
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Low-Complexity Reconfigurable DCT-V Architecture / Kello, Jurgen; Roch, Massimo Ruo; Masera, Guido; Martina,
Maurizio. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS. - ISSN 1549-7747. -
STAMPA. - 67:12(2020), pp. 3417-3421. [10.1109/TCSII.2020.2998604]

Original

Low-Complexity Reconfigurable DCT-V Architecture

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSII.2020.2998604

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2853948 since: 2020-11-27T08:39:49Z

IEEE



1

Low-Complexity Reconfigurable DCT-V
Architecture

Jurgen Kello, Massimo Ruo Roch, Guido Masera, Senior Member IEEE, Maurizio Martina, Senior Member IEEE,

Abstract—This brief presents a low-complexity, reconfigurable
architecture for the Discrete Cosine Transform (DCT) of type
V (DCT-V) of length 32. The proposed architecture can be
reconfigured to compute five DCT-V of length 4 with negligible
area overhead. As the DCT-V is one of the odd type transforms
employed in the Adaptive Multiple Transform (AMT) scheme, the
effect of fixed point implementation has been assessed in the Joint
Exploration Model (JEM) developed by the JVET group for the
Versatile-Video-Coding (VVC) forthcoming standard. Simulation
results show that the proposed architecture is not only low-
complexity and reconfigurable, but features also imperceptible
quality loss. Moreover, when implemented in 90 nm CMOS
technology it occupies only 90k eq. gates running at 187 MHz.

Index Terms—Low-complexity, DCT, Video coding

I. INTRODUCTION

The Discrete Cosine Transform (DCT) [1] is one of the most
popular transforms for image and video coding. Despite the
DCT has been studied for several years, most of the works
available in the literature concentrate on even type DCTs,
mainly on the DCT of type II (DCT-II) [2], [3], [4] and its
approximations [5], [6], [7], to be employed in several image
and video standards, such as High-Efficiency-Video-Coding
(HEVC) [8].

In the last years several researchers, e.g. [9], have shown
that signals produced by intra and inter prediction schemes
in video coding systems are better represented by a blend of
trigonometric transforms rather than the DCT-II. In particular,
an Adaptive Multiple Transform (AMT) scheme [10], derived
from the Enhanced Multiple Transform in [11], has been
recently proposed to encode the residual signal for both intra
and inter coded blocks in the new Versatile-Video-Coding
(VVC) forthcoming standard. Based on the coding mode, the
encoder chooses for each block the best set of transforms from
a certain pool. This pool contains odd type DCTs and odd
type Discrete Sine Transforms (DSTs), namely DCT-V, DCT-
VIII, DST-I and DST-VII [11]. Since each set is composed
of two transform candidates, each of which is evaluated both
for horizontal and vertical transforms, a total of five different
transform candidates (DCT-II plus four multiple transform
candidates of the AMT) have to be computed for each block.
Moreover, the block length can be N = 4, 8, 16, 32, thus, as
argued in [10], the computational complexity is very high.
As a consequence, efficient computation of odd type DCTs
is an important issue, which has been partially addressed in
the literature. Indeed, while several fast algorithms have been
proposed and implemented for the computation of even type
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DCTs and DSTs [12], only few works address the problem
of finding low-complexity factorizations and implementations
of odd type transforms (i.e. types V, VI, VII and VIII), e.g.
[13]. In [14], the 2M +1-point DCT-II matrix is decomposed
into an M+1-point DCT-VI and an M -point DST-VII, by the
means of the Discrete Fourier Transform (DFT) decomposition
of Winograd. Recently, we showed in [15] that the DCT-V of
length N = 4, 8 can be easily obtained from the N = M + 1
DCT-VI and implemented as low complexity architectures.
However, such decompositions lead to irregular data flows;
as a consequence the hardware reuse of the corresponding
architectures is very limited.

Stemming from the general theory presented in [16], in
this brief, we derive a new factorization of the DCT-V of
length N = 32, which relies on five instances DCT-V of
length N = 4. Such a factorization leads not only to an
architecture with a reduced number of multiplications but also
to a noteworthy hardware reuse. The proposed 1D-DCT archi-
tecture, which relies on butterfly and butterfly-like structures
can compute either one DCT-V of length N = 32 or five
DCT-V of length N = 4, indeed. The proposed factorization
has been tested with a fixed point model in encoder of the
Joint Exploration Model (JEM, version HM-16.6-JEM-7.2)
developed by the JVET group for the Versatile-Video-Coding
(VVC) forthcoming standard, showing negligible quality loss
and the corresponding architecture has been implemented on a
90 nm standard cell technology featuring low complexity and
power consumption.

II. FACTORIZATION OF THE DCT-V OF LENGTH N = 32
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be the matrix direct sum operator and let ⊗ be the Kronecker
(or tensor) product between two matrices. Any DCT of a signal
x = {x0, x1, . . . , xN−1} of length N can be written as Y =
CN ·x, where Y = {Y0, Y1, . . . , YN−1} is the transform result
and CN is the matrix representation of the DCT (either of even
or odd type). From the theory presented in [16] the following
factorization can be obtained:

CV
32 = Q32

10 ·
[
CV

11 ⊕CIII
21

(
2

3

)]
·B(C5)

32 , (6)

where Q32
10 is a permutation matrix defined as

Q3m+2
m : i1 + 3i2 7→


i2, for i1 = 0,

2i2 +m+ 1, for i1 = 1,

2i2 +m+ 2, for i1 = 2

(7)

with i2 = 0, . . . ,m and i1 + 3i2 < 3m+ 2, and B
(C5)
32 is the

pre-addition matrix obtained from

B
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1

Im Jm

1
Im
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−1/2
−Im
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with Im and Jm the m-order identity and anti-diagonal identity
matrices and m = 10.

The term CIII
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is a skew DCT-III of length N = 21.

According with [16] it can be written as:
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and I
′

7 = diag7(0, 1, . . . , 1) with diagn(a, b, . . . , b) the di-
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Figure 1. Architecture of the DCT-V N = 32.

inside the parenthesis. The factorization shown in (6) can be
exploited to write:

CV
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3 ·
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7
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11 , (15)

where Q11
3 and B

(C5)
11 are obtained as in (7) and (8) with

m = 3. The skew DCTs which length is a prime number can
be conveniently rewritten as CIII

m (r) = CIII
m ·PC3

m (r), with

P(C3)
m (r) =


1 0 · · · · · · 0
0 c1,r,m sm−1,r,m

...
. . . ...

...
... . . .

0 s1,r,m cm−1,r,m

 , (16)

where cl,r,m = cos (1/2−r)lπ
m , sl,r,m = sin (1/2−r)lπ

m . As a
consequence, CV

32 is now a function of CV
4 , CIII

7 and CIII
3 .

Since CIII
N =

(
CII

N

)T
, with (·)T being the transposition

operator, the factorization proposed in [14] can be exploited
to obtain:

CIII
7 = H7 ·

[
J4 ·CV

4 ·D4

(SV II
3 )T

]
·GT

7 ·D
′

7, (17)

where

H7 =

 I3 −J3

1
J3 I3

 (18)

D4 = diag4(1,−1, 1 − 1), SV II
3 is the DST-VII of length

N = 3,

G7 : i 7→

{
2i, i = 0, 1, 2, 3

2(i mod 4) + 1 i = 4, 5, 6
(19)

and D
′

7 = diag7(1,−1, 1, 1, 1,−1, 1). Thus, CV
32 is factorized

in terms of five DCT-V with length N = 4, four DST-VII of
length N = 3 and seven DCT-III of length N = 3, which can
be implemented as in [15] and [17].
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Ỹ4

Ỹ5
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Figure 2. Architecture of the skew DCT-III N = 7.

III. PROPOSED ARCHITECTURE

Stemming from the factorization detailed in Section II,
the architecture depicted in Fig. 1 has been obtained where
several butterfly and butterfly-like structures are exploited.
Let, for the sake of simplicity, x̂ = {x̂0, x̂1, . . . , x̂N−1} and
Ŷ = {Ŷ0, Ŷ1, . . . , ŶN−1} be the input and the output of
each building block. As it can be inferred from (8), B

(C5)
32

can be implemented by resorting to adders, which properly
combine the inputs, e.g. the first and the second results are
Ŷ0 = x̂0 + x̂21 and Ŷ1 = x̂1 + x̂20 + x̂22. As a consequence,
the total number of adders to implement B(C5)

32 is 42. Similarly,
from (8) and (13) one can derive that B(C5)

11 and B
(C3)
3,7 require

14 and 18 adders, respectively. Since permutations are fixed,
they have been implemented by correctly wiring inputs to
outputs, e.g. from (7) one can derive that the first and the
second results of Q11

3 are Ŷ0 = x̂0 and Ŷ1 = x̂3. Similarly,
from (11) and (7) it is possible to derive the connections
required to build K21

7 and Q32
10.

The gray shaded blocks in Fig. 1, corresponding to DCT-V
of length N = 4 and skew DCT-III of length N = 7 and
N = 3, are depicted in Figs. 2, 3 and 4, respectively. In
particular, Fig. 2 shows that the DCT-III of length N = 7,
which inputs and outputs are x̃ = {x̃0, x̃1, . . . , x̃N−1} and
Ỹ = {Ỹ0, Ỹ1, . . . , ỸN−1}, can be obtained as the cascade
of some building blocks. The simplest ones are shown as
white boxes where the inside gray shaded lines detail the
implementation. On the other hand, blocks corresponding to
trigonometric transforms are shown as gray shaded boxes
and detailed in Figs. 3 and 5, respectively. As shown in
Fig. 2, the P

(C3)
7 (r) matrix, which is described by (16),

requires 3 butterfly structures (gray shaded lines and dots) to
compute Ŷ0 = x̂0, Ŷ1 = c1,r,7 · x̂1 + s6,r,7 · x̂6, . . . , Ŷ6 =
s1,r,7 ·x̂1+c6,r,7 ·x̂6. As a consequence, the implementation of
P

(C3)
7 (r) relies on 12 multipliers and 6 adders. Permutation

blocks, namely GT
7 and J4 are hardwired. Sign alternation

for D4 and D
′

7 require 4 adders to perform 2’s complement
operations, namely Ŷ1 = −x̂1, Ŷ3 = −x̂3, Ŷ4 = −x̂4 and
Ŷ6 = −x̂6. H7 relies on 3 multiplierless butterfly structures
(gray shaded lines and diamonds), implementing Ŷ0 = x̂0−x̂6,
. . . , Ŷ6 = x̂0 + x̂6; thus, it requires 6 adders.

Finally, according with [15] and [17], the trigonometric
transforms represented by CV

4 , CIII
3 (r) and (SV II

3 )T have
been implemented as shown in Figs. 3, 4 and 5 by resorting
to 4 multipliers and 13 adders, 6 multipliers and 6 adders,
4 multipliers and 10 adders, respectively. The value of the
constants required by CV

4 , CIII
3 (r) and (SV II

3 )T are shown
in Table I.
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Figure 3. Architecture of the DCT-V N = 4, as in [15].
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Ŷ1

Ŷ2
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Figure 4. Architecture of the skew DCT-III N = 3.

Table I
COEFFICIENTS OF THE DCT-III WITH N = 3, DCT-V WITH N = 4 AND

DST-VII WITH N = 4.

block coefficient value

CIII
3

C31 −
√

3
2

C32 1.5

CV
4

C51 7
6

C52
2 cos(u)−cos(2u)−cos(3u)

3

C53
cos(u)−2 cos(2u)+cos(3u)

3

C54
cos(u)+cos(2u)−2 cos(3u)

3

(SV II
3 )T

S31
sin(u)+sin(2u)−sin(3u)

3

S32
2 sin(u)−sin(2u)+sin(3u)

3

S33
sin(u)−2 sin(2u)−sin(3u)

3

S34
sin(u)+sin(2u)+2 sin(3u)

3

The total number of multipliers and adders required to
implement the proposed architecture is summarized in Table II
and is equal to 126 and 285 respectively, which is significantly
less than the number of multiplications and additions required
by the CV

32 matrix product (i.e. 1024 multiplications and 992
additions).

IV. IMPLEMENTATION RESULTS

In order to properly size the proposed architecture, the
corresponding factorization has been implemented in fixed
point into the JEM, version HM-16.6-JEM-7.2 [18].. Input data
are represented with 16 bits, the internal bit-width increases up
to 32 bits to have enough precision where CIII

3 (r) is cascaded
with CIII

7 (r) and the output data are scaled to be represented
with 16 bits as well. Experiments showed that 8 fractional bits
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Table II
NUMBER OF MULTIPLIERS AND ADDERS REQUIRED TO IMPLEMENT THE PROPOSED ARCHITECTURE FOR THE DCT-V OF LENGTH N = 32

P
(C3)
7 (r) D

′
7 D4 CV

4
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SV II
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)T
H7 CIII

7 (r)
MUL 12 0 0 4 4 0 20
ADD 6 2 2 13 10 6 39
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32 B
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11 B
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3,7 CV

4 7×CIII
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7 (r) CV
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MUL 0 0 0 4 7×6 4×20 126
ADD 42 14 18 13 7×6 4×39 285
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Figure 5. Architecture of the transpose DST-VII N = 3.

Table III
BJØNTEGAARD DELTA RATE LOSS.

mean [%] std-var [%] min [%] max [%]
AI 0.0398 0.0356 0.0139 0.1103
RA 0.0438 0.0404 -0.0259 0.0874

can be used to correctly represent each constant coefficient for
the multiplications. Indeed, as show in Table III the proposed
solution achieves an average Bjøntegaard Delta rate loss [19]
of about 0.04% in both all-intra (AI) and random-access (RA)
configuration with the standard video sequences suggested in
the common test conditions [20]. We also observed that the
selection of the modified DCT-V with respect to the original
one is always above 95% and 80% for N = 4 and N = 32
respectively.

Moreover, the proposed architecture for the computation of
the DCT-V of length N = 32, contains five DCT-V of length
N = 4. As a consequence, by adding few multiplexers the
proposed architecture can be configured to compute one DCT-
V of length N = 32 or five DCT-V of length N = 4, as
shown in Fig. 6. This reconfigurable architecture has been
implemented in VHDL with the TSMC 90 nm standard
cell technology (typical) at 1.1V and 0o, by the means of
Synopsys Design Compiler Graphical, reaching a maximum
clock frequency of 222 MHz with an area of 0.32 mm2 (about
113k eq. gate, NAND2X1) and a power consumption of 17.5
mW.

The proposed architecture cannot be directly compared with
other DCT-V architectures, as, to the best of our knowledge,
this is the first work addressing the implementation of an
architecture for the DCT-V with N = 32. However, it can
be compared with some flexible architectures able to compute
the DCT-II of length N = 32 to quantify the complexity of
the proposed solution. For this reason we also synthesized the
proposed architecture for a target clock frequency of 187 MHz,

as in [2], reaching an area occupation of 0.25 mm2 (about
90k eq. gate, NAND2X1). Table IV compares the proposed
low complexity and reconfigurable DCT-V architecture with
some recent DCT-II architectures in terms of size support
N , number of eq. gates, maximum/target clock frequency
fck, power consumption and throughput (number of produced
samples per cycle). It is worth noting that the different
speed achieved by different architectures depends also on
some architectural choices, such as the number of pipeline
registers. As an example the solution referred to as [21] (1)
is a pipeline architecture, whereas the proposed one contains
registers only at the input and at the output. Moreover, the
number of required multipliers can be different as well. As
an example the architecture referred to as [21] (2) requires
only 80 multipliers. As it can be observed, the proposed

Table IV
1D DCT ARCHITECTURES COMPARISON.

Arch. N
eq. fck P T

gates [MHz] [mW] [samples/cycle]
[2] 4,8,16,32 131k(@90nm) 187 23.17 32
[3] 4,8,16,32 88k(@90nm) 256 16.20 32

[22] 4,8,16,32 97k(@45nm) 50 24.20 32
[23] 4,8,16,32 163k(@90nm) 250 15.30 32

[21] (1) 4,8,16,32 113k(@90nm) 401 15.98 32
[21] (2) 4,8,16,32 88k(@90nm) 187 32.09 32

Prop. (1) 4,32 113k(@90nm) 222 17.50 20,32
Prop. (2) 4,32 90k(@90nm) 187 13.10 20,32
Prop. (*) 4,8,16,32 ≈158k(@90nm) 187 ≈23 20, 8, 16, 32

architecture supports only N = 4 and N = 32, whereas
the other ones support all the DCT-II sizes specified in both
the HEVC standard and in the VVC forthcoming standard,
namely N = 4, 8, 16, 32. Indeed, the DCT-II of size N can be
factorized in terms of at least one DCT-II of size N/2 [12].
As a consequence, DCT-II architectures for N = 32 allow for
a great hardware reuse to support N = 4, 8, 16. In order to
take into account this aspect, we assume that the area and the
power consumption required to implement an architecture for
the DCT-V of size N/2 is roughly half the area and the power
consumption required for size N . As a consequence, we can
estimate that the total area and the total power consumption
are roughly 1.75 times the area and the power consumption of
the proposed architecture and that the critical path is located
in the architecture that supports N = 4, 32. These estimation
are summarized in the last line of table IV). Despite this
comparison is not fair, as the proposed architecture and the
compared ones implement different types of DCTs, they have
similar complexities, clock frequencies, power consumption
and throughput, thus showing the effectiveness of the proposed
solution. Finally, the proposed 1D-DCT-V architecture can be
used to implement either a folded or a fully parallel 2D-DCT-
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Figure 6. Architecture of the proposed reconfigurable DCT-V with N = 4, 32.

V architecture by resorting on the schemes which have already
been proposed for the 2D-DCT-II in [2].

V. CONCLUSIONS

In this brief, we presented a low-complexity architecture to
compute the DCT-V of length N = 32, which involves only
126 multiplications. We have also shown that the proposed
solution features near-optimal rate-distortion performance in
all-intra and random-access configurations with an average
Bjøntegaard Delta rate loss of about 0.04%, thus being well
suited to implement the AMT scheme, which is part of
the VVC forthcoming standard. We have used the proposed
architecture to derive a flexible architecture, which can be
reconfigured to compute five DCT-V of length N = 4.
Implementation results show that the proposed architecture
features complexity, speed and power consumption similar to
the best architectures for the DCT-II available in the literature.
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