
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Formal Approach to Verify Connectivity and Optimize VNF Placement in Industrial Networks / Marchetto, Guido; Sisto,
Riccardo; Valenza, Fulvio; Yusupov, Jalolliddin; Ksentini, Adlen. - In: IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS. - ISSN 1551-3203. - 17:2(2021), pp. 1515-1525. [10.1109/tii.2020.3002816]

Original

A Formal Approach to Verify Connectivity and Optimize VNF Placement in Industrial Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/tii.2020.3002816

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2853938 since: 2021-07-26T10:10:14Z

IEEE

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

1

A Formal Approach to Verify Connectivity and
Optimize VNF Placement in Industrial Networks

Guido Marchetto, Riccardo Sisto, Fulvio Valenza, Jalolliddin Yusupov, Adlen Ksentini

Abstract—The increased flexibility and inter-connectivity of
modern industrial communication networks, obtained through
the use of innovative technologies like Network Function Vir-
tualization (NFV) and Software Defined Networking (SDN),
requires a secure and manageable framework to support the
new communication and computing needs. To focus on these
requirements, this paper proposes a framework for reliable
placement of services across physically separated locations, which
offers both system optimization, in terms of latency and resource
utilization, and connectivity policy enforcement to guarantee
service reliability, safety, and security. This is achieved by
exploiting a new approach to solve the virtual network embedding
problem, using Optimization Modulo Theories (MaxSMT), which
allows the use of very expressive constraints.

Index Terms—industrial network, reachability verification,
virtual network embedding

I. INTRODUCTION

Industry 4.0 is nowadays paving the way to modern in-
telligent Industrial Network Systems (INSs) sharing technical
ambitions. This includes the ability to manage more hetero-
geneous communications among smart devices (e.g., smart
manufacturing, smart factory, and smart energy) or reconfigure
the system on-the-fly in an efficient and cost-effective manner.
The massive adoption of interconnected computer-based net-
works (i.e., the Industrial Internet of Things) allows dealing
with goods and services in an efficient and inexpensive way,
while making the remote control, monitoring, and management
of physical systems easier and cheaper. Network Function
Virtualization (NFV) is certainly one of the main candidates
to support this need for high flexibility, whereas Software
Defined Networking (SDN) allows to separate network control
functions from network forwarding functions. These technolo-
gies allow rapid service provisioning, a great level of dynam-
icity, and abstraction of the offered features. Hence, NFV and
SDN can transform current services of industrial networks,
consisting of vendor-specific hardware implementations, into
software implementations embedded in commodity servers,
i.e., into software-defined INSs.

Complexity of service graphs with multiple endpoints and
real-time (re)configuration performed due to the auto-scaling,
migration and life-cycle management of network services,
however, introduce the challenge of preserving the correct
behavior of a continuously changing network in case of
attacks, failures or maintenance tasks. Unfortunately, network
administrators manage network and security functions through

G. Marchetto, R. Sisto, F. Valenza, J. Yusupov, are with the Politecnico
di Torino, DAUIN; ({first.last}@polito.it), A. Ksentini are with the Eurecom
(adlen.ksentini@eurecom).

the manual configuration of low-level parameters. This manual
approach becomes almost impossible to apply in the context
of continuously changing virtual networks, because of the
difficulty of envisioning, in real-time, the correctness of the
whole configuration of such large systems, guaranteeing an
adequate level of protection. Without an alternative automated
approach, there would be an increasing risk of exposure to
cyber threats targeting industrial endpoint devices, such as
Remote Terminal Units, Advanced Metering Infrastructure,
Process Automation Controller, Human Machine Interfaces
(HMIs), with possible negative effects on both human safety
and business. In fact, security and safety are generally inter-
woven in INSs, as cybersecurity-related incidents potentially
could result in multiple fatalities or environmental disasters.
For example, security flaws in INSs that monitor or control
"critical" industrial processes (e.g. water, gas, energy distribu-
tion, nuclear engineering farm) may be catastrophic.

This paper reflects our contributions and their importance to
help to solve the above issues with a suitable automated tool
based on sound theoretical foundations that can prevent mis-
configurations, conflicts or sub-optimizations in the network.

On the basis of a preliminary work [1], in this paper we
present a full formal approach that automatically verifies the
connectivity properties of industrial networks and generates
optimal placement plans for mapping virtual machines to
physical machines. With respect to the preliminary paper, this
paper provides a more general formulation of the problem and
it introduces a new policy model, which supports multiple
forms of reachability invariants. In particular, the proposed
verification and Virtual Network Embedding (VNE) prob-
lems are formulated in First-Order Logic and solved jointly
by exploiting the Optimization Modulo Theories (MaxSMT)
approach. To the best of our knowledge, no other solutions
exist in the INS context that solve both the problems of VNE
and formal analysis of network properties in "one-shot", by
combining them together. The rest of the paper is structured
as follows. It starts with a presentation of related work in
Section II, followed by the motivation and presentation of our
approach in Section III. The service request model is described
in Section IV, while the next two sections (Section V and
Section VI), provide the details of how the formal verification
and VNF placement problems are solved jointly. In Section VII
the experimental evaluation of our approach and a use case are
presented. Section VIII concludes the paper.

II. RELATED WORK

Most of the past work formulates the embedding problem
using combinatorial approaches such as mathematical pro-

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

2

gramming (MP). However, MP is limited to arithmetic expres-
sions over integer, binary, or real variables [2] and it is specific
to a class of problems whose formulation satisfies certain
mathematical properties (e.g., integer programming, mixed-
integer linear programming). It is important to mention that
there exist work on a transformation of propositional calculus
statements into integer and mixed-integer programs [3], [2],
which then can be solved by commercial solvers (e.g., CPLEX,
Gurobi, LINDO, LINGO) efficiently. At the same time, these
approaches acknowledge that the transformation is impractical
in most cases and often unable to generate MaxSMT encodings
for many of the instances, due to the huge amount of produced
clauses. For this reason, existing approaches presented below,
deal with the placement and verification problems separately
and, to the best of our knowledge, no one proposes a unified
modeling approach of the two problems. With this respect,
the most related work to our one is arguably VFenceSynth
[4], which encodes the placement and verification synthesis
problems into SMT logics and provides a feasible solution
with a model that is the placement plan. However, it is not
the optimal placement plan, which may result in overutilization
of the resources in servers. The next subsections provide an
overview of previous related work on these separate subjects.

A. Formal verification

Recent work has made great progress for formal automated
network configuration verification tools ([5], [6], [7], [8],
[9]) and a few related to forwarding behavior of industrial
networks is highlighted. We adopt and enrich the notion of
reachability from Verigraph [5], which provides a method for
modeling service graphs as sets of logical formulas and for
verifying satisfiability of these formulas. One of the biggest
enrichments is the MaxSMT formalism, which allows us not
only to verify network invariants, but also solve the placement
problem of network nodes in an optimal way. In the context
of industrial control systems, [6] proposes verification of the
integrity of the message flow in two industrial protocols, with a
modeling approach that is very similar to the one of Verigraph
[5]. Instead, the authors of [8] focus on formal validation
of reliability requirements of protection functions, which are
limited to protection relays, instrumentation (voltage, current,
frequency, and other sensing devices) and Intelligent Elec-
tronic Devices. Similarly, [7] performs a formal analysis of
security and resiliency in smart grid scenarios and validates
the modeled system against resiliency specifications. This ap-
proach however only takes into consideration SCADA devices
while it does not address complex service graphs, where the
network consists of many network devices, as in future INSs.

B. VNF placement

In addition to the aforementioned literature, the related
work on VNE is covered and our approach is compared to
the state of the art. These approaches are categorized into
exact ([10], [11], [12], [13], [14]) and heuristic-based ([15],
[16], [17]) solutions. The purpose of VNE is to find the
optimal solution with a particular objective. There is a further
classification on the list of related work depending on whether

Grid Operations

EMS DMS/DA

Communication
Operations

Shared
HistorianDMS/DA

NMSPC

Customer Engagement

PCBilling
 Server Call Center

Communication Networks

Field Site

EMS/SCADA PLC Terminal

Power
Generation

PLC

Distribution
 Substation

RTU IED

Scada
 Backup

Remote
 Shutdown

DC 2DC 1 DC 3

RC

DC 4...*
Remote User

System
Vendors

Fig. 1: An illustrative view of an INS

the minimization of the end-to-end delay is the main objective
([12], [18], [16], [17], [14]) or not ([10], [11], [15]). In fact,
low latency communications are the premise for industrial
applications, where mission- and time- critical systems require
an end-to-end delay of the order of 1-100 ms ([19], [20]).
An optimization algorithm is presented in [17] for the virtual
network embedding problem over a set of distributed substrate
nodes taking into account the maximum allowed end-to-end
delay. According to [21] maximum allowed tolerance for the
session establishment in SCADA systems is around 75 sec,
which is not optimal for real-time applications where the
connection must be established as fast as possible. Thus, the
adaptation to lower values is recommended. The authors only
solve the placement and routing problems for each path in
a service request independently. Instead, our tool accepts in
a single service request the whole service graph consisting
of multiple paths.A Linear Programming (LP) optimization
problem is formalized in [18] for minimizing the number of
security functions. But this work fails to investigate resource-
constrained scenarios of the placement problem. The authors
of [22] propose a novel policy language to improve the expres-
siveness of the network properties by solving the placement
problem with one limitation. As noted at the beginning, the
mixed-integer formulation used in this approach is still not
expressive enough and it does not model the actual forwarding
behavior of the network. Instead, the authors rely on the
assumption that the VMs where the functions are deployed
are trustworthy and ensure correct packet forwarding among
the containers and the external network.

III. PROBLEM STATEMENT

This paper proposes a methodology to jointly perform, in
an automatic way, connectivity policy verification and optimal
VNE in INSs. This section first introduces and motivates our
work, by means of motivating use cases. Then, it provides a
high-level description of the adopted approach, which will be
further developed in the rest of the paper.

A. Motivating use cases

A possible infrastructure supporting the software-defined
INS paradigm is shown in Fig. 1. Here a bare set of endpoint
hardware devices of SCADA systems fixed in the power

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

3

plant is considered and interconnected by means of physical
network topology. Physical network topology is provided by
NFV infrastructure for the hosting of virtualized network
functions and SDN allowing to separate the control and data
for advanced use cases. In this paper, the focus is on distributed
INS systems known as Smart Grids, even though our approach
is generic for all industrial systems. In the case of non-
distributed industrial systems, only consideration is on a single
domain NFV infrastructure as a single DC with multiple nodes
(i.e., from different providers such as Amazon AWS service,
Microsoft Azure, and also OpenStack based), where the NFV
orchestrator is in charge of the availability of the resources.

In our use case, a SCADA system of software and hardware
elements is used to control and monitor industrial processes
in a smart grid. The smart grid consists of distributed sub-
stations and field sites with intelligent devices and sensors,
whereas SCADA control centers, defined as Communication
Operations and Grid Operations in Fig. 1 are equipped with
host computers and servers, where an engineer or operator can
supervise the process, as well as receive alarms from the power
grid. In this scenario, an incoming service request - Service
Function Chaining (SFC) as defined by Internet Engineering
Task Force (IETF), also known as VNF-Forwarding Graph
(VNF-FG) in ETSI [23], might involve pairs or lists of these
industrial endpoint devices, together with required network
functions in between these nodes, thus forming a service chain
or graph. A set of network functions forming a service graph
is deployed in an infrastructure consisting of one or more data
centers. The service request can also include the configuration
of each network function and, last but not least, a number
of policies that an administrator could specify to check the
correctness of the network behavior resulting from the service
request. This is the main criteria of the flexible but critical
environment where security errors may damage the entire
system. As an example of a security threat in the industrial
field, firewall misconfiguration can introduce high risk, where
firewall table may include only inbound traffic policies and
grant any outbound traffic, neglecting the very real possi-
bility that an attacker could be located inside the industrial
zone attempting to communicate outwards, looking to acquire
information about control system functions, configurations,
and operations. Usually, these types of misconfigurations are
detected by thoroughly analyzing the policies and firewall rules
of multiple network devices after the services are deployed.
Instead, this paper proposes a novel technique, which allows
to detect those misconfigurations before the actual deployment
of a service and provide a formal assurance that the rules in
the network will satisfy all policy requirements of the user.

Two examples are illustrated in Fig. 2, which represents two
possible service graphs that can be deployed in the above de-
scribed infrastructure (VNFs are represented as cubes). In the
first scenario, depicted in Fig. 2(a), the service graph imple-
ments an industry recommended network security guideline,
where the Power Generation field industrial control systems
must be isolated from a Distribution Substation. This is done
by means of a firewall. The graph also includes an AMI linked
to a back-end server, for instance, a Billing Server and, in order
to improve the overall security of the system, a DPI module.

PLC FW RTUDPI 1

SCADA Backup DPI 2

VPN Server VPN Client

Remote Userb)

a) Billing Server

RC AMI

Distribution SubstationPower Generation

Fig. 2: a) rechability and isolation b) alternative path

In this case the service request may include two connectivity
policies to be verified: clearly, the isolation between the Power
Generation field and the Distribution Substations, but also
the reachability between the Billing Server and the AMI
device. Those can be satisfied or not depending on the specific
configuration deployed in every single VNF and device. These
two connectivity policies defined by the user can be satisfied,
only if configuration parameters of intermediate VNFs allow
this. In the second scenario, shown in Fig. 2(b), the service
graph represents a reliable SCADA backup system where
the administrator requires the SCADA backup endpoint be
reachable by means of two redundant paths with different
security features. Those are provided by a DPI function in the
former and by a VPN tunnel in the latter. The administrator
can, therefore, be interested in verifying that the service
request as given satisfies an alternative path property, i.e.
that, with the deployed graph and configurations, the target
is actually reachable by means of the two paths.

In both cases, and in general in the industrial field, latency
minimization or bounding is key to guarantee proper operation
and performance, while taking care of datacenter utilization is
important for several reasons ranging from cost reduction to
power saving. This is the reason why we focused on these
two parameters for the placement task of our framework,
which however can be easily extended to optimize placement
according to different elements.

B. Proposed Framework

In order to reach our verification and optimization targets,
we developed a comprehensive framework depicted in Fig. 3
which can solve the joint VNE and formal verification problem
that was outlined, by means of a MaxSMT solver. The input is
a service request, which includes all the information provided
by the user (the network graph with VNF instances and
their configuration parameters, and the network policies). The
details of this request are given in Section IV.

Our approach for solving the problem is to formulate it as
a MaxSMT problem, which receives two sets of FOL clauses
as input: hard and soft clauses. Hard clauses must be true
necessarily, while soft clauses may be true or false, and they
are associated with weights. The problem consists of finding
an assignment of free variables that makes all hard clauses true
and that maximizes the total weight of the soft clauses that are
true. From the service request, an automated clause generator
generates the hard and soft clauses that are then given as input
to the MaxSMT solver (we use z3, a well-known solver). In

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

4

Automated
Clause

Generator

MaxSMT
Solver (z3)

Assignment
of variables

(placement plan)

service
request clauses

Fig. 3: Functional diagram of the proposed approach.

Fig. 4: A placement plan generated by the framework. Red
nodes are VNFs and brown nodes are the substrate nodes.

our approach, hard clauses are used to model the forwarding
behavior of VNFs, the connectivity-related network policies
to be verified, and the hard constraints associated with an
allocation (e.g., the overall latency of a path between the start
and end points of a flow should not exceed the maximum
tolerable latency). These clauses ensure that, if a solution is
found, it satisfies all user requirements.

In modeling the placement problem, soft clauses play an
important role. For instance, the decision to use a particular
physical link to connect two VNFs is defined as a soft clause,
which can be falsified in favor of choosing another possible
link, i.e. in favor of a similar other soft clause. Weights
may correspond to a number of metrics in the optimization
problem. As said, this paper uses the average latency of the
substrate links and the cost of using specific data centers in
an NFV infrastructure as weights, because of their interest in
industrial systems, but other similar criteria can be used. As
a result, a multi-objective problem is addressed: minimizing
the end to end latency and minimizing the total utilization
cost of the NFV infrastructure. In order to overcome this
competition between objectives, we prioritize them with the
help of different weights, as discussed in Section VI.

If the solver finds a solution, it returns the found assignment
of variables, which is a possible plan for our placement prob-
lem. Our framework converts this assignment to a graphical
representation as shown in Fig. 4, which can be accessed using
the GUI of our tool. If there is no way to satisfy all the hard
clauses, the solver provides a non-satisfiability report, which
means the input has to be fixed.

IV. SERVICE REQUEST MODEL

The verification and placement problem requires, as input
from the user, the Service Graph (SG) and the connectivity
policies to verify. This section elaborates on each of them.

A. Service Graph.

The SG is modeled as a directed graph
�E = (+ E , !E , �E

+
, �E

!
), similar to previous work in

[24], [25]. + E is the set of vertices, partitioned into two
disjoint subsets: # E and � E . # E is the set of VNFs =E

to be allocated, while � E is the set of endpoint VNFs 4E ,
whose allocation on the substrate network is assumed to be
fixed. Notice that the endpoint devices do not necessarily
have to be virtualized and they can co-exist as hardware
solutions without affecting our models. !E is the set of edges
(representing the links that connect VNFs with one another).
Each edge has a direction which means that outgoing and
incoming packet flows are associated with different edges.
Finally, �E

+
and �E

!
are the sets of properties that can be

taken by the attributes of vertices and edges, respectively.
Although this model is general enough, allowing various
possible attributes such as CPU, memory and link latency,
for simplicity this paper considers only a limited set of
properties. Each VNF =E to be allocated has a required
storage capacity attribute (i.e., the storage required by a
VNF), denoted storage(=E), a fixed packet processing delay
attribute (i.e., time required to process the incoming traffic),
denoted lat(=E), and a functional type attribute (i.e., software
program), denoted func(=E), where =E ∈ �E

+
. Depending on

the functional type of the VNF, a user may also define the
configuration parameters conf (=E) of that specific VNF, which
is another attribute used to define functional characteristics
of each VNF in the service graph. All these VNF attributes,
here represented as functions, are provided with the SG.
Processing delay is fixed as we assume ”no congestion“, due
to the fact that endpoint devices have low load values in
industrial networks. Processing delay is inversely proportional
to the computational power of the VNF and it is a property
of the VNF and not a demand. For what concerns links
between nodes, a bandwidth property denoted as band(;E) is
considered. Finally, vertices are uniquely identified by means
of integer indexes, where EE

9
denotes the vertex with index 9 .

Depending on the type of vertex EE
9
, it may correspond to a

service node =E
9

or service endpoint 4E
9
.

B. Policy model
In our model, a connectivity policy rule ? is a tuple

? = (C, B, 3), where B and 3 represent the source and the
destination of a communication, respectively, and C is the type
of policy described below. Source and destination B and 3

are both subsets of SG vertices (B, 3 ⊆ + E). They can include
either single VNFs or zones (e.g., whole IP subnets). For what
concerns the type C, in this paper we consider it can take one
of three different possible values, but our approach is flexible
enough to accommodate other types. In particular, we consider
reachability (R), isolation (I), and the presence of alternative
(A) paths. There is reachability from network node/zone B to
3, if there exists at least one path that connects B to 3 and in
this path, there are no functions that block this communication.
Instead, there is isolation from B to 3, if there is no path that
connects B to 3, or there are paths but in each one of them
there is at least one function that blocks this communication.
Finally, there are alternative paths from B to 3, if there are at
least two disjoint paths that connect B to 3 and that do not
include functions that block this communication. By disjoint
paths, we mean paths that have no shared edge and vertices.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

5

With reference to the previously described Fig. 2, the
properties introduced in Section III can be expressed by means
of this notation. In particular, reachability between the Billing
Server and the AMI device defined in scenario (a) can be
expressed as: ?01 = (R, {Billing Server}, {AMI})
whereas the isolation rule that isolates two zones can be
expressed as: ?02 = (I, {PLC, RC}, {RTU, AMI})

Furthermore, the policy on path alternative required in
scenario (b) can be expressed in the following way:

?1 = (A, {Remote User}, {SCADA backup}) (1)

V. FORMAL VERIFICATION

This section presents our formal methodology for the verifi-
cation of connectivity policies. Given the input SG and policy
rules, as presented in the previous section, our framework
constructs a set of FOL formulas that model the forwarding
behavior of the SG and then, using these formulas, it verifies
each policy rule as explained below.

A. Network model

The forwarding behavior of the network is modeled by
tracking the packets that each node can send and receive. A
packet is abstracted as a list of fields. Here are some field
examples for an IP packet: (i) src and dst are the source
and destination addresses; (ii) proto is the protocol type; (iii)
origin is the endpoint that originally generated the packet. The
specific fields to use can be easily customized as needed. We
introduce an abstract field of a packet to store the actual origin,
which is required in presence of network functions that modify
packet headers. To retrieve information about the packet fields
or the network nodes, we use function symbols. In FOL,
function symbols do not state facts and do not form sentences.
They are assigned any interpretation that is compatible with
the constraints over the function. Examples of function sym-
bols adopted in our model are Int sport(p) and Int dport(p),
representing the source and destination ports of packet p used
for TCP/IP networking at the application layer, respectively.
The forwarding behavior of the network is modeled in terms
of two predicates: • send(=0, =1, ?), which is true if source
node =0 can send packet p to destination node =1, with a
constraint defined below, stating that source and destination
addresses in the packet must be different; • recv(=0, =1, ?),
which is true if destination node =1 can receive packet p
from source node =0, with the same constraint on source and
destination addresses. The following set of conditions imposed
on the above functions expresses the general abstraction of the
network forwarding behavior:

send(=0, =1, ?0) =⇒ (=0 ≠ =1 ∧ ?0.src ≠ ?0.dst ∧ sport(?0) ≥ 0
∧sport(?0) < MAX_PORT ∧ dport(?0) ≥ 0
∧dport(?0) < MAX_PORT) , ∀=0, =1, ?0

(2)

recv(=0, =1, ?0) =⇒ send(=0, =1, ?0) , ∀=0, =1, ?0, (3)

where (2) states that source and destination nodes (=0 and
=1), as well as source and destination addresses in the packet
(?0.src and ?0.dst) must be different (the dot notation is used
to access packet fields), and also the constraints that source
and destination ports must be within a valid range of values.

Finally, (3) states that if packet ?0 can be received by node
=1 from node =0, then ?0 can also be sent by =0 to node =1.

B. VNF models

Industrial networks are composed of switches and more
complex network functions, such as firewalls, which may
alter the overall forwarding behavior of the network in a
way that depends on their configuration rules. Hence, we
introduce another set of formulas that describe the abstract
forwarding models of such network devices. For what con-
cerns the endpoint industrial devices (e.g., AMI, PAC, VFD,
HMI, and RTUs), they can send/receive packets to/from some
other endpoints. In this work, for simplicity, the configuration
parameters of these devices are not taken into account. The
other network nodes are the so-called middleboxes, i.e. the
VNFs that are on the paths between endpoints. Each one of
them needs specific formulas, unless it acts simply as a packet
forwarder, in which case its model can be omitted. Due to
space limitations, only the model of a stateless firewall is
presented, but we developed models for several other types of
VNFs, in a way similar to what can be found in [5]. The cost of
developing new VNF models is not negligible. However, most
of the commonly used VNFs belong to well known types,
for which a catalog of models can be provided. Adapting
a model found in the catalog to the simple variations of a
specific VNF is more affordable. Moreover, there are ad hoc
tools [26] designed for automatically extracting verification
models starting from an abstract programming-language-like
representation of a given network function, which lowers the
cost of developing new VNF models.

Firewalls are security functions that impose a boundary
between multiple domains in the network. They are designed
to allow or block network connections based on specific rules.
The forwarding behavior of a stateless firewall is modeled
on the basis of predefined decision rules, that are config-
ured when the service model is initialized. In particular,
the decision rules are managed through the uninterpreted
function fw_rule(;, <, =, >, ?), which filters on the IP 5-tuple
;, <, =, >, ?. For example, if the firewall table is configured
with the only rule <;1, <1,*,*,*>, the interpretation of the
function is given by (4).

fw_rule(;, <, =, >, ?) == (; == ;1 ∧< == <1) , ∀(;, <, =, >, ?) (4)

By default, a “whitelist” policy is used for our firewall
model, but the “blacklist” policy can be easily set with a
negation of the function. The model includes two clauses:
if the firewall can send a packet, then it must also be able
to receive the same packet from its predecessor, and fw_rule
must return true for this packet:

send(= 5 F , =0, ?0) =⇒ (∃(=1) |recv(=1, = 5 F , ?0)∧
fw_rule(?0.src, ?0.dst, sport(?0) , dport(?0) , ?0.proto) , ∀(=0, ?0)

Other functions can be modeled in a similar way, by variations
of this formula. For example, in the case of a DPI, which
performs application layer packet filtering, it is possible to
model a lookup in a table of blacklist items by means of a
function and to use a formula similar to the one of the firwall,
but with the fw_rule function substituted by this one.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

6

C. Policy enforcement

All types of policies supported by our tool (i.e., reacheabil-
ity, isolation, and alternative path, as presented in Section IV)
can be verified by verifying the following basic formula one
or more times:

∃(=0, ?0) | recv(=0, 3, ?0) ∧ ?0.origin == B, (5)

which means that node 3 can receive a packet that was
originally sent by node B. Note that, according to this formula,
node 3 may receive a packet that is different from the
one originally sent, which takes into account the possibility
that intermediate VNFs modify packets during their trip to
destination. This is why only the origin of the received packet
(?0) is constrained (?0.origin == B) while the other fields are
not. Formula (5) expresses a reachability policy between two
VNFs. An isolation policy is simply its negation, while an
alternative path policy ?(�, B, 3) can be verified as follows:
first, all the pairs of disjoint paths connecting B to 3 in the
SG are searched by means of graph algorithms. For each one
of these pairs, reachability is checked separately for each of
the two alternative paths that make the pair. This is done
by restricting the graph to the path being considered and by
applying (5). As soon as a pair is found for which both paths
satisfy reachability, we know the policy rule is true, otherwise
it is not satisfied.

VI. VNF PLACEMENT

This section formalizes the optimization problem related
to the placement of VNFs in the substrate network. We
first define a model for the substrate network, then the FOL
formulas that model resource allocation constraints, routing
tables and optimization objectives.

A. Substrate graph.

We model the substrate network, which is fixed for our tool,
as another undirected graph similar to the one that describes
the service request (see Section IV): �B = (+ B , !B , �B

+
, �B

!
),

where + B = #B ∪ � B is the set of vertices, made up of the
two disjoint subsets #B (substrate nodes) and � B (substrate
endpoints), !B is the set of edges (i.e. the links connecting
substrate nodes and endpoints with one another), instead �B

+

and �B
!

are the sets of values that can be taken by the attributes
of the vertices and edges, respectively. In this paper, EB ranges
over + B , =B ranges over #B , 4B ranges over � B , and ;B ranges
over !B . As vertex attributes, we can use, for example, CPU,
RAM, hard disk capacity, geographical location, etc., while
for link attributes, throughput, latency, jitter, etc. can be used.
For simplicity, here only one substrate node attribute (hard disk
capacity) and only one link attribute (latency) are retained, but
the extension to other metrics is straightforward. As industrial
networks are geographically distributed, propagation delay
can affect time-critical communications. For each substrate
node =B , its associated available storage capacity is denoted
storage(=B) ∈ �B

+
, while for each substrate link ;B , its

associated latency is denoted latency(;B) ∈ �B
!

. Similarly to
what has been done with the service request graph, integer
indexes are used for the vertices of this graph too, with the

same notation. Moreover, ;B
9:

denotes the link between the
vertices indexed by 9 and : .

B. Resource allocation.

This subsection describes the hard constraints related to
resource requirements of the VNE problem. First, we define
boolean variables H8 and G8 9 with the following meaning: H8
means that substrate node =B

8
is in use while G8 9 means VNF

=E
8

is allocated on substrate node =B
9
. The notation =E

8
↑ =B

9
for

G8 9 is also used. Then, we use two mapping functions in order
to represent the mapping of a service request onto the substrate
network: "= maps the VNFs of the service request onto the
substrate nodes, in such a way that their resource requirements
are satisfied, while "4 maps endpoints. The formal definition
of "= is:

"= (=E) = =B , ∀=E ∈ # E , =B ∈ # B , =E ↑ =B (6)

subject to∑
8 |=E

8
↑=B

9

attribute(=E
8) · G8 9 ≤ attribute(=B9) · H 9 , ∀ 9 |=B9 ∈ # B (7)

with the assumption that, for G8 9 and H 9 , values true and
false correspond to 1 and 0, respectively. Equation (7) de-
fines the generic constraint on the generic attribute function
attribute(=), which stands for any one of the specific attribute
functions, such as storage(=) and cpu(=). Hence, (7) represents
a set of constraints meaning that the sum of the required
values of each attribute (e.g. storage and CPU) for the VNFs
mapped onto a substrate node cannot exceed the value of
the same attribute available on that node. Behind this rule
there is the underlying assumption that VNFs from the same
service request can share the same substrate nodes, which is
commonly allowed in NFV systems, e.g. as a way to reduce
latency. The representation of "= is built as a set of clauses
including the inequalities in (7) plus additional clauses that are
necessary in order to state that "= must be a function. More
precisely, these clauses state that "= maps each VNF exactly
onto one substrate node:∑

9 |=B
9
∈# B

G8 9 = 1, ∀8 |=E
8 ∈ # E . (8)

Finally, the following clauses (implications) are necessary in
order to correctly relate H 9 to G8 9 ,:

H 9 =⇒
∨
8

G8 9 , ∀ 9 |=B9 ∈ # B , (9)

The meaning of these last clauses is that if substrate node = 9
is used, then there must be at least one VNF mapped onto it.

C. Routing tables.

The concept of transfer functions, which was previously de-
veloped by VeriFlow [27] and HSA [28], is used to model the
network forwarding behavior of the virtual service. A transfer
function represents the routing tables of a network function
involved in the service request. By means of the formulas
corresponding to the transfer function, we describe the path
packets take towards their final destination. This allows us to
construct service graphs and integrate the presented models of

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

7

network functions to the overall network model. According
to the input SG, for each VNF EE

8
and its adjacent one-

hop neighbor EE0, our tool automatically generates a predicate
route(EE

8
, EE0, ;

B
9:
). The predicate is true if the adjacent neighbor

of EE
8

is EE0 and it can be reached via the link that connects
substrate nodes 9 and : , i.e. ;B

9:
.

D. Optimization Objectives.

By means of the forwarding behavior of VNFs, the place-
ment constraints can be formulated and a weight is assigned
to different placement plans. A decision to place the adjacent
node to an endpoint VNF 4E= in the SG is represented by a set
of soft clauses with a negative weight, whose absolute value
is the link latency. This will cause the MaxSMT solver to
minimize the total latency of the chosen infrastructure path.
For each possible substrate node =B

:
onto which the adjacent

neighbor VNF in the SG (=E0) can be allocated, the following
soft clause is added:

Soft((route(4E0 , =
E
0 , ;

B
0 :
) =⇒ G0:) , −lat(;B0 :

)) , (10)

where the notation Soft(2, F) means that 2 is a soft clause
with associated weight F. Note that the location of 4E0 is fixed
in the substrate endpoint 4B0

In practice, the routing table of the endpoint VNF specifies
to which substrate node : a packet is forwarded depending on
the allocation of the next VNF in the SG.

The soft clauses for the other VNFs =E
8
∈ # E in the SG,

with 8 > 0, are generated similarly:

Soft((route(=E
8 , =

E
0 , ;

B
9:
) =⇒ G8 9 ∧ G0:)) , −lat(;B

9:
)) , (11)

i.e., if VNF 8 forwards packets to the adjacent VNF 0 in the
SG through link ; 9: , then the boolean variables G8 9 and G0: ,
which indicate the locations of the VNFs, must be true. If
9 = : , i.e. two VNFs are mapped onto the same substrate node,
then lat(;B

9:
) = 0, and a soft clause with weight equal to zero

is added. The introduction of the variables used to indicate
locations of the VNFs allows us to present the bandwidth
constraint that has to be considered to avoid overloading of
substrate link capacity.∑

8 |=E
8
↑=B

9

band(;E80) · (G8 9 ∧ G0:) ≤ band(;B
9:
) , ∀ 9 , : |=B9 , =

B
:
∈ # B (12)

Since for each VNF it is also possible to specify a (fixed)
processing delay, represented by the lat(=E) function, this must
be considered when computing the total end-to-end latency.
In particular, if one is interested in specifying an upper bound
on the total end-to-end latency that must be guaranteed in the
system, one can formulate this constraint as an additional hard
clause. Furthermore, we need to properly manage our multi-
objective optimization problem, as described in Section III,
i.e., to give priority to latency minimization rather than to
efficient resource utilization. In order to do that, the Lexico-
graphic Multi-Objective Programming (LMOP) problem [29]
can be encoded into MaxSMT using the Boolean Lexico-
graphic Optimization scheme described in [30], by assigning
weights to each objective function, where the objectives can
be ranked in order of importance. As already noted, the solver
will minimize latency because of the weights associated with

Fig. 5: Experimental topologies, where the location of end-
point smart grid nodes is fixed. Physical infrastructure com-
posed of 4 7 DCs and © IEEE 14-bus power system

the soft clauses for the route predicates. As we want to min-
imize also the number of used substrate nodes, an additional
soft clause is generated for each substrate node =B

8
∈ #B:

Soft(¬H8 , !), where ! is a constant selected according to the
target of the minimization: a larger L gives priority to node
utilization minimization, whereas a smaller L gives priority to
latency minimization. The MaxSMT solver attempts to assign
false values to the boolean variables H8 in order to minimize
the penalty for falsified clauses in the current model, thus
minimizing the number of nodes in use. Then, by feeding the
MaxSMT solver with the conjunction of the clauses expressing
the forwarding behavior of the network (Section V) and the
ones representing the placement constraints (Section VI), we
obtain, at the same time, the verification that the specified
policies hold, and the optimal placement plan, or an indication
that the policies are not satisfied.

VII. IMPLEMENTATION AND VALIDATION

To evaluate our approach, a smart grid is considered as a
representative use case of an industrial network. In particular,
we use the South African National Research Network (SAN-
ReN) [31] network topology as the substrate backbone with
7 nodes and 7 links for the smart grid nodes as shown in
Fig. 5. The IEEE BUS 14 test system topology is chosen
as a power grid infrastructure, while a simplified control
network consisting of smart grid endpoints is built based on
a real topology (not referenced because of a nondisclosure
agreement). These topologies are placed in a 50x50 square
kilometer geographic area as shown in Fig. 5 and the Euclidean
distance between nodes in the coordinate system is considered
as a metric of the link latency. All experiments run on a single
CPU core of an Intel i7-6700 based PC, with 32GB RAM.

There are 19 buses/nodes in the substation locations, 17
connections between buses, 8 transformers and 11 constant
impedance loads. Each power system bus functions as a gate-
way router that is connected to the closest substrate network
node either through wired or wireless links (eg. CDMA,
4G/LTE). The gateway routers aggregate traffic from endpoint
VNFs to be forwarded to other endpoints or substrate nodes

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

8

EMS/SCADA

DMS/DA
NAT
n1v

FW
n2v

DPI
n3v

IED

PLC RC

RTUla

lb

lcld le
lf

p1= (R,{EMS/SCADA,DMS/DA,},{IED,RTU,PLC})
p2=(I,{RC},{IED,RTU})

Power
Generation

Distribution
 Substation

Fig. 6: Service request example

TABLE I: Computation time of different topologies

Topology Nodes Links Time (O&V) Time (O+V)
Internet2[33] 10 13 0.3s 0.54s
GEANT[33] 22 36 12.9s 13.2s
UNIV1[34] 23 43 21s 23.23s

AS-3679[35] 79 147 24.3s 26.2s

throughout the substrate network. For the sake of simplicity,
only the part of the power network topology and preset/map
the endpoint VNFs of the service on them are highlighted in
Fig. 5. The physical connections that link the endpoint VNFs
to substrate nodes are represented with dashed lines.

As an example of a service request, the paper focuses on
the use case represented in Fig. 6, which includes SCADA
control components, peripheral devices required to interface
with the power grid and machinery, and network functions
to be allocated in between. In this example, there is an
assumption that EMS/SCADA, DMS/DA (distribution man-
agement system and distributed automation), and devices from
Power Generation and Distribution Substation are the endpoint
VNFs of the smart grid and the placement of these devices
is predetermined and attached to specific data centers (i.e.,
they are not taken into account in solving the optimization
problem). Control center endpoints are located behind the
NAT =E1 and connected to the SCADA peripheral devices
through the Firewall =E2 . Additionally, there is a DPI network
function =E3 that inspects the packets arriving at IED and RTU.
Tests are run to obtain an optimal placement in terms of
end-to-end latency and number of utilized data centers, while
guaranteeing two policies are satisfied. In particular, to apply
the reachability and isolation policies shown in Fig. 6, which
state that the SCADA control devices (i.e., EMS/SCADA,
DMS/DA) must be able to reach SCADA slaves in Power
Generation station and in Distribution Station, whereas these
substations must be isolated from each other to protect the
network from unauthorized access. The service request also
includes the following configurations for the involved VNFs,
introduced by means of the notation described in Section
IV: (i) NAT =E1 : IP address range for devices in the private
network; (ii) Firewall =E2 : Allow traffic from NAT, deny others;
(iii) DPI =E3 : drop all packets containing some well-known
attack signatures. The storage requirements of each VNF have
been selected randomly with a uniform distribution between
1 and 10 gigabytes, while the available hard disk capacity
of each data center has been selected in the range 10-15
gigabytes and does not contain any VNF, intially. Finally, the
overall processing delay of each VNF is uniformly distributed
between 5 and 10 milliseconds. [32].

The clauses are provided as an input to the solver, using

the Java API. As the configuration parameters of the involved
VNFs satisfying the two policies in Fig. 6, the z3 solver returns
a model with values assigned to all variables x and y described
in Section VI. In our use case, G16, G26, G32, H6, H2. have value
1 (true). Under these circumstances, the minimum number of
utilized DCs is equal to 2. Algorithms used by the solver in
this work guarantee the optimality of the solutions that they
produce. This is a latency-aware optimal placement plan of
VNFs in substrate network for our use case, where the NAT
=E1 is allocated on the substrate node =B6, the FW =E2 on =B6, the
DPI =E3 on the substrate =B2. Similarly, truth assignment of H6
and H2 shows that the substrate nodes =B6 and =B2 are in use.

Further, Table I presents (O&V column) the computation
time obtained by feeding our tool with this service request
as input and some well-known benchmark topologies as a
substrate network. The first listed, Internet2 [33], is a backbone
network consisting of 10 nodes with 100 Gb/s interfaces,
supporting over 66,000 institutions in the United States.
GEANT [33] is the high bandwidth European research and
education backbone consisting of 22 nodes and 36 links. In
order to check the scalability of our approach, UNIV1 [34]
2-tier campus data center network and AS-3679 [35] Rock-
etfuel ISP topologies with 23 and 79 nodes, are also used
respectively. The case studies are based on the IEEE 14-bus
power system for each topology of data centers. The time
taken by the z3 MaxSMT solver to compute the results for the
Internet2 topology adopted by [12] is only a few milliseconds.
Computation time significantly increases for larger substrate
networks, quickly exceeding 10 sec for substrate networks
with ≥22 nodes. It must be noted also that the VNFs of the
service request, in these scenarios, are configured to satisfy
the connectivity policies. In case of a violation of a policy, our
framework returns proof of the unsatisfiability of the problem
without any placement plan, thus preventing problems from
hitting the forwarding plane. For the sake of completeness,
we also consider the performance of solving the optimization
and the verification problems separately, i.e., the two models
are processed separately on z3. As the variables related only
to the optimization model of the MaxSMT instance have a
larger number of degrees of freedom when there is no notion
of policy verification (and vice versa), z3 solver spends more
time to compute the instances of these two separate problems.
This is confirmed by our experimental results presented in
Table I (V+O column). It can be seen how the time required
to compute the verification and optimization models separately
is higher than solving them jointly. This further validates our
approach of performing joint optimization and verification.

The scalability of our approach has been evaluated by
measuring the time taken to solve problems of increasing size.
The time spent by z3 to solve the MaxSMT instance for a
single request with a varying number of DCs, VNFs, and
policies is shown in Fig. 7. As it makes no sense to have large
policy numbers with small VNF numbers and vice versa, the
ratio of number of VNFs to number of policies is kept fixed
at 1:2. Instead, multiple requests can be solved sequentially
or even in parallel, by merging them into a single larger
request. Parallelism can also be exploited for the solution
of the MaxSMT problem as far as the solver supports it.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

9

8
10

15

0

50

100

150

200

250

8 10 12 14 16 18 20 22 24 26 28 30

C
o
m

p
u
ta

ti
o
n
 t

im
e

(s
)

Number of VNFs (policies=VNFs/2)
8 10 15

Number of DCs

Fig. 7: Average execution time of the solver for each request

In our case, the parallel disjoint tactics provided by z3 can
be used. However, this analysis is out of the scope of this
paper and remains to be investigated in a future study. We
observe that computation time increases almost linearly with
the size of the service request on the same substrate network.
There is, however, a notable deviation in terms of computation
time, when the number of DCs increases along with the
number of VNFs and policies. This is due to the fact that
for larger substrate networks, a larger set of allocation options
has to be constructed, thus increasing the number of formulas
given to the solver. As shown in Fig. 7, the average runtime
remained within a minute for a moderately sized substrate
network of 8 DCs, while for a large-scale network of 15
DCs, the z3 solver requires up to 3 minutes to generate a
placement plan. In contrast, the only approach close to ours,
VFenceSync [4], requires 10 minutes to obtain a non-optimal
placement plan for the network consisting of 15 DCs. As
the connectivity verification and network planning is usually
done once and before the actual deployment, we argue that
longer computational times can be permissible especially if
they result in finding verified, optimal deployments that offer
significant cost savings. Average Memory usage rises from
0.4GB to 0.6GB for the service request chain containing 5
VNFs and 10 respectively and continues to increase gradually
to the peak memory usage of 1GB for the service request chain
containing 14 VNFs. This shows how memory intensive the
verification and optimization processes are.

Finally, the behavior of the proposed system when subject
to multiple requests has been studied in simulated scenarios.
Starting from an initial state with no service deployed and all
resources available at time 0, the system receives a series of
randomly generated requests. Of course, as far as new requests
are successfully embedded, the probability of failure due to
unavailability of the necessary resources increases. Fig. 8(a)
shows the average acceptance ratio, i.e. the fraction of requests
that are successfully embedded, over time. The average value
is considered over 20 experiments due to the randomness
introduced in defining the service requests. Another similar ex-
periment has been made to study how computation time varies
when the system receives an increasingly longer sequence of
requests. Fig. 8(b) shows the total computation time required
to embed a series of service requests (SRs), with a rate of 5
service requests arriving every 10 minutes. In order to keep
the acceptance ratio of the algorithm equal to 1, the size of the
substrate network is increased over the x-axis as the number of

1
0
 S

R
s

5
 S

R
s 1
5
 S

R
s

2
0
 S

R
s

2
5
 S

R
s

3
0
 S

R
s

(a) (b)

Fig. 8: (a) Acceptance ratio over time (b) Computation time.

total requests increases. It is important to note that the network
reconfiguration of a Smart Grid is performed not frequently,
due to reasons such as weather factors, protection malfunction,
service upgrade or cyber-attacks[36]. The service instantiation
time of major NFV Orchestrators in case of a reconfiguration
is usually in the order of minutes[37]. In comparison, the
computation time introduced by our framework is acceptable.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a framework for efficient resource mapping
and satisfaction of connectivity policies for industrial control
systems that employ the NFV/SDN technology is presented.
The combination of verification and placement problems en-
ables latency-aware network embedding in the NFV infras-
tructure and allows us to check the end-to-end connectiv-
ity requirements of the network service in the presence of
VNF configurations. To evaluate our approach, we have used
the IEEE 14-bus system and several physical topologies of
data centers. Our experiments show that the new MaxSMT
approach can be used to find optimal solutions in order of
seconds when considering substrate networks with significant
numbers of data centers. Our work also shows the power of
FOL formulations which allows the specification of expressive
constraints compared to Integer Programming.

In future work, we will perform a Pareto analysis of the
proposed optimization problem to show the trade-offs between
different objectives. Other perspectives for future work include
the online handling of service graphs, reliability and availabil-
ity of the resources, in addition to allowing the migration of
previously embedded service graphs.

REFERENCES

[1] G. Marchetto, R. Sisto, J. Yusupov, and A. Ksentini, “Formally verified
latency-aware VNF placement in industrial internet of things,” in 14th
IEEE Inter. Workshop on Factory Communication Systems, WFCS 18.
IEEE, 2018, pp. 1–9.

[2] E. Demirović, N. Musliu, and F. Winter, “Modeling and solving staff
scheduling with partial weighted maxsat,” Annals of Operations Re-
search, vol. 275, no. 1, 2019.

[3] G. J. Gordon, S. A. Hong, and M. Dudík, “First-order mixed integer
linear programming,” CoRR, vol. abs/1205.2644, 2012.

[4] A. H. M. Jakaria, M. A. Rahman, and C. Fung, “A requirement-oriented
design of nfv topology by formal synthesis,” IEEE Trans. Netw. Service
Manag, 2019.

[5] S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and
R. Sisto, “Formal Verification of Virtual Network Function Graphs in
an SP-DevOps Context,” in Proc. of the 4th European Conf. of Service
Oriented and Cloud Computing (ESOC), 2015.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3002816, IEEE
Transactions on Industrial Informatics

10

[6] J. Dreier, M. Puys, M.-L. Potet, P. Lafourcade, and J.-L. Roch, “For-
mally and practically verifying flow properties in industrial systems,”
Computers & Security, 2018.

[7] M. A. Rahman, A. H. M. Jakaria, and E. Al-Shaer, “Formal analysis for
dependable supervisory control and data acquisition in smart grids,” in
c Dependable Systems and Networks, 2016.

[8] M. Masselot, S. Patil, G. Zhabelova, and V. Vyatkin, “Towards a formal
model of protection functions for power distribution networks,” in Proc.
of the Conf. of the IEEE Industrial Electronics Society, 2016.

[9] C. Basile, D. Canavese, C. Pitscheider, A. Lioy, and F. Valenza, “Assess-
ing network authorization policies via reachability analysis,” Comput.
Electr. Eng., vol. 64, no. C, 2017.

[10] C. Basile, C. Pitscheider, F. Risso, F. Valenza, and M. Vallini, “Towards
the dynamic provision of virtualized security services,” in Cyber Security
and Privacy, F. Cleary and M. Felici, Eds., 2015.

[11] C. Qian and S. S. Lam, “Greedy routing by network distance embed-
ding,” IEEE/ACM Trans. Netw., vol. 24, no. 4, 2016.

[12] M. Hasan and H. Mouftah, “Cloud-centric collaborative security service
placement for advanced metering infrastructures,” IEEE Trans. on Smart
Grid, vol. PP, no. 99, 2017.

[13] J. Aghaei, A. Baharvandi, A. Rabiee, and M. Akbari, “Probabilistic pmu
placement in electric power networks: An milp-based multiobjective
model,” IEEE Trans Ind. Informat., vol. 11, no. 2, 2015.

[14] J. Son and R. Buyya, “Latency-aware virtualized network function pro-
visioning for distributed edge clouds,” Journal of Systems and Software,
vol. 152, 2019.

[15] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “Vnf placement
and resource allocation for the support of vertical services in 5g
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 1, 2019.

[16] M. Hasan and H. Mouftah, “Latency-aware segmentation and trust
system placement in smart grid scada networks,” in Proc. of the
IEEE 21st Int. Workshop on Computer Aided Modelling and Design
of Communication Links and Networks (CAMAD), 2016.

[17] M. Gharbaoui, C. Contoli, G. Davoli, G. Cuffaro, B. Martini, F. Pa-
ganelli, W. Cerroni, P. Cappanera, and P. Castoldi, “Experimenting
latency-aware and reliable service chaining in next generation internet
testbed facility,” in Proc. of the Conf. on Network Function Virtualization
and Software Defined Networks (NFV-SDN), 2018.

[18] M. Hasan and H. Mouftah, “Optimization of trust node assignment for
securing routes in smart grid scada networks,” IEEE Syst. J., vol. 13,
no. 2, 2019.

[19] M. F. Hossain, A. U. Mahin, T. Debnath, F. B. Mosharrof, and K. Z.
Islam, “Recent research in cloud radio access network (c-ran) for
5g cellular systems - a survey,” Journal of Network and Computer
Applications, vol. 139, 2019.

[20] A. M. Ahmed, S. A. Hasan, and S. A. Majeed, “5g mobile systems,
challenges and technologies: A survey,” Journal of Theoretical and
Applied Information Technology, vol. 97, no. 11, 2019.

[21] I. Lopez, M. Aguado, C. Pinedo, and E. Jacob, “Scada systems in the
railway domain: Enhancing reliability through redundant multipathtcp,”
in Proc. of the IEEE Conf. on Intelligent Transportation Systems, 2015.

[22] M. Alaluna, L. Ferrolho, J. R. Figueira, N. Neves, and F. M. V. Ramos,
“Secure virtual network embedding in a multi-cloud environment,”
CoRR, vol. abs/1703.01313, 2017.

[23] E. G. N. . V1.1.1, “Network Functions Virtualisation (NFV); Terminol-
ogy,” IEEE Network, vol. 1, no. 5, pp. 1–50, 2013.

[24] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, 2008.

[25] X. Cheng, S. Su, Z. Zhang, K. Shuang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology awareness and optimiza-
tion,” Computer Networks, vol. 56, no. 6, 2012.

[26] G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “A framework
for verification-oriented user-friendly network function modeling,” IEEE
Access, vol. 7, pp. 99 349–99 359, 2019.

[27] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proc. of the ACM
1st Workshop on Hot Topics in Software Defined Networks, 2012.

[28] A. Fiessler, C. Lorenz, S. Hager, B. Scheuermann, and A. W. Moore,
“Hypafilter+: Enhanced hybrid packet filtering using hardware assisted
classification and header space analysis,” IEEE/ACM Trans. Netw.,
vol. 25, no. 6, 2017.

[29] A. Volgenant, “Solving some lexicographic multi-objective combinato-
rial problems,” Europ. J. of Operational Research, vol. 139, no. 3, 2002.

[30] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 3, 2011.

[31] South African National Research Network (SANReN). Accessed on
2018. [Online]. Available: https://www.sanren.ac.za/south-african-nren/

[32] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying nfv and sdn to lte mobile core gateways, the functions
placement problem,” in Proc. of the 4th ACM Workshop on All Things
Cellular: Operations, Applications, & Challenges, 2014, pp. 33–38.

[33] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proc. of the 3rd Int. Network
Optimization Conf., 2007.

[34] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. of the 10th ACM SIGCOMM Conf.
on Internet Measurement, 2010.

[35] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12 (1), 2004.

[36] A. Abu-Elanien, M. Salama, and K. Shaban, “Modern network recon-
figuration techniques for service restoration in distribution systems: A
step to a smarter grid,” Alexandria Engineering J., vol. 57, no. 4, 2018.

[37] M. Peuster, M. Marchetti, G. G. de Blas, and H. Karl, “Automated
testing of nfv orchestrators against carrier-grade multi-pop scenarios
using emulation-based smoke testing,” EURASIP Journal on Wireless
Communications and Networking, vol. 2019, 2019.

Guido Marchetto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Associate Profes-
sor with the Department of Control and Computer
Engineering. His research topics cover distributed
systems and formal verification of systems and pro-
tocols. His interests also include network protocols
and network architectures.

Riccardo Sisto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino,
Italy, in 1992. Since 2004, he has been a Full Pro-
fessor of computer engineering with the Politecnico
di Torino. He has authored and coauthored more
than 100 scientific papers. His main research inter-
ests include formal methods, applied to distributed
software and communication protocol engineering,
distributed systems, and computer security. He is a
Senior Member of the ACM.

Fulvio Valenza received the M.Sc. (summa cum
laude) in 2013 and the Ph.D. (summa cum laude)
in Computer Engineering in 2017 from the Politec-
nico di Torino, Torino, Italy. His research activity
focus on network security policies. Currently he is a
Researcher at the Politecnico Torino, Italy, where he
works on orchestration and management of network
security functions in the context of SDN/NFV-based
networks.

Jalolliddin Yusupov received the M.S. degree
in computer engineering from the Politecnico di
Torino, Italy, in 2016, where he is currently pur-
suing the Ph.D. degree in control and computer
engineering. His primary research interests include
formal verification of security policies in automated
network orchestration. His other research interests
include modeling, cyber physical systems, and cloud
computing systems.

Adlen Ksentini received the Ph.D. degree in com-
puter science from the University of Cergy-Pontoise
on QoS provisioning in IEEE 802.11-based net-
works. Since 2106, he has been a professor with
the Communication Systems Department of EURE-
COM. His current research topics lie in the field of
architectural enhancements to mobile core networks,
mobile cloud networking, network functions virtual-
ization and software defined networking.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 18,2020 at 11:16:48 UTC from IEEE Xplore. Restrictions apply.

