case is characterised by an inviscid 
ow without shock waves the exact solution
shows a constant entropy in all the domain. For this reason it is possible to quantify the
discretisation error by computing the L2-norm entropy error through an integral on the
domain 
:

L2s =

sR

((s� s0)=cv)2dxdyR


 dxdy
(25)

where s0 is the inlet entropy which can be arbitrarily set to zero. The entropy is normalised
with respect to the constant volume speci�c heat cv and so the error L2s is dimensionless. The
integrals are approximated by means of the same quadrature rules used for the integration
of the governing equations.
The discretisation error on the di�erent grids is reported in Table 1. The simulations are
carried out with the DG1 scheme together with the FDS solver, the LLF solver and the
proposed hybrid solver. The errors in Table 1 shows that all the solvers tend to the theoretical
convergence order as the mesh is re�ned. This is shown also by the plot in Figure 3 which
allows to compare the slopes obtained by the convergence analysis referred to the di�erent
solvers. This preliminary test shows that the FDS and the hybrid solvers produce an error
which is systematically lower with respect to the LLF solver: this motivates the introduction
of the hybridisation procedure which aims to avoid the use of the LLF solver where there is
no risk of carbuncle.
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(a)

(b)

Fig. 2 Finest mesh (a) and Mach �eld (b) in the channel with bump (DG1 with FDS on �nest mesh)
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l
c
/h 
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10 -4
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2
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LLF
FDS
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2nd order ref. slope

Fig. 3 L2 entropy error convergence for channel 
ow with di�erent solvers
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6.2 Inviscid Supersonic Flow Around a Cylinder at Mach=4

The 2D supersonic inviscid 
ow around a circular cylinder at Mach=4 is simulated with a
second order accurate DG scheme. An ideal gas with speci�c heat ratio 
 = 1:2 is considered.
The computational domain is discretised by means of a structured mesh with 160 � 80
elements reported in Figure 4a. In order to understand the behaviour of the hybrid scheme
the element-averaged � variable is reported in Figure 4b. The average is performed element-
wise by considering the values assumed by � on all the interfaces of a given element. The
plot shows that the FDS scheme is used in most of the domain and the hybridisation is
activated mainly in the shock region. The Mach �eld is reported in Figure 5 where the
FDS, the proposed hybrid scheme and the LLF scheme are compared. The FDS scheme
shows a signi�cant distortion of the shock pro�le on the symmetry axis due to the carbuncle
instability. This error in
uences all the subsonic region close to the stagnation point. On the
contrary, the LLF scheme does not show any sign of carbuncle but it shows poor resolution
on the shockwave. The proposed hybrid scheme keeps the good resolution of the FDS scheme
without developing the carbuncle instability.

(a) (b)

Fig. 4 Computational mesh (a) and element-averaged � �eld (b) for supersonic 
ow around a circular
cylinder

6.3 Over-expanded rocket nozzle 
ow

The inviscid 
ow in a axisymmetric converging-diverging nozzle with an area expansion
ratio �A = 80 is studied. The domain is discretised with an unstructured mesh with both
quadrilateral and triangular elements (22651 elements) reported in Figure 6a. The Frontal-
Delaunay for quads algorithm is employed and an attractor to re�ne the mesh in the shock
region is introduced. Far �eld boundary conditions are employed for the external boundaries
which are located at a distance equal to 100 throat diameters from the nozzle exit. The
2D axisymmetric Euler equations are solved. The Nozzle Pressure Ratio (NPR, given by
the ratio from the inlet total pressure and the ambient static pressure) is set to 121. The

uid is assumed to be an ideal gas with speci�c heat ratio 
 = 1:2. In these conditions, the
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(a) (b) (c)

Fig. 5 Mach �eld around a cylinder at M1 = 4: (a) FDS 
ux, (b) proposed hybrid 
ux, (c) LLF 
ux

nozzle is strongly over-expanded and a shock wave system with a central Mach disk appears
at the exit. Figure 7 shows the predicted Mach �eld with the FDS scheme, the proposed
hybrid approach and the LLF scheme. A comparison between the results in the Mach disk
region con�rms the behaviour observed in the previous test case: while the FDS scheme is
a�ected by the carbuncle instability, the LLF scheme is immune to this problem but has
poor resolution on the shock wave. The proposed hybrid scheme is again able to avoid the
carbuncle while keeping good resolution on the shock. This is particularly evident on the
internal oblique shock wave which is weakly noticeable in the LLF solution while it is clearly
visible in the hybrid solution. The Figure 6b reports the element-averaged � �eld which
shows that the FDS scheme is used in most of the domain.

6.4 Flat Plate Boundary Layer at M1 = 5

Finally, the 2D viscous 
ow on a 
at plate is studied in order to evaluate the behaviour
of the proposed method in the presence of boundary layers. The test case is characterised by
a supersonic 
ow (M1 = 5) of air (
 = 1:4, Pr = 0:72) on a isothermal plate (Tw = T1 =
72K). The mesh is structured and contains 160 � 100 elements. The growing factor in the
wall normal direction is equal to 1:02. A picture of the mesh is reported in Figure 8a. The
Mach �eld with the three numerical 
uxes is shown in Figure 9: the plot shows that the FDS
and the hybrid schemes gives almost equivalent results while the LLF scheme tends to smear
the oblique shock wave generated from the leading edge. The plot in Figure 8b shows that
the FDS is adopted everywhere with the exception of the shock region and a small layer close
to the wall. The pressure distribution as a function of the wall distance (y) normalised with
respect to the plate length (L) is reported in Figure 10 for a station with a local Reynolds
number Rex = 55625. The plot shows clearly the better resolution obtained by the FDS
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(a)

(b)

Fig. 6 Computational mesh (a) and element-averaged � �eld (b) for nozzle 
ow

and hybrid schemes on the shock with respect to the LLF scheme. In particular, the results
are in line with the reference solution published byPandol� and D’Ambrosio (2002). Both
the LLF and the hybrid scheme present some oscillations close to wall. This problem, which
a�ects the LLF scheme in present numerical framework, is inherited by the hybrid scheme
since it tends to LLF in a small layer of cells close to wall, as shown by Figure 8b. Future
investigations will be devoted to substitute the LLF scheme with an alternative dissipative
and carbuncle-free scheme.

7. Conclusions

In this work a hybrid numerical scheme for the computation of convective 
uxes is pro-
posed in a DG framework. The scheme is based on a convex combination of two existing
schemes: the FDS scheme (which is very accurate but a�ected by the carbuncle instability)
and the LLF scheme (which is very dissipative but carbuncle free). The basic idea of the
proposed approach is to perform a scalar product between the interface normal and the ve-
locity vector jump across the interface: in this way it is possible to apply the FDS scheme
in the direction normal to the shock wave while the LLF scheme is used in the tangential
direction. This makes it possible to achieve the better properties of both schemes: shock
capturing with sharp resolution without the carbuncle instability. Furthermore, the switch
function is augmented by a sensor based on the velocity jump magnitude with the purpose
of avoiding numerical clipping from one scheme to the other in smooth regions. This sensor
also helps in avoiding the use of the LLF scheme far from shock waves.
The behaviour of the proposed scheme is investigated on the inviscid subsonic 
ow in a chan-
nel, on the inviscid supersonic 
ow around a circular cylinder, on an overexpanded rocket
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(a)

(b)

(c)

Fig. 7 Mach �eld in overexpanded nozzle with FDS scheme (a), proposed hybrid scheme (b) and LLF
scheme (c)

nozzle 
ow and on the supersonic viscous 
ow on a 
at plate. The results appear promising
in terms of accuracy and carbuncle prevention with a small increase of the computational
cost with respect to the FDS scheme. The proposed approach, as the original FDS and LLF
schemes, can be applied on both �nite volume methods and discontinuous Galerkin methods.
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Fig. 8 Computational mesh (a) and element-averaged � �eld (b) for supersonic 
ow over a 
at plate
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