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GENERALIZED BORN-JORDAN DISTRIBUTIONS AND
APPLICATIONS

ELENA CORDERO, MAURICE DE GOSSON, MONIKA DÖRFLER, AND FABIO NICOLA

Abstract. One of the most popular time-frequency representations is certainly
the Wigner distribution. Its quadratic nature is, however, at the origin of un-
wanted interferences or artefacts. The desire to suppress these artefacts is the
reason why engineers, mathematicians and physicists have been looking for re-
lated time-frequency distributions, many of them being members of the Cohen
class. Among these, the Born-Jordan distribution has recently attracted the
attention of many authors, since the so-called “ghost frequencies” are grandly
damped, and the noise is, in general, reduced; it also seems to play a key role in
quantum mechanics The central insight relies on the kernel of such a distribu-
tion, which contains the sinus cardinalis sinc, the Fourier transform of the first
B-Spline B1. The idea is to replace the function B1 with the spline or order n,
denoted by Bn, yielding the function (sinc)n when Fourier transformed, whose
speed of decay at infinity increases with n. The related Cohen kernel is given by
Θn(z1, z2) = sincn(z1 · z2), n ∈ N, and the corresponding time-frequency distri-
bution is called generalized Born-Jordan distribution of order n. We show that
this new representation has a great potential to damp unwanted interference
effects and this damping effect increases with n. Our proofs of these proper-
ties require an interdisciplinary approach, using tools from both microlocal and
time-frequency analysis. As a by-product, a new quantization rule and a related
pseudodifferential calculus are investigated.

1. Introduction

The time-frequency analysis of real-world signals is an intrinsically interdisci-
plinary topic, involving engineering, physics, and mathematics. It is an essential
topic in various applications (see for instance the papers [6, 7, 25, 35]). In the
present paper we introduce a new family of time-frequency representations defined
by exponentiating the sinus cardinalis kernel; we call the members of this family
generalized Born-Jordan distributions. These new distributions form a subclass of
the Cohen class containing several important and well-known distributions (Wigner
and Born–Jordan). The interest of this new class of time-frequency distributions
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comes from the fact that its members efficiently damp the artefacts stemming from
the interaction between distinct time-frequency components in a given signal, which
are due to the bilinear nature of Cohen class distributions. These damping prop-
erties will be made explicit by a precise study of the smoothing effects induced by
our generalized Born–Jordan distributions.

Now, one of the most popular time-frequency representations of a signal f is the
Wigner distribution

(1.1) Wf(x, ω) =

∫
Rd

f
(
x+

y

2

)
f
(
x− y

2

)
e−2πiyω dy, x, ω ∈ Rd,

where the signal f can be thought of as a function in L2(Rd) (or more generally as
a tempered distribution f ∈ S ′(Rd)). It is however well-known that the quadratic
nature of the Wigner distribution generates undesired (usually oscillatory) inter-
ferences between signal components separated in time-frequency. To overcome this
issue, the so-called Cohen class of time-frequency distributions was introduced in
[6] and widely studied by many authors (see [2, 7, 35] and references therein). The
Cohen class members Qf are generated by convolving the Wigner distribution of a
signal f with a smoothing distribution θ ∈ S ′(R2n) (Cohen kernel) in order to try
to suppress the oscillatory artefacts:

(1.2) Qf = Wf ∗ θ.
Choosing θ = FσΘ1, where FσΘ1 is the symplectic Fourier transform of

(1.3) Θ1(x, ω) = sinc(xω) =


sin(πxω)

πxω
forxω 6= 0

1 forxω = 0

leads to the Born-Jordan distribution:

(1.4) Q1f = Wf ∗ Fσ(Θ1), f ∈ L2(Rd),

see [2, 6, 7, 8, 11, 27, 30, 35] and references therein.
In the present paper we introduce new Cohen kernels and related distributions

using the B-spline functions Bn. Recall that the sequence of B-splines {Bn}n∈N+ ,
is defined inductively as follows: the first B-Spline is

B1(t) = χ[− 1
2
, 1
2 ](t).

Assuming that we have defined Bn, for some n ∈ N+, the spline Bn+1 is then
defined by

(1.5) Bn+1(t) = (Bn ∗B1)(t) =

∫
R
Bn(t− y)B1(y)dy =

∫ 1
2

− 1
2

Bn(t− y)dy.

Bn is a piecewise polynomial of degree at most n − 1, n ∈ N+, and satisfying
Bn ∈ Cn−2(R), n ≥ 2. For the main properties of Bn we refer, e.g., to [4].
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Observe that sinc(ξ) = FB1(ξ) hence by induction on n

(1.6) sincn(ξ) = FBn(ξ), n ∈ N+.

Definition 1.1. For n ∈ N, the nth Born-Jordan kernel is the function Θn on R2d

defined by

(1.7) Θn(x, ω) = sincn(xω), (x, ω) ∈ R2d.

The Born-Jordan distribution of order n (BJDn) is given by

(1.8) Qnf = Wf ∗ Fσ(Θn), f ∈ L2(Rd).

The cross-BJDn is given by

(1.9) Qn(f, g) = W (f, g) ∗ Fσ(Θn), f, g ∈ L2(Rd).

We write Qn(f, f) = Qnf for every f ∈ L2(Rd).

Remark 1.2. Note that Θ0 ≡ 1 , hence Fσ(Θ0) = δ and Q0f = Wf , the Wigner
distribution of f .

In the sequel we study central properties of the newly introduced distributions
and thereby address the following issues.

(i) Regularity and Smoothness Properties of Qn;
(ii) Damping of interferences in comparison with the Wigner distribution;
(iii) Visual comparison in dimension d = 1 between Qn and the Wigner Distri-

bution;
(iv) Born–Jordan quantization of order n and related pseudodifferential calculus.

The most suitable framework to handle these aspects is provided by modulation
spaces (see [19] and also the textbook [32]), recalled in Subsection 2.3. Their
definition is based on the the short-time Fourier transform (STFT) Vgf , defined,
for a fixed Schwartz function g ∈ S(Rd) \ {0}, by

(1.10) Vgf(x, ω) =

∫
Rd

f(y) g(y − x) e−2πiyω dy, (x, ω) ∈ R2d.

For 1 ≤ p, q ≤ ∞, the (unweighted) modulation space Mp,q(Rd) is then the sub-
space of tempered distributions f such that

‖f‖Mp,q :=

(∫
Rd

(∫
Rd

|Vgf(x, ω)|p dx
)q/p

dω

)1/q

<∞

(with standard modifications for p =∞ or q =∞).
Regularity of Qn. While it seems intuitively clear that a signal’s Born-Jordan
distribution of order n cannot be rougher than the corresponding Wigner distri-
bution, we will prove several related precise statements. In Proposition 4.2 we
will show that the n-th Born-Jordan kernel belongs to the Wiener amalgam space
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W (FL1, L∞), defined in subsection 2.3 below, for every n ∈ N+. This observation
is the key tool for proving the following result:

Theorem 1.3. Let f ∈ S ′(Rd) be a signal, with Wf ∈ Mp,q(R2d) for some 1 ≤
p, q ≤ ∞. Then Qnf ∈Mp,q(R2d), for every n ∈ N+.

The previous statement holds in more generality and can be rephrased for mem-
bers in the Cohen class as follows.

Theorem 1.4. Let f ∈ S ′(Rd) be a signal, with Wf ∈ Mp,q(R2d) for some 1 ≤
p, q ≤ ∞ and the Cohen kernel θ defined in (1.2) belonging to the modulation space
M1,∞(R2d). Then the corresponding Cohen member Qf belongs to Mp,q(R2d).

Our central concern is the discussion of the new distributions’ capacity for the
damping of interferences in comparison with the Wigner distribution,
a topic connected with the smoothness of Qn and measured using the Fourier-
Lebesgue wave-front set.

The notion of wave-front set of a distribution is nowadays a standard technique in
the study of singularities for solutions to partial differential (or pseudodifferential)
equations. The basic idea is to detect the location and orientation of the singular-
ities of a distribution f by looking at which directions the Fourier transform of ϕf
fails to decay rapidly, where ϕ is a cut-off function supported in a neighbourhood
of any given point x0. This test is performed in the framework of edge detection,
where often the Fourier transform is replaced by other transforms, see e.g. [39] and
the references therein.

We shall use the Fourier–Lebesgue wave-front set, introduced in [42, 43, 44], and
related to the Fourier-Lebesgue spaces FLqs(Rd), s ∈ R, 1 ≤ q ≤ ∞. Recall that
the norm in the space FLqs(Rd), 1 ≤ q ≤ ∞, is given by

(1.11) ‖f‖FLq
s(Rd) = ‖f̂(ω)〈ω〉s‖Lq(Rd),

with 〈ω〉 = (1+ |ω|2)1/2. Inspired by this definition, given a distribution f ∈ S ′(Rd)
its wave-front set WFFLq

s
(f) ⊂ Rd×(Rd\{0}), is the set of points (x0, ω0) ∈ Rd×Rd,

ω0 6= 0, where the following condition is not satisfied : for some cut-off function ϕ
(i.e., ϕ is smooth and compactly supported on Rd), with ϕ(x0) 6= 0, and some open
conic neighbourhood Γ ⊂ Rd \ {0} of ω0 it holds

(1.12) ‖F [ϕf ](ω)〈ω〉s‖Lq(Γ) <∞.
Observe that WFFL2

s
(f) = WFHs(f) is the standard Hs wave-front set (see [36,

Chapter XIII] and Section 2 below). Roughly speaking, (x0, ω0) 6∈ WFFLq
s
(f)

means that f has regularity FLqs at x0 and in the direction ω0. We are interested
in the FLqs wave-front set of the Born-Jordan distribution of order n of a given
signal f ∈ L2(Rd).

Here is the mathematical explanation of the Qn’s smoothing effects:
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Theorem 1.5. Let f ∈ S ′(Rd) be a signal, with Wf ∈ M∞,q(R2d) for some 1 ≤
q ≤ ∞. Let (z, ζ) ∈ R2d × R2d, with ζ = (ζ1, ζ2) satisfying ζ1 · ζ2 6= 0. Then

(z, ζ) 6∈ WFFLq
2n

(Qnf).

This means that if the Wigner distribution Wf has FLq local regularity and
is somewhat controlled at infinity, then Qnf is smoother, having s = 2n addi-
tional derivatives, at least in the directions ζ = (ζ1, ζ2) satisfying ζ1 · ζ2 6= 0. In
dimension d = 1 this condition reduces to ζ1 6= 0 and ζ2 6= 0. Hence this result
explains the smoothing property of such distributions, which involves all the pos-
sible directions except those of the coordinates axes. That is why the interferences
of two components which do not share the same time or frequency localization
come out substantially reduced. Observe that for n = 1 we recapture the damping
phenomenon of the classical Born–Jordan distribution (cf. [13, Theorem 1.2]).

For signals in L2(Rd), the previous result can be rephrased in terms of the
Hörmander’s wave-front set as follows:

Corollary 1.6. Let f ∈ L2(Rd), so that Wf ∈ L2(R2d). Let (z, ζ) be as in the
statement of Theorem 1.5. Then (z, ζ) 6∈ WFH2n(Qnf), i.e., Qnf has regularity
H2n at z and in the direction ζ.

The pictorial examples below suggest that the smoothing effects of the BJDn do
not occur in the directions ζ1 · ζ2 = 0. From a mathematical point of view, this is
explained by the following theorem.

Theorem 1.7. Suppose that for some 1 ≤ p, q1, q2 ≤ ∞, n ∈ N+ and C > 0, we
have

(1.13) ‖Qnf‖Mp,q1 ≤ C‖Wf‖Mp,q2 ,

for every f ∈ S(Rd). Then q1 ≥ q2.

In other words, for a general signal, the BJDn is not everywhere smoother than
the Wigner distribution. As expected, the problems arise in the directions ζ =
(ζ1, ζ2) such that ζ1 · ζ2 = 0.

Visual Comparison in dimension d = 1 between Qn and the Wigner Dis-
tribution. We now illustrate the effect of using higher order cross-term suppression
by means of the generalized BJDn. We display the time-frequency distributions
of both synthetic and real signals. More precisely, Figure 1 shows a comparison
of the Wigner transform, the Born-Jordan transform and generalized Born-Jordan
transform of the sum of four rotated Gaussian windows. It is clearly visible that
the amount of cross-term suppression increases for higher-order smoothing.
The second example, shown in Figure 2, depicts the Wigner transform, the Born–
Jordan transform and two versions of generalized Born-Jordan transform (n = 10
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Figure 1. Four Gaussian Windows in rotated positions: Com-
parison of Wigner distribution, Born-Jordan and generalized Born-
Jordan distribution

and n = 100) of another synthetic signal consisting of two linear chirps. Note that
the geometry of this example is different from the previous one in the sense of that
it lacks symmetry around zero.
As a final example, shown in Figure 3, we applied the Wigner transform, the
Born–Jordan transform and two versions of generalized Born–Jordan transform to
a classical real signal, namely a bat call. As in the first example, the cross-term
suppression increases for exponent n = 2, while, when applying even higher order
smoothing, we observe a loss of concentration in time-frequency. As in the case of
the two chirps, the geometry of this example lacks central symmetry.
The Born-Jordan quantization of order n. This procedure arises as the nat-
ural extension of the n = 1 case (that is, the usual Born–Jordan quantization).
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Gen. Born-Jordan distribution, n = 10
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Gen. Born-Jordan distribution, n = 100
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Figure 2. Two linear chirps: Comparison of Wigner distribution,
Born-Jordan and generalized Born-Jordan distribution

Figure 3. Bat call signal: Comparison of Wigner distribution,
Born-Jordan and generalized Born-Jordan distribution

Observe that choosing n = 0, it reduces to the Weyl quantization. We denote by
~ a positive parameter; in physics it is viewed as the reduced Planck constant.

Definition 1.8. For n ∈ N, the Born–Jordan quantization of order n is the map-
ping

(1.14) a ∈ S ′(R2d) 7→ ÂBJ,n = OpBJ,n(a) =
(

1
2π~

)d ∫
R2d

(Fσa)(z)Θn(z)T̂ (z)dz,
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where T̂ (z) = e−iσ(ẑ,z)/~ is the Heisenberg operator and σ the standard symplectic
form (see the notation below).

The case n = 0 (Θ0 ≡ 1) is the well-known Weyl quantization.

In the sequel we shall set ~ = 1/2π, as is customary in time-frequency analysis.
Hence the constant in front of the integrals in (1.14) disappears.

2. Preliminaries

2.1. Notation. We use the notation xω = x · ω = x1ω1 + . . . + xdωd for the
scalar product in Rd, 〈·, ·〉 for the inner product in L2(Rd) and for the duality
pairing between Schwartz functions and temperate distributions (it is antilinear
in the second argument by convention). Given functions f, g, we write f . g if
f(x) ≤ Cg(x) for every x and some constant C > 0, and similarly for &. The
notation f � g means f . g and f & g.

We write C∞c (Rd) for the class of smooth functions on Rd with compact support.
We denote by σ the standard symplectic form on the phase space R2d ≡ Rd×Rd;

the phase space variable is denoted z = (x, ω) and the dual variable by ζ = (ζ1, ζ2).
By definition σ(z, ζ) = Jz · ζ = ω · ζ1 − x · ζ2, where

J =

(
0d×d Id×d
−Id×d 0d×d

)
.

The Fourier transform of a function f(x) in Rd is

Ff(ω) = f̂(ω) =

∫
Rd

e−2πixωf(x) dx,

and the symplectic Fourier transform of a function F (z) in the phase space R2d is
defined by

FσF (ζ) =

∫
R2d

e−2πiσ(ζ,z)F (z) dz.

The symplectic Fourier transform is an involution, i.e., Fσ(FσF ) = F . Moreover,
FσF (ζ) = FF (Jζ).

Observe that Θn(J(ζ1, ζ2)) = Θn(ζ1, ζ2) so that

(2.1) Fσ(Θn) = F(Θn), ∀n ∈ N+.

For s ∈ R the L2-based Sobolev space Hs(Rd) is constituted by the distributions
f ∈ S ′(Rd) such that

(2.2) ‖f‖Hs := ‖f̂(ω)〈ω〉s‖L2 <∞.

2.2. Time-frequency representations and main properties.
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2.2.1. Wigner distribution and ambiguity function [26, 32]. We already defined in
the Introduction, see (1.1), the Wigner distribution Wf of a signal f ∈ S ′(Rd). In
general, we have Wf ∈ S ′(R2d). When f ∈ L2(Rd) we have Wf ∈ L2(R2d) and in
fact it turns out

(2.3) ‖Wf‖L2(R2d) = ‖f‖2
L2(Rd).

In the sequel we will encounter several times the symplectic Fourier transform of
Wf , which is known as Woodward’s (radar) ambiguity function Af . We have the
formula

(2.4) Af(ζ1, ζ2) = FσWf(ζ1, ζ2) =

∫
Rd

f
(
y +

1

2
ζ1

)
f
(
y − 1

2
ζ1

)
e−2πiζ2y dy.

We refer to [26, Chapter 9] and [29] for more details.

2.2.2. Marginal properties of Qn. The members of the Cohen class are also called
pseudo-density functions since they are supposed to indicate how the signal density
is distributed over time and frequency. The terminology pseudo-density comes from
the fact that such distributions in general are not positive functions and can take
not only negative but even complex values. In order for Qn to be a pseudo-density
function, it must satisfy certain requirements. In particular, the marginal densities

(2.5)

∫
Rd

Qnf(x, ω)dω = |f(x)|2,
∫
Rd

Qnf(x, ω)dx = |f̂(ω)|2,

for every f in the Schwartz class S(Rd). It can be shown (see [37] or [29, Proposition
97]) that those conditions are equivalent to the requirements

(2.6) F(Θn)(x, 0) = 1, ∀x ∈ Rd, F(Θn)(0, ω) = 1, ∀ω ∈ Rd.

In this case, using (2.1), (1.8) and (1.7), one sees that are trivially satisfied, since
sincn(0) = 1, for every n ∈ N.

2.2.3. The Moyal identity is not satisfied. A quite convenient property of Cohen’s
kernel (1.2) is Moyal’s identity ([15, Theorem 14.2 and 27.15])
(2.7)

〈Q(f1, g1), Q(f2, g2)〉L2(R2d) = 〈f1, f2〉L2(Rd)〈g1, g2〉L2(Rd), f1, f2, g1, g2 ∈ L2(Rd).

It plays an essential role in quantum mechanics (but perhaps not in signal analysis,
as already observed by Janssen in [37]). While the Wigner distribution, the STFT
and the ambiguity function satisfy (2.7), the BJDn Qn, does not for n ∈ N+. To
prove this, we will use the following characterization (cf. [37, Section 3] and [28]):

Proposition 2.1. A member of the Cohen class, cf. (1.2), satisfies Moyal’s identity
(2.7) if and only if

(2.8) |θ(x, ω)| = 1, for all (x, ω) ∈ R2d.
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Choosing Q = Qn, n ∈ N+, we have θ(x, ω) = sincn(xω), so that condition (2.8)
is not satisfied for any n ∈ N+. Observe that for n = 0 (the Wigner distribution)
the previous conditions holds, as expected.

2.3. Modulation spaces [26, 20, 21, 22, 32]. Modulation spaces are used in Time-
Frequency Analysis to measure the time-frequency concentration of a signal. As
already observed in the introduction, the construction of these functional spaces
relies on the notion of short-time (or windowed) Fourier transform defined in (1.10).

Let now s ∈ R, 1 ≤ p, q ≤ ∞. The modulation space Mp,q
s (Rd) consists of all

tempered distributions f ∈ S ′(Rd) such that

(2.9) ‖f‖Mp,q
s

:=

(∫
Rd

(∫
Rd

|Vgf(x, ω)|p〈ω〉sp dx
)q/p

dω

)1/q

<∞

(with obvious changes for p =∞ or q =∞). When s = 0 we write Mp,q(Rd) instead
of Mp,q

0 (Rd). We will also use the shorthand notation Mp
s (Rd) for Mp,p

s (Rd). The
spaces Mp,q

s (Rd) are Banach spaces for any 1 ≤ p, q ≤ ∞, and every non-zero
g ∈ S(Rd) yields an equivalent norm in (2.9).

Modulation spaces generalize and include as special cases several function spaces
arising in Harmonic Analysis. In particular for p = q = 2 we have

M2
s (Rd) = Hs(Rd),

whereas M1(Rd) coincides with the Segal algebra S0(Rd) (cf. [18]), and M∞,1(Rd)
is the so-called Sjöstrand class [33].

For members of Mp,q
s the exponent p is a measure of average decay at infinity in

the scale of spaces `p, whereas the exponent q is a measure of smoothness in the
scale FLq. The number s is a further regularity index, completely analogous to
that appearing in the Sobolev spaces Hs(Rd).

Other modulation spaces, also known as Wiener amalgam spaces, are obtained
by exchanging the order of integration in (2.9). Precisely, the modulation spaces
W (FLp, Lq)(Rd), for p, q ∈ [1,+∞), is given by the distributions f ∈ S ′(Rd) such
that

‖f‖W (FLp,Lq)(Rd) :=

(∫
Rd

(∫
Rd

|Vgf(x, ω)|p dω
)q/p

dx

)1/q

<∞

(with obvious changes for p = ∞ or q = ∞). Using Parseval’s identity in (1.10),
we can write the so-called fundamental identity of time-frequency analysis

Vgf(x, ω) = e−2πixωVĝf̂(ω,−x),

hence

|Vgf(x, ω)| = |Vĝf̂(ω,−x)| = |F(f̂ Tωĝ)(−x)|
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so that

‖f‖Mp,q =

(∫
Rd

‖f̂ Tωĝ‖qFLp dω

)1/q

= ‖f̂‖W (FLp,Lq).

This means that Wiener amalgam spaces can be viewed as the images by a Fourier
transform of modulation spaces: F(Mp,q) = W (FLp, Lq).

We will frequently use the following product property of Wiener amalgam spaces
([20, Theorem 1 (v)]): for 1 ≤ p, q ≤ ∞,

(2.10) if f ∈ W (FL1, L∞) and g ∈ W (FLp, Lq) then fg ∈ W (FLp, Lq).
Taking p = 1, q =∞, we see that W (FL1, L∞)(R2d) is an algebra under pointwise
multiplication.

Proposition 2.2. Let 1 ≤ p, q ≤ ∞ and A ∈ GL(d,R). Then, for every f ∈
W (FLp, Lq)(Rd),

(2.11) ‖f(A ·)‖W (FLp,Lq) ≤ C| detA|(1/p−1/q−1)(det(I + A∗A))1/2‖f‖W (FLp,Lq).

In particular, for A = λI, λ > 0,

(2.12) ‖f(A ·)‖W (FLp,Lq) ≤ Cλd(
1
p
− 1

q
−1)(λ2 + 1)d/2‖f‖W (FLp,Lq).

In the proof of Theorem 1.7 we will use the following dilation properties of
Gaussians (first proved in [48, Lemma 1.8], see also [10, Lemma 3.2]):

Lemma 2.3. Let ϕ(x) = e−π|x|
2

and λ > 0. For 1 ≤ p, q ≤ ∞,

‖ϕ(λ ·)‖Mp,q � λ−d/q
′

as λ→ +∞,
where q′ is the conjugate exponent of q, that is 1/q + 1/q′ = 1.

2.4. Wave-front set for Fourier-Lebesgue spaces [36, 42]. The notion of Hs

wave-front set allows to quantify the regularity of a function or distribution in the
Sobolev scale at any given point and direction. This is done by microlocalizing the
definition of the Hs norm in (2.2) as follows (cf. [36, Chapter XIII]).

Given a distribution f ∈ S ′(Rd) we define its wave-front set WFHs(f) ⊂ Rd ×
(Rd \ {0}), as the set of points (x0, ω0) ∈ Rd × Rd, ω0 6= 0, for which the following
condition is not satisfied: for some cut-off function ϕ ∈ C∞c (Rd) with ϕ(x0) 6= 0
and some open conic neighborhood of Γ ⊂ Rd \ {0} of ω0 we have

‖F [ϕf ](ω)〈ω〉s‖L2(Γ) <∞.

More generally one can start from the Fourier–Lebesgue spaces FLqs(Rd), s ∈ R,
1 ≤ q ≤ ∞, which is the space of distributions f ∈ S ′(Rd) such that the norm in
(1.11) is finite. Arguing exactly as above (with the space L2 replaced by Lq) one
then arrives in a natural way to a corresponding notion of wave-front set WFFLq

s
(f)

as we anticipated in Introduction (see (1.12)).
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We need to recall some basic results about the action of constant coefficient linear
partial differential operators on such wave-front set (cf. [42]). Given the operator

P =
∑
|α|≤m

cα∂
α, cα ∈ C;

it is straightforward to see that, for 1 ≤ q ≤ ∞, s ∈ R, f ∈ S ′(Rd),

WFFLq
s
(Pf) ⊂ WFFLq

s+m
(f).

Consider now the inverse inclusion. We say that ζ ∈ Rd, ζ 6= 0, is non characteristic
for the operator P if ∑

|α|=m

cαζ
α 6= 0

i.e. the operator P is elliptic in the direction ζ. The following result is a microlocal
version of the classical regularity result of elliptic operators (see [42, Corollary 1
(2)]):

Proposition 2.4. Let 1 ≤ q ≤ ∞, s ∈ R and f ∈ S ′(Rd). Let z ∈ Rd and suppose
that ζ ∈ Rd \ {0} is non characteristic for P . Then, if (z, ζ) 6∈ WFFLq

s
(Pf) we

have (z, ζ) 6∈ WFFLq
s+m

(f).

3. Generalized Born–Jordan Kernels for Monomials

Let C[x, ω] be the commutative ring of polynomials generated by x and ω; it
consists of all finite sums a(x, ω) =

∑
λm`am`(x, ω) (λm` ∈ C) where am`(x, ω) =

ωmx` with (m, `) ∈ N2. We identify C[x, ω] with the ring of polynomial functions in
the variables (x, ω) ∈ R2. We denote by C[x̂, ω̂] the corresponding Weyl algebra; it
is realized as the non-commutative unital algebra generated by the two operators x̂
and ω̂ satisfying [x̂, ω̂] = (i/2π)Id. These operators are realized as the unbounded
operators defined on L2(R) by x̂f = xf and ω̂f = −(i/2π)∂xf . We will call
quantization of C[x, ω] any continuous linear mapping Op : C[x, ω] −→ C[x̂, ω̂]
having the following properties:

(Q1) Triviality: Op(1) = Id, Op(x) = x̂, and Op(ω) = ω̂;
(Q2) Dirac’s restricted rule:

[x,Op(am`)] = (i/2π) Op({x, am`}) , [ω,Op(am`)] = (i/2π) Op({ω, am`});
(Q3) Self-adjointness: If a ∈ C[x, ω] then Op(a) is self-adjoint on its domain.

One shows [16] (also see [8]) that for every quantization of C[x, ω] there exists
[8, 16] a function f with f(0) = 1 and e−it/2f real such that

(3.1) Op(am`) =

min(m,`)∑
j=0

j!

(
m

j

)(
`

j

)
f (j)(0)(2π)−jω̂m−jx̂`−j.
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Let (am`)σ = Fσam` be the symplectic Fourier transform of am` and T̂ (z) =
e−2πiσ(ẑ,z) the Heisenberg operator.

Proposition 3.1. Let Op : S ′(R2n) −→ L(S(Rn),S ′(Rn)) be a quantization having
the properties (Q1), (Q2), (Q3). (i) The restriction of Op to C[x, ω] is then given
by

(3.2) Op(am`) =

∫
(am`)σ(x, ω)Φ(2πxω)T̂ (x, ω)dωdx

where Φ(t) = e−it/2f(t). (ii) The Cohen kernel θ of Op thus has symplectic Fourier
transform Fσθ given by

(3.3) Fσθ(x, ω) = Φ(2πxω).

Proof. A detailed proof is given in Domingo and Galapon [16] (formulas (10) and
(14)). Notice that formula (3.2) readily follows from (3.1) using the elementary
formula

F(ωm ⊗ x`) = (i/2π)m+`δ(m)(ω)⊗ δ(`)(x).

Formula (3.3) follows since (3.2) is the Weyl representation of the operator with
twisted symbol (am`)σΦ [the twisted symbol is the symplectic Fourier transform of
the usual symbol].

Remark 3.2. This result shows that if one limits oneself to pseudo-differential
calculi satisfying the Dirac conditions (Q2) then the Cohen kernel is of a very par-
ticular type: its Fourier transform only depends on the product ωx. In particular,
the associated quasidistribution Qψ = Wψ∗θ satisfies the marginal conditions since
Fσθ(0) = Φ(0) = 1 (see [28], formula (7.29), p. 107).

We now focus on the case where the symplectic Fourier transform of the Cohen
kernel is given by

Fσθ(x, ω) = sincn(πxω) , n ∈ N = {0, 1, 2, ...}.

With the notation above we thus have Φ(πxω) = sincn(πxω) so that Φ(t) =
sincn(t/2) and hence f(t) = eit/2 sincn(t/2). Suppose first n = 0; then f (j)(0) =
(i/2)j hence formula (3.1) yields

Op(am`) =

min(m,`)∑
j=0

(
m

j

)(
`

j

)
j!

(
i

4π

)j
ω̂m−jx̂`−j

so that Op(am`) = OpW(am`) = OpBJ,0(am`) (see (1.14)) is just the Weyl ordering

of the monomial am` ([16] and [28], p.34). Suppose next n = 1. Then f (j)(0) =
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ij/(j + 1) and

Op(am`) =

min(m,`)∑
j=0

(
m

j

)(
`

j

)
j!

j + 1

(
i

2π

)j
ω̂m−jx̂`−j;

here Op(am`) = OpBJ,1(am`) is the Born-Jordan ordering ([16] and [28, page 34]).
In the case of a general n we have, by Leibniz’s formula,

(3.4) f (j)(0) =

j∑
k=0

(
j

k

)(
i

2

)j−k (
1

2

)k (
dk

dtk
sincn

)
(0).

The derivatives of sincn at t = 0 can be calculated using Faà di Bruno’s formula
[17] for the derivatives of the composition of two functions

(3.5) (g ◦ h)(k)(t) =
∑
κ·α=k

(
k

α

)
g(|α|)(h(t))Πα(t)

where κ = (1, 2, ..., k), α = (α1, α2, ..., αk) ∈ Nk and

Πα(t) =

(
1

1!
h(1)(t)

)α1
(

1

2!
h(2)(t)

)α2

· · ·
(

1

k!
h(k)(t)

)αk

.

Choosing g(t) = xn and h(t) = sinc(t/2) this formula yields

dk

dtk
sincn(0) =

∑
κ·α=k
|α|≤n

(
k

α

)(
n

|α|

)
|α|!Πα(0);

since sinc(2m+1)(0) = 0 and sinc(2m)(0) = (−1)m/(2m+ 1) we have

Πα(0) =
1

1!(α1 + 1)α12!(α2 + 1)α2 · · · k!(αk + 1)αk
.

4. Time-frequency Analysis of the nth Born-Jordan kernel

The Born–Jordan kernel Θ1 in (1.3) belongs to the space W (FL1, L∞)(R2d), as
proved in [13]:

Proposition 4.1. The function Θ1 in (1.3) belongs to W (FL1, L∞)(R2d).

The previous property is true for any Θn, n ∈ N+, as shown below.

Proposition 4.2. For n ∈ N+, the function Θn defined in (1.7) belongs to the
Wiener algebra W (FL1, L∞)(R2d).
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Proof. The result is attained by induction on n. We know that Θ1 ∈ W (FL1, L∞)(R2d)
by Proposition 4.1. If we assume Θn ∈ W (FL1, L∞)(R2d), for a certain integer
n > 1, we obtain

Θn+1 = Θn ·Θ1 ∈ W (FL1, L∞)(R2d) ·W (FL1, L∞)(R2d) ↪→ W (FL1, L∞)(R2d),

since the Banach space W (FL1, L∞)(R2d) is an algebra by pointwise product. This
gives the claim.

We now have the tools we need to prove Theorem 1.3 stated in the Introduction.

Proof of Theorem 1.3. We need to show that Qnf ∈ Mp,q(R2d). Taking the sym-
plectic Fourier transform in (1.4) we are reduced to prove that

ΘnFσ(Wf) = ΘnAf ∈ W (FLp, Lq)
where Fσ(Wf) = Af is the ambiguity function of f in (2.4). The claim is proven
using the product property (2.10): by Proposition 4.2, the function Θn is in
W (FL1, L∞) and in view of the assumption Wf ∈ Mp,q(R2d) so that F(Wf) ∈
W (FLp, Lq). Therefore Fσ(Wf)(ζ) = F(Wf)(Jζ) ∈ W (FLp, Lq) by Proposition
2.2 and we are done.

An alternative proof relies on the continuity of the mapping

(4.1) A : a 7−→ a ∗Θ1
σ,

which was shown to be bounded on Mp,q(R2d) in [12, Proposition 5.1], see also
the subsequent work [31]. By induction it then follows that the same continuity
property holds for Qn in (1.8), with a = Wf , and Theorem 1.2 is thus proved.

Actually, the previous issue is a special case of the general result for members
of the Cohen class stated in Theorem 1.4 (recall that, if Θn ∈ W (FL1, L∞)(R2d),
then FσΘn ∈M1,∞(R2d)), which can be proved as follows.

Proof of Theorem 1.4. It is a consequence of the convolution relations for modula-
tion spaces (cf. [9]):

Mp,q(R2d) ∗M1,∞(R2d) ↪→Mp,q(R2d),

for any 1 ≤ p, q ≤ ∞.

In [13] the following property for the chirp function was proven:

Proposition 4.3. The function F (ζ1, ζ2) = e2πiζ1ζ2 belongs to W (FL1, L∞)(R2d).

Since W (FL1, L∞)(R2d) can be characterized as the space of pointwise multipli-
ers on the Feichtinger algebra W (FL1, L1)(R2d) [23, Corollary 3.2.10], the result
in Proposition 4.3 could also be deduced from general results about the action of
second order characters on the Feichtinger algebra, cf. [18, 46].
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By Proposition 4.3 and by the dilation properties for Wiener amalgam spaces
(2.11) we can state:

Corollary 4.4. For ζ = (ζ1, ζ2), consider the function FJ(ζ) = F (Jζ) = e−2πiζ1ζ2.
Then FJ ∈ W (FL1, L∞)(R2d).

5. Smoothness of the Born-Jordan distribution of order n

In the present section we compare the smoothness of the Born–Jordan distribu-
tion of order n with that of the Wigner distribution. In particular we will prove
Theorem 1.5.

We begin by stating and proving the following global result.

Theorem 5.1. Let f ∈ S ′(Rd) be a signal such that Wf ∈ Mp,q(R2d) for some
1 ≤ p, q ≤ ∞. Then

Qnf ∈Mp,q(R2d)

and moreover

(5.1) (∇x · ∇ω)nQnf ∈Mp,q(R2d).

Here we used the notation

∇x · ∇ω =
d∑
j=1

∂2

∂xj∂ωj
.

Proof. The property Qnf ∈Mp,q(R2d) is proven in Theorem 1.3.
Let us now prove (5.1). Taking the symplectic Fourier transform we see that it

is sufficient to prove that

(ζ1ζ2)n sincn(ζ1ζ2)FσWf =
1

πn
sinn(πζ1ζ2)FσWf ∈ W (FLp, Lq).

We have

(5.2) sin(πζ1ζ2) =
eπiζ1ζ2 − e−πiζ1ζ2

2i
∈ W (FL1, L∞),

by Proposition 4.3, Corollary 4.4 and Proposition 2.2, with the scaling λ = 1/
√

2.
Hence, for n = 1,

1

π
sin(πζ1ζ2)FσWf ∈ W (FLp, Lq)

by the product property (2.10). Assume now that, for a certain n ∈ N+,

1

πn
sinn(πζ1ζ2)FσWf ∈ W (FLp, Lq).
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Then

1

πn+1
sinn+1(πζ1ζ2)FσWf =

1

π
sin(πζ1ζ2)︸ ︷︷ ︸
∈W (FL1,L∞)

· 1

πn
sinn(πζ1ζ2)FσWf︸ ︷︷ ︸
∈W (FLp,Lq)

∈ W (FLp, Lq),

by (5.2) and the product property (2.10) again. By induction we attain the result.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Consider n ∈ N+. We will apply Proposition 2.4 to the 2n-
th order operator P n, where P = ∇x ·∇ω in R2d. The non characteristic directions
for P n are given by the vectors ζ = (ζ1, ζ2) ∈ Rd × Rd, satisfying ζ1 · ζ2 6= 0. By
(5.1) (with p =∞) we have

WFFLq(P nQnf) = ∅,

because ϕF ∈ FLq if ϕ ∈ C∞c (R2d) and F ∈M∞,q(R2d) (here F = P nQnf). Hence
we obtain

(z, ζ) 6∈ WFFLq(P nQnf), ∀(z, ζ) such that ζ = (ζ1, ζ2), ζ1 · ζ2 6= 0.

Since ζ is non characteristic for the operator P n, by Proposition 2.4 we infer

(z, ζ) 6∈ WFFLq
2n

(Qnf)

for every z ∈ R2d.

Proof of Corollary 1.6. Apply Theorem 1.5 with q = 2. Indeed, for f ∈ L2(Rd)
Moyal’s identity gives Wf ∈ L2(R2d) = M2,2(Rd) ⊂M∞,2(R2d) (cf. (2.3)). Observe
that the FL2

2n wave-front set coincides with the H2n wave-front set.

The proof of Theorem 1.7 requires Lemma 5.1 in [13]:

Lemma 5.2. Let χ ∈ C∞c (R). Then the function χ(ζ1ζ2) belongs to W (FL1, L∞)(R2d).

As announced in the introduction, the smoothing properties of the Qn distri-
butions do not hold in the whole phase space. We do not have any gain in the
directions ζ1 · ζ2 = 0 as it comes up clearly from the proof of the following issue.

Proof of Theorem 1.7. The pattern is similar to that of Theorem 1.4 in [13]. We
detail the main steps for sake of clarity. The idea is to test the estimate (1.13)
using rescaled Gaussian functions f(x) = ϕ(λx), with λ > 0 large parameter. We
shall prove that, restricting to a neighbourhood of ζ1 · ζ2 = 0, the constrain q1 ≥ q2

must be satisfied.
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An easy computation (see e.g. [32, Formula (4.20)]) yields

(5.3) W (ϕ(λ ·))(x, ω) = 2d/2λ−dϕ(
√

2λx)ϕ(
√

2λ−1 ω).

For every 1 ≤ p, q ≤ ∞, the above formula gives

‖W (ϕ(λ ·))‖Mp,q = 2d/2λ−d‖ϕ(
√

2λ ·)‖Mp,q‖ϕ(
√

2λ−1 ·)‖Mp,q .

By the dilation properties of Gaussians in Lemma 2.3

(5.4) ‖W (ϕ(λ ·))‖Mp,q � λ−2d+d/q+d/p as λ→ +∞.
We now study the Mp,q-norm of the BJDn Qn(ϕ(λ ·)). The idea is to estimate this
norm from below obtaining the same expansion as in (5.4).

‖Qn(ϕ(λ ·))‖Mp,q = ‖Fσ(Θn) ∗W (ϕ(λ ·))‖Mp,q .

By taking the symplectic Fourier transform and using Lemma 5.2 and the product
property (2.10) we have

‖Fσ(Θn) ∗W (ϕ(λ ·))‖Mp,q � ‖ΘnFσ[W (ϕ(λ ·))]‖W (FLp,Lq)

& ‖Θn(ζ1, ζ2)χ(ζ1ζ2)Fσ[W (ϕ(λ ·))]‖W (FLp,Lq)

for any χ ∈ C∞c (R) and n ∈ N+. Choosing χ supported in the interval [−1/4, 1/4]
and χ ≡ 1 in the interval [−1/8, 1/8] (the latter condition will be used later), we
write

χ(ζ1ζ2) = χ(ζ1ζ2)Θn(ζ1, ζ2)Θ−n(ζ1, ζ2)χ̃(ζ1ζ2),

with χ̃ ∈ C∞c (R) supported in [−1/2, 1/2] and χ̃ = 1 on [−1/4, 1/4], therefore on
the support of χ. Since by Lemma 5.2 the function Θ−n(ζ1, ζ2)χ̃(ζ1ζ2) belongs to
W (FL1, L∞), by the product property the last expression can be estimated from
below as

& ‖χ(ζ1ζ2)Fσ[W (ϕ(λ ·))]‖W (FLp,Lq).

We end up with the same object that was already estimated in the proof of Theorem
1.4 in [13], were it was shown that

(5.5) ‖χ(ζ1ζ2)Fσ[W (ϕ(λ ·))]‖W (FLp,Lq) & λ−2d+d/p+d/q as λ→ +∞.
Comparing (5.5) with (5.4) we obtain the desired conclusion.

6. Pseudodifferential Calculus

The Weyl quantization was introduced by Weyl in [50] and is the n = 0 case of
the Born–Jordan quantization of order n in (1.14):

a ∈ S ′(R2d) 7→ ÂW = OpW(a) =
(

1
2π~

)d ∫
R2d

Fσa(z)T̂ (z)dz.

Comparing with (1.14), we infer the symbol relation

FσaBJ,nΘn = FσaW
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(observe that aBJ,n denotes the symbol of ÂBJ,n whereas aW is the Weyl symbol)
that is

(6.1) aBJ,n ∗ Fσ(Θn) = aW .

Using the weak definition for Weyl operators via the Wigner distribution

〈OpW (a)f, g〉 = 〈a,W (g, f)〉, a ∈ S ′(R2d), f, g ∈ S(Rd)

and the convolution property (whenever is well-defined)

〈F ∗G,H〉 = 〈F,H ∗G〉

we can also define, for n ∈ N, the n-th Born-Jordan pseudodifferential operator
with symbol a ∈ S ′(Rd) by

(6.2) 〈OpBJ,n(a)f, g〉 = 〈a,Qn(g, f)〉, f, g ∈ S(Rd).

(Observe that n = 1 is the standard Born–Jordan operator, whereas n = 0 gives
the Weyl operator).

We aim at studying continuity properties of such operators and of the related
distributions on modulation spaces.

First, we analyze the quadratic representations Qn.

Theorem 6.1. Assume s ≥ 0, p1, q1, p, q ∈ [1,∞] such that

(6.3) 2 min{ 1

p1

,
1

q1

} ≥ 1

p
+

1

q
.

If f ∈Mp1,q1
vs (Rd) the Cohen distribution Qnf , n ∈ N+, is in Mp,q

1⊗vs(R
2d), with

(6.4) ‖Qnf‖Mp,q
1⊗vs

(R2d) . ‖Θn‖W (FL1,L∞)(R2d)‖f‖2
M

p1,q1
vs (Rd)

.

Proof. In [14, Theorem 1.2] two of us proved that, if the Cohen kernel θ, defined
in (1.2), is in M1,∞(R2d), then the related Cohen distribution Qf satisfies

‖Qnf‖Mp,q
1⊗vs

(R2d) . ‖θ‖M1,∞(R2d)‖f‖2
M

p1,q1
vs (Rd)

where the indices p1, q1, p, q ∈ [1,∞] are related by condition (6.3).
By Proposition 4.2, the function Θn is in W (FL1, L∞), so that the BJ kernel
Fσ(Θn) is in M1,∞(R2d) with ‖Fσ(Θn)‖M1,∞ � ‖Θn‖W (FL1,L∞) and the thesis fol-
lows.

We write q′ for the conjugate exponent of q ∈ [1,∞] (it is defined by 1/q+1/q′ =).
The n-th Born-Jordan operator enjoys the same continuity properties as for the
n = 1 case, proved in [12, Theorem 1.1]. Indeed, we can state:
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Theorem 6.2. Consider 1 ≤ p, q, r1, r2 ≤ ∞, such that

(6.5) p ≤ q′

and

(6.6) q ≤ min{r1, r2, r
′
1, r
′
2}.

Then the Born-Jordan operator OpBJ,n(a), from S(Rd) to S ′(Rd), having symbol

a ∈ Mp,q(R2d), extends uniquely to a bounded operator on Mr1,r2(Rd), with the
estimate

(6.7) ‖OpBJ,n(a)f‖Mr1,r2 . ‖a‖Mp,q‖f‖Mr1,r2 , f ∈Mr1,r2 .

Conversely, if this conclusion holds true, the constraints (6.5) are satisfied and it
must hold

(6.8) max

{
1

r1

,
1

r2

,
1

r′1
,

1

r′2

}
≤ 1

q
+

1

p
,

that is (6.6) for p =∞.

Proof. The sufficient conditions are proved by induction on n. The result holds
true for n = 1 by Theorem [12, Theorem 1.1]. Assume now that the result is true
for a certain n ∈ N+ and observe, by definition (1.14), that

OpBJ,n+1(a) = OpBJ,n(b), with a = b ∗ FσΘ.

The claim follows from the convolution relationMp,q(R2d)∗M1,∞(R2d) ↪→Mp,q(R2d).
The necessary conditions are obtained arguing exactly as in the case n = 1, for

details we refer to the proof of Theorem 1.1 given in [12].

Technical notes

The figures in the introduction were produced using LTFAT (The Large Time-
Frequency Analysis Toolbox), cf. [45] as well as the Time-Frequency Toolbox
(TFTB), distributed under the terms of the GNU Public Licence:

http://tftb.nongnu.org/

The bat sonar signal in Figure 3 was recorded as a .mat file in the latter toolbox.
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[9] E. Cordero and K. Gröchenig. Time-frequency analysis of Localization operators. J. Funct.

Anal., 205(1):107–131, 2003.
[10] E. Cordero, F. Nicola, Metaplectic representation on Wiener amalgam spaces and applica-

tions to the Schrödinger equation, J. Funct. Anal., 254 (2008), 506–534.
[11] E. Cordero, M. de Gosson, F. Nicola, On the invertibility of Born-Jordan quantization, J.

Math. Pures Appl., 105 (2016), 537–557.
[12] E. Cordero, M. de Gosson, F. Nicola, Time-frequency Analysis of Born-Jordan Pseudodiffe-

rential Operators. J. Funct. Anal., 272(2):577–598, 2017. DOI:10.1016/j.jfa.2016.10.004
[13] E. Cordero, M. de Gosson and F. Nicola. On the reduction of the interferences

in the Born-Jordan distribution. Appl. Comput. Harmon. Anal., 44(2):230–245, 2018.
DOI:10.1016/j.acha.2016.04.007

[14] E. Cordero and F. Nicola, Sharp Integral Bounds for Wigner Distribution, International
Mathematics Research Notices, 2016(00): 1–29, 2016

[15] N. G. de Bruijn, A theory of generalized functions, with applications to Wigner distribution
and Weyl correspondence, Njeuw Archief voor Wiskunde, (21):205–280, 1973.

[16] H.B. Domingo and E.A. Galapon, Generalized Weyl transform for operator ordering: poly-
nomial functions in phase space. J. Math. Phys. 56(2), 022104, 2015.
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22(2):703–724, 2006.
[34] F. Hlawatsch, P. Flandrin, The interference structure of the Wigner distribution and related

time-frequency signal representations, W. Mecklenbräuker, F. Hlawatsch, Eds., The Wigner
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