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ABSTRACT

Power supply of big infrastructures is today a tremendous op-
erational cost for providers and the expected growth of In-
ternet traffic and services will lead to a further expansion of
the computing and networking infrastructures and this, in its
turn, raises also concerns in terms of sustainability. In this
context, renewable energy generators can help to both reduce
costs and alleviate the concerns of sustainability of big infras-
tructures. In this paper, we consider the case of Data Centers
(DCs) composed of a few sites located in different geographi-
cal positions and powered with solar energy. Due to the inter-
mittent nature of solar energy, different time zones and price
of electricity in different locations, load management strate-
gies are fundamental. We consider predictions of the solar
energy production performed through Artificial Neural Net-
works and we assess the impact of predictions on load man-
agement decisions and, ultimately, on the DC performance.

Index Terms— Artificial Neural Networks, Solar Energy,
Data Centers.

1. INTRODUCTION

In the last years, the Cloud computing paradigm has emerged
as a mean to provide contents, services, computing and stor-
age facilities to end costumers and to companies, in a very
dynamic and flexible way. The size and the number of data
centers (DCs) have grown accordingly. With the expected fur-
ther increase of the traffic carried by Internet, pushed by the
further diffusion of communication services, by the digital-
ization of services and products, the trend is not expected to
change in the next years.

One of the main challenges coming with the growth of the
size and complexity of these big data infrastructures is their
energy consumption, estimated to reach 140 billion kilowatt-
hours annually by 2020, corresponding to about 50 large
power plants [1]. The implications of this huge consumption
are manifold and raise a number of concerns. First, the ex-
pected increase of energy consumption implies an increase
of costs for electricity bills. Second, the size of these infras-
tructures makes their powering critical per se. Finally, there

is a general concern about the sustainability of their growth,
concern which is becoming the more and more critical as
the general awareness of the impact of energy consumption
on climate changes grows. In this context, the introduction
of renewable energy sources (RES) appears as an interesting
possibility that jointly helps reducing the cost of electricity
bills, reduce the burden on the power grid, stressed by the
excessive needs of these systems, alleviate the concerns on
sustainability and carbon emissions [2]. While RES are very
attractive for the above mentioned reasons, their introduc-
tion as power supply to DCs requires a careful integration of
energy management strategies into the system operation and
management.
In this paper, we consider a geographical distributed DC
composed of a few sites, each equipped with a hybrid power
supply system composed of photovoltaic (PV) panels, energy
storage units and access to the power grid. By being in differ-
ent locations, the sites undergo different electricity prices and,
by effect of time zones and different weather conditions, the
sites are exposed to different levels of renewable energy (RE)
production and grid electricity prices. In order to manage the
load among the sites so as to adapt the working conditions of
the DC sites, to the price and green energy production, and
reduce costs, the prediction of the solar energy production is
important. Indeed, similar scenarios were already considered
in our previous work [3] under the optimistic assumption that
the PV panel production is known in advance. In this paper,
we consider the same approach as in [3] but we make the
more realistic assumption that the green energy production
is not known a-priority but can be predicted. In particular,
the predictions are performed using Recurrent Neural Net-
works (RNN). The results we present in this paper prove that
the introduction of load management strategies to reduce the
cost and the consumption of geographically distributed DCs
is feasible and effective. Marginal difference between the
results achieved with a perfect knowledge of the energy pro-
duction and with predictions can be observed. Other studies
in the literature explore the opportunity of energy cost-saving
by routing jobs based on electricity prices [4], [5], [6], [7],
[8]. However, the introduction of RES and predictions of the



RE production had not been considered in this context.

2. THE SYSTEM

As introduced in the previous section, we consider the multi-
site load management strategy proposed in [9] and then stud-
ied in [3] in presence of RE generated by PV panels. The
strategy is called EcoMultiCloud and is organized in two
layers. In the upper layer the various DC sites exchange
some very basic information, i.e., the value of a few indi-
cators that describe in a very compact way the site working
conditions. These indicators are typically as simple as the
load, the electricity price, the amount of available green en-
ergy, the Power Usage Effectiveness (PUE). This information
is exchanged among sites and used to distribute the Virtual
Machines (VMs), i.e., the workload, among the sites. In ad-
dition, this same information is used to decide possible VM
migrations among sites, migrations which aim at adjusting
the workload distribution. At the lower layer, some strategy
that is specialized within each site is used to allocate the
workload among servers within the same site.

The scenario that we consider for the derivation of numer-
ical results is as in [3]: four sites compose the geographically
distributed DC. They are located in California, Ontario, UK,
Germany and have a PUE of 1.56, 1.7, 1.9, 2.1, respectively.
The DCs are equipped with a hybrid power supply system that
includes, besides the possibility to get power from the grid,
PV panels and batteries in which the excess of solar energy
can be stored for future usage. We assume a battery charg-
ing/discharging efficiency of 85%. Since in our scenario the
main goal of the workload management strategy is to reduce
the energy cost, the information that the DCs exchange to take
workload distribution decisions in the EcoMultiCloud frame-
work is limited to two values: the amount of RE locally avail-
able and the price of electricity from the grid in that site. The
migration and assignment of some workload is decided based
on the following cost function computed at each DC i:

f (i)assign = [Vi −max (0,Ei −Ci)]Pi (1)

where Vi is the marginal consumption at DC i associated with
a VM, i.e., it is the additional consumption in case a VM is
assigned to DC i; Ci is the energy consumed for the whole
DC i, Ei is the green energy, including both the energy that
is expected to be produced by the PV panel in the next time
step and what is currently stored in the battery, and Pi is the
electricity price expected in the next time step. Basically the
term in brackets represents the available green energy in DC
i. This term can be 0 in case the consumption is larger than
the production, and in this case the cost function is equal to
the monetary cost required for buying the electricity needed
to run a new VM. Conversely, when green energy is available,
the cost function is negative and represents a gain.

The load is assigned to the DC who exhibits the small-
est cost function, provided that this DC has enough capacity

to accommodate the additional load. Similarly to the assign-
ment of new load, periodically, when the difference between
cost functions among the DCs grows above a given threshold,
some workload can be migrated from the DC with the largest
cost function to the other DCs. Different migration policies
are possible with respect to the choice of VMs to be migrated.

3. PREDICTIONS

For the prediction of RE production, the neural network
approach was taken into account. Feed Forward Neu-
ral Network (FNN) and Recurrent Neural Network (RNN)
were compared, and after a preliminary test of different ap-
proaches, whose results are not reported here for the sake
of brevity, RNN resulted to perform better than FNN in pre-
dicting RE production, thanks to its characteristics. Indeed,
the main feature of RNNs is the presence of loops and their
capability to store information about previous computations,
which perfectly fits with our use case. In particular, by using
Gated Recurrent Units (GRUs), the error in predicting RE
production was lower than FNN; these networks have been
used in modeling and prediction of sequential data in several
applications that include image processing, sentiment analy-
sis, language translation, and speech recognition.
The proposed RNN has one input layer with 10 neurons and
one hidden layer with 11 neurons; these values were chosen
to trade-off between prediction accuracy and complexity. In-
deed, through the computation of the mean square error of
the predictions, we could observe that the error is quite large
when the number of neurons is smaller than 11, but remains
almost the same when more than 11 neurons are used. Hence,
11 seems the smallest value that guarantees good accuracy.
The RNN predicts the RE production over time periods of
one hour. The dataset used for training the RNN is the Photo-
voltaic Geographical Information System (PVGIS) [10, 11],
an online free solar photovoltaic energy database. Most of
the values of solar irradiance contained in the database derive
from satellite data, which are used to estimate the solar radi-
ation arriving at the earth surface; this procedure results to be
more accurate than using sensors ground measurements. The
method to compute solar radiation from satellite data is de-
scribed in [12, 13]. Once the irradiance G has been predicted,
the associated generated power, denoted PG , is given by

PG = G sin(θ)Aη (2)

where θ is the PV panel inclination, set to 30◦, A is the area
of the panel and η is the panel efficiency. For training, we
have used the data of the years from 2005 to 2015 and the
samples of 2016 were used for testing. As an example to
observe the accuracy of the predictions, Figure 1 reports the
actual hourly production in blue and the predicted one in red
during a week of January of the considered testing period.
The peak production is not accurately predicted, however, the
general shape is well caught.



  

Figure 3.3: FNN prediction - January

Figure 3.4: RNN prediction - January

Table 3.1 shows values of the metrics explained in section 2.1, in which both networks

were trained with the yearly approach and tested in predicting di↵erent months. As
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Fig. 1: Example of predictions
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Fig. 2: Load per DC in Summer, assuming local RE produc-
tion with PV panel size = 200 kWp and no storage.

4. RESULTS

In this section, we valuate the impact of predictions of RE
production on the performance of the DC which runs the
workload assignment strategy described above.

Figure 2 shows the load distribution among the DCs ver-
sus time for a few consecutive days. Different colors refer to
different DCs. Observe how EcoMultiCloud adapts the load
distribution to the conditions in the various DCs: the load
reflects the daily RE production and the patterns are shifted
according to the timezones. DC 4 is the least loaded, due to
the high value of PUE.

Figure 3 reports the relative cost saving versus the size of
the PV panels in summer and winter. Different values of the
capacity of the batteries are considered. For each scenario,
a dashed line reports the saving that is achieved when the
RE production is predicted with the RNN described above;
while the solid line is the case in which the workload man-
agement decisions are taken assuming an exact knowledge
of the amount of RE that will be generated in the next hour.
First, observe that, clearly, saving depends on the size of the
PV panels. However, the saving does not significantly in-
crease beyond a given size of the panels and the actual value
of the saving depends on the battery size, indicating that the

dimensioning of PV panels and batteries should be jointly de-
fined to achieve the largest benefits. Second, notice that the
cases of exact and predicted knowledge of the RE produc-
tion basically coincide. The reason is that while predictions
are needed to distribute the load based on a rough distinction
among timezones and weather conditions, accurate values of
the predictions are not strictly needed. This confirms that the
proposed approach is feasible and effective also in the real-
istic assumption that a-priority knowledge of RE production
is not possible. Finally, the large differences obtained in dif-
ferent seasons indicate that the evaluation of the benefit of
introducing RE for powering big infrastructures requires to
take into account seasonal variations.
Figures 4 and 5 compare the load distribution and cost func-
tion in two cases, the first without any migration policy (a)
and the latter under the application of the random migration
policy (b), meaning that the VMs to be migrated from a DC
are randomly selected among the servers belonging to that DC
and they are migrated towards the available DC having the
lowest value of fassign. Some differences can be observed in
the number of VMs on the same DCs during the same period
in the two tested cases. For example, between hours 8 and 12,
DC 2 hosts more VMs in case (a) than in case (b), whereas
in the latter case the number of VMs hosted by DC 3 and
DC4 tend to be higher than in case (a). Indeed, as reported in
Figure 5, the cost function fassign for DC 3 and DC 4 has a
lower value in case (b) with respect to case (a). In Figure 4b
the dashed lines represent the DC load before the migration
is performed, whereas the continuous lines correspond to the
number of VMs per DC after the migration process has been
completed. The curves are basically overlapping, indeed, the
migration process is a frequent process that smoothly adjusts
the load and speeds up the adaptation of load distribution to
DC conditions. With the considered PV panel and storage
sizing, under no migration policy, i.e., case (a), 23.9% of cost
can be saved with respect to the case in which no local RE is
produced, whereas cost can be reduced by 32.5% by applying
the random migration policy as in case (b).

5. CONCLUSION

In this paper, we have considered geographically distributed
DCs powered with hybrid systems that include, besides the
connection to the power grid, RES and, in particular, PV pan-
els. To properly operate, the workload management strategy
needs predictions of the amount of RE that is generated by
the PV panels. In the paper, we have shown that RNN can
well predict the RE production. Interestingly, prediction er-
rors at the peak values of the production are not critical be-
cause they do not compromise the load distribution decisions.
Conversely, predictions are fundamental to distinguish, in an
automatic way, the different production levels achieved in the
various sites, levels that are influenced by the timezones and
the weather conditions.
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Fig. 3: Cost saving in summer and winter, assuming real (R) and predicted (P) RE production values, for different PV panel
and battery sizes.
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Fig. 4: Load distribution per DC in Winter, assuming local RE production with PV panel size = 100 kWp and storage = 200
kWh, under no migration policy and under random migration policy.
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Fig. 5: fassign per DC in winter, 100 kWp PV panel and 200 kWh storage, under no migration and random migration policy.
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[3] D. Laganà, C. Mastroianni, M. Meo, and D.Renga, “Re-
ducing the operational cost of cloud data centers through
renewable energy,” MDPI Algorithms, vol. 11, no. 10,
2018.

[4] Z. Liu, M. Lin, A. Wierman, S. Low, and L.L.H.
Andrew, “Greening geographical load balancing,”
IEEE/ACM Transactions on Networking, vol. PP, no.
99, pp. 1–1, 2014.

[5] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan,
John Guttag, and Bruce Maggs, “Cutting the electric bill
for internet-scale systems,” SIGCOMM Comput. Com-
mun. Rev., vol. 39, no. 4, pp. 123–134, Aug. 2009.

[6] Dan Xu and Xin Liu, “Geographic trough filling for
internet datacenters,” in 2012 Proceedings IEEE INFO-
COM, Mar. 2012, pp. 2881–2885.

[7] Yuan Yao, Longbo Huang, Abhishek B. Sharma, Leana
Golubchik, and Michael J. Neely, “Power cost reduc-
tion in distributed data centers: A two-time-scale ap-
proach for delay tolerant workloads,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no.
1, pp. 200–211, 2014.

[8] Yuanxiong Guo, Zongrui Ding, Yuguang Fang, and
Dapeng Wu, “Cutting down electricity cost in internet
data centers by using energy storage,” in 2011 IEEE
Global Telecommunications Conference (GLOBECOM
2011), Dec. 2011, pp. 1–5.

[9] A. Forestiero, C. Mastroianni, M. Meo, G. Papuzzo, and
M. Sheikhalishahi, “Hierarchical approach for efficient
workload management in geo-distributed data centers,”
IEEE Transactions on Green Communications and Net-
working, vol. 1, no. 1, pp. 97–111, March 2017.

[10] “Photovoltaic Geographical Information System.
Overview of PVGIS data sources and calculation meth-
ods,” https://re.jrc.ec.europa.eu/pvg download/data
download.html.

[11] Thomas Huld, Richard Müller, and Attilio Gambardella,
“A new solar radiation database for estimating PV per-
formance in Europe and Africa,” Solar Energy, vol. 86,
pp. 1803–1815, 06 2012.

[12] Richard Müller, Christos Matsoukas, A Gratzki, Hein
Behr, and R. Hollmann, “The CM-SAF operational
scheme for the satellite based retrieval of solar surface
irradiance - A LUT based eigenvector hybrid approach,”
Remote Sensing of Environment, vol. 113, pp. 1012–
1024, 05 2009.

[13] Richard Mueller, Tanja Behrendt, Annette Hammer, and
Axel Kemper, “A New Algorithm for the Satellite-
Based Retrieval of Solar Surface Irradiance in Spectral
Bands,” Remote Sensing, vol. 4, no. 3, pp. 622–647, Mar
2012.


