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ABSTRACT
Mobile networks have become ubiquitous and the primary means
to access the Internet, and the tra�c they generate has rapidly
increased over the last years. The technology and service diversity
in mobile networks call for extensive and accurate measurements
to ensure the proper functioning of the networks and rapidly spot
impairments. However, the measurement of mobile networks is
complicated by their scale, and, thus, expensive, especially due to
the diversity of deployments, technologies, and web services. In
this paper, we present and provide access to the largest open in-
ternational mobile network dataset collected using the MONROE
platform spanning six countries, 27 mobile network operators, and
120 measurement nodes. We use them to run measurements tar-
geting several web services from January 2018 to December 2019,
collecting millions of TCP and UDP �ows using these commercial
mobile networks. We illustrate the data collection platforms and de-
scribe some of the main experiments. Besides a high-level overview
of the dataset, we provide two practical use cases. First, we show
how our data can be used as a proxy for web service performance.
Second, we study the content delivery infrastructure of Facebook.

CCS CONCEPTS
•Networks!Network experimentation;Networkmeasure-
ment; Mobile networks; Network monitoring.
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1 INTRODUCTION
In the last decades, mobile networks have become ubiquitous, with
pervasive mobile infrastructures allowing people to stay connected
without the need for wired connections. The tra�c generated by
mobile networks is expected to have a growth of 46% in the period
2017-2022 [7], and smartphone-based services have recently gained
unprecedented popularity [32]. This has been made possible by
the advances in telecommunications with faster transfer speed and
reduced latency. The 5G technology is expected to improve network
performance once again and promises substantial cost savings,
further fostering the spread of mobile networks. In this context,
the quick boom (and vanish) of web services and deployment of
new technologies (e.g., encryption [18]) makes it essential to run
extensive and accurate measurements with the goal of ensuring the
proper functioning of the networks and rapidly spotting anomalies
and impairments. However, the measurement of mobile networks
is complicated by their scale, the diversity of deployments and
technologies, and, �nally, a large number of services that users
access.

In this paper, our goal is to share a large dataset obtained on
a one-of-a-kind monitoring infrastructure spanning 6 countries
with a considerable amount of experiments and 27 Mobile Network
Operators (MNOs) 1. To this end, we present the data collected in
the MONROE project, in which 120 nodes have been instrumented
to run measurements accessing millions of web pages over a period
of two years from January 2018 to December 2019. The scale of
the MONROE project and the duration of the experiments allow
us to catch the diversity intrinsic to mobile networks and study

1The dataset is available here: https://smartdata.polito.it/mobile-networks-open-
dataset
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the infrastructure of most popular web services and operators. In
addition to the e�ort of engineering the infrastructure and mak-
ing the experiments, we focus on the delicate operation of storing,
merging, and aggregating data coming from heterogeneous sources
and distant locations. Indeed, the data we publish report �ow and
application-level measurements that the MONROE users actively
scheduled. We augment them with rich contextual information pas-
sively recorded regarding the physical conditions and geographical
location of the mobile nodes.

Besides providing a thorough characterization of our dataset, we
show two practical use cases where our measurements can be used
as a proxy for network performance or improve the understand-
ing of web-service infrastructure. We strongly believe that open
datasets are of crucial importance for researchers to fully under-
stand the Internet. Moreover, large datasets, collected in a realistic
environment are a prerequisite for training reliable machine learn-
ing models and arti�cial intelligence applications in general [6]. As
such, we reckon our data will be helpful for the research community
and network practitioners in general.

The paper is organized as follows. Section 2 presents related
works. Section 3 illustrates the measurement platform and exper-
imental campaigns. Section 4 introduces the dataset description.
Section 5 presents the two use cases. Finally, Section 6 concludes
the paper.

2 RELATEDWORK
This paper contributes by o�ering to the community the dataset
collected during the MONROE project. However, we are not the
�rst to release an open dataset on network tra�c. Given the drop
in memory cost, the rise of internet tra�c network monitoring is
becoming a fundamental task for network operators, researchers,
and network managers to understand the behavior of the network
and users’ QoE. In this direction, nationwide [11, 29, 32] and inter-
national [4, 24] e�orts have been put to monitor network perfor-
mance. In this direction, several works address speci�c network
topics, Ren et al. [26] and Sivanathan et al. [28] propose datasets
to study the behavior of Internet of Things devices in testbed en-
vironments. The MAWI (Measurement and Analysis of the Wide
Internet) group [26] o�ers network traces including di�erent appli-
cations and network conditions, describing the presence of various
known anomalies. Di�erent from the previous works, the MONROE
datasets are collected as a wide range of measurements from real
operation networks in di�erent countries. The Monroe datasets
have been already extremely useful to evaluate the performance
and evolution of Mobile Networks. Safari et al. [17, 27] illustrate
the utility of such a dataset on evaluating the variation of mobile
network performance. They show how network performance is
highly unpredictable due to the dynamicity of the mobile networks.
Rajiullah et al. [25] exploit more than two million page visits to
show the impact on web performance of di�erent web protocols,
browsers, and access technologies. By having access to di�erent mo-
bile nodes of the same operator in di�erent countries, Mandalari et
al. [21] show the impact of roaming connectivity on the network
tra�c and experienced performance. Recently, Trevisan et al. [33]
create a data-driven mobile network emulator based on MONROE

datasets showing the importance of the measurement campaigns
to create accurate tools.

This dataset di�ers from previous datasets published by MON-
ROE consortium. The previous papers just published a speci�c
measurement campaign and aggregated dataset, i.e., a limited num-
ber of Tstat metrics. This dataset is the only one with the whole two
years of data and the full Tstat metrics and metadata. To the best
of our knowledge, we are the �rst to make public such large data
from real operational networks in di�erent countries. Given the
complexity of collecting and sharing data, we believe that despite
being used in the aforesaid works, the MONROE datasets could be
useful for the research community in many di�erent contexts.

3 MEASUREMENTS PLATFORM AND
EXPERIMENT CAMPAIGNS

3.1 MONROE platform
The MONROE platform [4, 20] has been used to collect the dataset.
MONROE is a unique open-source platform to run measurement
campaigns in 4 countries in Europe (Italy, Norway, Spain, Sweden).
It consists of more than 120 nodes deployed in stationary or mobile
scenarios. The measurement node is the core of the platform. It
consists of two main components, namely the hardware con�gu-
ration, and the software ecosystem. Each node is equipped with
at least three LTE modems, with commercial data plan subscrip-
tions with mobile operators. Figure 1 shows an overview of the
MONROE platform setup. Some of the stationary nodes are also
equipped with an Ethernet connection. The node software is based
on a Linux Debian “stretch” distribution to ensure long term sta-
bility. The nodes run the management and maintenance software
with the experimentation enablers. The experiments run as Docker
containers to enable a consistent experiment environment across
nodes and developer platforms. Running experiments in docker
containers also provide isolation between experiments themselves,
and the node operating system. The results of the experiments are
transferred periodically from the nodes to a remote repository for
further processing, archiving, and insertion into a Cassandra data-
base to enable data queries and analysis. There are two groups of
open call users 2 who have used the platform to run a wide range
of experiments [16]. In addition to them, several large-scale mea-
surement campaigns have been run by the consortium. Therefore,
we have measurements from 4 countries during the whole 2 years,
roaming measurement involves 2 additional countries (the United
Kingdom and Germany, i.e., the total comes to 6 countries), and
some more external users countries. In a nutshell, the dataset has
a considerable number of experiments in these 6 countries (Italy,
Norway, Spain, Sweden, the United Kingdom, and Germany). We
further detail the main experiment campaigns in the following.

3.1.1 Metadata. MONROE nodes augment the information about
the access link status. The MONROE metadata 3 are event-based
data collected by passivelymonitoring the statistics exposed directly
from the modems through their management interface. It is the full
context information about the state of a node, e.g., visited network

2https://www.monroe-project.eu/opencall1/
https://www.monroe-project.eu/opencall2/
3https://github.com/MONROE-PROJECT/Experiments/wiki/Metadata
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Figure 1: Overview of the MONROE platform and measure-
ments.

Mobile Country Code (MCC), Mobile Network Code (MNC), signal
strength, frequency, technology in use, cell-ID, etc., and its location
as from GPS. The metadata broadcasting service runs continuously
in the background and relays metadata to experiment containers.

3.1.2 Tstat. Each MONROE node runs Tstat [31], a passive meter
that exports rich log �les regarding all the tra�c �owing from
the nodes to the Internet. Tstat generates only �ow records, i.e.,
a single entry for each TCP/UDP stream with per-�ow metrics.
Streams are evicted either by the observation of particular packets
(e.g., TCP packets with RST �ag set) or by a timeout. Each record
contains classical �elds on �ow monitoring [15], such as server
and client IP addresses and port numbers, packet, and byte-wise
counters. Additional modules extract �elds from packet payloads,
such as the information seen in the Application-Layer Protocol
Negotiation (ALPN) �elds of TLS handshakes, which allows us
to identify HTTP/2 and SPDY �ows, and �elds from QUIC public
headers.

Tstat also indicates the domain name of contacted servers, which
allows us to identify the service the node is contacting [30]. Tstat
�rst searches the information in HTTP Host: headers and in the
TLS Server Name Indication (SNI) within TLS Client Hello messages.
For HTTP/TLS �ows missing such �elds and for other protocols
(e.g., QUIC), Tstat exports the hostname the client resolved via DNS
prior to open the �ow. This is achieved by caching DNS tra�c
directed to any DNS resolver. Whenever a new �ow is observed,
Tstat searches for the last query performed by the same client that
resulted in the contacted server IP address. This mechanism, called
DN-Hunter, is explained in detail in [9], where it is shown that the
association is correct for more than 90% of the �ows.

The dataset we provide to the community includes all the Tstat
log �les generated on the MONROE nodes, which summarize all the
tra�c exchanged with the Internet. We enrich it with the contextual
information describing the node status, especially regarding the
operation of the network interfaces (signal strength, radio access
technology, etc.).

3.1.3 Web browsing. For our web experiments, we leverage a cus-
tomizable Docker container called MONROE-browsertime [1] to
mimic a mobile device browser and retrieve mobile versions of

visited pages. The work is based on [2], which we speci�cally engi-
neered and deployed on MONROE nodes. We con�gured MONROE-
browsertime to mimic a mobile device browser by setting both the
screen resolution and the user-agent accordingly. The X virtual
frame-bu�er (Xvfb) [3] was used to provide the browser with a
virtual display to render the web page since the MONROE nodes are
running headlesswithout a physical display.MONROE-browsertime
provides a con�gurable experiment template to enable web mea-
surements. We con�gure each measurement by controlling (i) the
network to test (Ethernet, or the desired MBB interfaces), (ii) the
browser (Firefox or Chrome), and (iii) the web protocol (HTTP/1.1
(H1) [12], HTTP/2.0 (H2) [8] or QUIC [19]). A combination of these
parameters builds an experiment setup.

We select a list of target pages to visit. Given a network to test,
we shu�e the order of pages to visit. Next, we visit each page with
every browser and protocol combination, in random order. The
visit of all pages with one network setup constitutes a run. Browser
caching and cookies are active during each run and is reset after
the last page has been tested. This ensures that each run starts from
the same state, with a cold cache and reset cookies. Note that we
use separate pro�les for the same browser, one for each protocol, so
that caches are separated (i.e., visits with H1 do not interfere with
next visits to the same pages with H2 and vice-versa). MONROE-
browsertime tracks a number of performance metrics such as Page
Load Time (PLT), FirstPaint (FP), and RUMSpeedIndex (SI).

In addition to numerous test measurements, we ran two ma-
jor web measurement campaigns on the MONROE platform. The
�rst campaign ran from the 1st of April 2018 to the 4th of June
2018. This dataset focuses on measurements considering H1 and H2
protocols using both Firefox (version 56.0.1) and Chrome (version
64.0.3282.186). In this campaign, we selected 20 target pages on
popular websites with H2 support from the most viewed sites in the
Alexa [5] top ranking. We run a separate measurement campaign
for measuring the performance of the QUIC protocol as compared
to H2. This batch of experiments ran during a week, from the 5th
to the 10th of June 2018. We focused here on websites that sup-
port QUIC (version HTTP/2+QUIC/39). We used only the Chrome
browser since it was the only browser supporting QUIC.

Our second largest measurement campaign is running since
July 2019. For this campaign, we selected 10 target pages, all of
them with QUIC (version: HTTP/2+QUIC/43) support except for
Facebook. We focus on pages that support QUIC to be able to
use all three web protocols and include Facebook to capture its
possible transition to QUIC (not happened yet). We again only use
the Chrome browser (version: 71.0.3578.98) since Firefox still does
not support QUIC. Readers are referred to [25] for more details on
MONROE-browsertime.

3.1.4 MONROE-Ne�est. MONROE-Nettest [23] is a con�gurable
open-source tool built as an Experiment as a Service (EaaS) over
the MONROE platform, which allows for conducting repeatable
speedtest measurements in the complex mobile ecosystem. Its im-
plementation is based on RMBT 4, a tool that is used by a num-
ber of National Regulatory Authorities (NRAs) in Europe for their
crowdsourced network measurement applications. It is therefore
compatible with many existing regulatory speedtest tools.
4https://www.netztest.at/doc/
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MONROE-Nettest works in a client-server architecture, where
the client initiates an active measurement session. The tool provides
a lightweight client implementation using Docker virtualization. (1)
the client container makes a test request to the measurement server,
(2) the measurement server replies with the notion of availability,
(3) the measurement, composed of 6 phases, is run between the
client and the server, (4) the results are gathered at the client-side.
This �ow is easily applicable to testbeds, as well as highly scalable.

The measurement phases are Initialization, Pre-Test Downlink,
Ping Test, Downlink Test, Pre-Test Uplink, and Uplink Test. Initial-
ization consists of the client connecting to the measurement server
and establishing the desired number of TCP �ows. The pre-test
phases are undertaken to ensure that the Internet connection is in
an “active” state, i.e., that dedicated radio resources are available.
The ping test consists of the client sending the desired number of
TCP “ping”s in short intervals to the server to test the Round-Trip
Time (RTT) of the connection. The client sends n small TCP packets
(ASCII PING), to which the server replies with an ASCII PONG.
The DL and UL tests are the main components of the measurement
where within multiple TCP �ows, the receiver side simultaneously
requests and the sender side continuously sends data streams con-
sisting of �xed-size chunks. After the nominal duration, the sender
stops sending further chunks on all connections, the last chunk per
each thread is allowed to transmit completely, and the DL/UL data
rate of the connection is estimated. The MONROE-Nettest client is
highly customizable with over 20 con�guration parameters, further
details can be found under [22].

We have scheduled MONROE-Nettest as a base experiment on
all available nodes starting from July 2017, running 2, 3, and later 6
times a day. We have employed MONROE nodes as clients, and 2
well-provisioned MONROE-Nettest servers in Norway and Sweden,
deployed on virtual machines hosted by the MONROE Alliance.
The parameters we explicitly set for the base experiments were
as follows: number of TCP �ows 5, pre-test DL and pre-test UL
duration 1s, DL and UL test duration 10s, number of pings 11.
The TCP �ows from these base experiments, as well as additional
measurement campaigns using the MONROE-Nettest tools make
up a part of the dataset provided in this work.

3.1.5 Roaming. The roaming measurement campaign [21] ran an
extensive measurement to understand the roaming ecosystem in
Europe after the “Roam like Home” initiative 5. It opted to carry
a series of measurements to study how mobile network operators
implement roaming across Europe. There are 16 MNOs that sup-
port roaming in Europe involved in this measurement campaign. It
consists of a collection of the above-mentioned measurements and
some additional measurements to pinpoint the implications of roam-
ing. It aims at identifying the roaming setup, infers the network
con�guration, and understands the impact on the user experience.
It includes ping, traceroutes, DNS lookups, MONROE-browsertime,
and VoIP tra�c di�erentiation.

4 DATASET DESCRIPTION
In this section, we o�er a quantitative overview of the dataset. Ta-
ble 1 provides a breakdown of the collected data, showing di�erent

5https://ec.europa.eu/digital-single-market/en/roaming

measures separately by the country. We also keep separate exper-
iments done using mobile vs wired connection. Overall, in each
country, we used 3-4 di�erent MNOs. However, due to our roaming
measurement campaign, we used these MNOs under di�erent iden-
tities – i.e., we used SIM cards from 8-15 foreign operators on each
country. Each node performed di�erent sets of experiments, which
caused them to contact 31-39 di�erent web services and tens of
thousands of servers. In total, they exchanged thousands of GB of
data with the Internet consisting of millions of TCP �ows. Consid-
ering countries, the tra�c is concentrated in Sweden, Norway, Italy,
and Spain. We observe less tra�c for the other countries where
MONROE deployed its nodes, and sporadic experiments are present
for Poland, Portugal, and France.

The activity of nodes was not constant over time, as speci�c
experimental campaigns required a high e�ort during a relatively
short amount of time. In Figure 2, we show the trend of the gener-
ated tra�c over time. The TCP tra�c (Figure 2a) reaches its peak
during the summer months of spring 2018, when, globally, the
nodes generated 20 M TCP �ows. Then it decreases and becomes
�nally stable during late 2019. More stable is the picture for UDP
(Figure 2b). On average, each month the nodes generated tens of
millions of UDP �ows. Notice however that UDP mostly carries
control tra�c (DNS primarily) which accounts for a small tra�c
volume if compared with TCP. Finally, the �gures provide separate
lines for tra�c exchanged while roaming on a foreign operator or
using a local SIM card. Roaming is always present, to a lesser extent.
In particular, during the �rst months of 2019, it almost vanishes
(especially for TCP), meaning that few experiments were set up.
However, during the peak months in spring 2018 [21], each month
the nodes issued almost 10 M �ows, summing TCP and UDP.

Finally, we characterize how each service is pervasive in our
dataset. For this, we rely on the regular expression developed in [32]
to map the contacted domain name into the name of the contacted
service. Based on this we get the information about 41 di�erent
services plus 1 service (other) containing all the domain name for
which we do not have a map. In Figure 3 we report how many �ows
involve each service in every month of our dataset. Services are
sorted according to the number of months in which we observe
�ows toward that service. Top 10 services are the more pervasive
ones having �ows almost in every month for which we have data.
Looking the type of the services we can see that we have a good
repreentation of types such as: social network (i.e., Facebook, twit-
ter, linkedin, and Instagram), search engine (i.e., Google, Yahoo,
and Bing),entertainment (YouTube, bbc, and adult contents). This
highlights how other the spacial heterogeneity given by the spacial
and network operator diversity, the MONROE dataset o�er a wide
visibility of di�erent type of services on which researchers may be
interested in.

5 USE CASES
In this section, we brie�y illustrate two possible use cases that
demonstrate the utility of our data. We �rst provide some �gures
on the service performance that we can extrapolate from the TCP-
level measurements. Then, we show how we can study the content-
delivery infrastructures, focusing on the Facebook case.
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Table 1: An overview of the dataset.

Country # Nodes # Distinct HNI # Services # Distinct contacted IP # months Total Download (GB) Total Upload (GB) # TCP �ows (M)
Sweden 56 15 39 55939 24 11493 2902 78
Sweden 29 Wired 33 15090 23 239 32 2
Norway 33 13 39 44041 24 6286 1453 56
Norway 24 Wired 31 14706 23 224 20 3
Italy 25 15 37 49102 24 2234 120 33
Italy 16 Wired 33 13351 18 185 10 1.6
Spain 11 17 37 38393 24 1413 74 20
Spain 18 Wired 32 6985 16 286 22 0.9

United Kingdom 2 8 31 10321 8 17 0.83 0.3
United Kingdom 3 Wired 3 105 5 0.06 < 0.01 < 0.01

Germany 1 11 31 14502 7 36 1.68 0.7
Germany 2 Wired 1 3 3 < 0.01 < 0.01 < 0.01
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Figure 2: The total number of �ows over time for Roaming
and Non-Roaming. Notice the log scale on the �-axis.

5.1 Service Performance
The �rst use case we show focuses on the performance of the web
services. Indeed, the measurement campaigns that build our dataset
include �rst of all visits to websites. Here, we want to provide
some �gures that describe how their performance varies depending
on the user’s location and over time. Measuring it using passive
measurements is not trivial, but some network-level metrics have
been shown to be correlated with users’ QoE [10]. In general, Tstat
logs are annotated with a few QoS metrics that we can use to have
a qualitative estimation of the performance of the services under
study. Here, we focus on two QoS-related metrics: Round-Trip Time
(RTT) and Time To First Byte (TTFB), which can be found in Tstat
logs, and are, also intuitively, linked to the performance of web
browsing.
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Figure 3: The number of �ows for services over time. Ser-
vices are sorted based on the number of months in the
dataset.

In this section, we focus on three web services for which we
have sizeable and continuousmeasurements:We consider Facebook,
Google, and YouTube. Figure 4 shows the number of �ows captured
in our dataset for each month of 2018 and 2019. Comparing it with
Figure 2, we note that these measurements follow the general trend
of the MONROE nodes activity. In particular, during spring 2019
we observe fewer measurements, but we seldom �nd less than 1000
k �ows in a month.

In Figure 5, we represent in the form of heatmap the RTT ob-
served by Tstat, separately by country andmonth. Three sub-�gures
show results for the three services under study. Tstat computes the
RTT measuring the time between TCP data segments from the
clients and the respective acknowledgment from the server, and
each cell on the heatmap reports the median value across multiple
measurements. A gray cell indicates that our dataset includes less
than 100 �ows, and, as such, we could not compare a reliable statis-
tic. Looking at the �gure, it is possible to have a general overview
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(b) Google.
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(c) YouTube.

Figure 4: The number of �ows over time.
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(b) Google.
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(c) YouTube.

Figure 5: Average RTT.
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Figure 6: Distribution of TTFB.

(a) Italy. (b) Norway. (c) Spain. (d) Sweden.

Figure 7: Word cloud presentation of the percentage of the total amount of data from Facebook servers’ countries for di�erent
countries separately.

of a vast geographical and temporal span. In general, the �gure
con�rms that large tech companies deploy edge servers close to
users. Indeed, we observe a large number of cells which indicate a
median RTT of 20ms or below. However, the picture is not �at, and
we observe signi�cant variations over time. During some months,
the RTT increases signi�cantly, revealing either network impair-
ments or changes in content/server location by the service. It is

particularly interesting the case of YouTube, which shows a sizeable
increase of RTT during summer/fall 2019 when it increases up to
⇡ 100 ms contemporary in both Italy and Sweden. Studying the
root causes of these phenomena is hard [13] and out of the scope of
this paper. However, we argue that our dataset is useful to discover
the situation of performance degradation which may hamper the
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(a) Italy.
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(b) Norway.
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(c) Spain.
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(d) Sweden.

Figure 8: Temporal evolution of RTT for di�erent Facebook servers country.

Table 2: The overall content geolocation statistics for Facebook. RTT, TWHT, TTFB, D are in ms, ms, ms, and GB, respectively.

Italy Norway Spain Sweden
Country RTT TWHT TTFB D % RTT TWHT TTFB D % RTT TWHT TTFB D % RTT TWHT TTFB D %
Italy 38 48 87 1141 95.8 - - - - - - - - - - - - - - -

Norway - - - - - 49 38 103 327 22.5 - - - - - - - - - -
Spain - - - - - - - - - - 38 37 72 789 97.4 - - - - -
Sweden - - - - - 47 46 89 1119 76.7 - - - - - 40 42 118 2873 93.6
Denmark - - - - - - - - - - - - - - - 32 36 80 53 1.8

United States 48 143 287 48 4.1 - - - - - 58 53 131 14 1.7 153 153 326 54 1.8
Netherlands - - - - - - - - - - - - - - - 54 51 112 46 1.5
Germany - - - - - - - - - - - - - - - 46 47 118 36 1.2

users’ QoE due to the sudden increase of the RTT [14] and can be
used to con�rm (or contradict) well-known trends.

We complement the above analysis with Figure 6, which shows
the distribution of the TTFB for the three services as observed by
Tstat. Here, we want to compare di�erent countries, limiting the
variability introduced by the temporal dimension. As such, we use
data only for the months of April and May 2018, when we collected
millions of �ows per each service. The TTFB measures the time
elapsed since the beginning of a TCP connection to the �rst data
segment from the server. Intuitively, it is the time taken to start
receiving the response object in an HTTP transaction.6 Looking
at the �gures, we �rst notice that the TTFB distribution is often
multi-modal. For instance, for Google in Spain (green dashed line
in Figure 6b) we observe TTFB of ⇡ 30ms in 20% of the cases, while
around 140 ms in the majority of cases. Further manual checks
reveal that this behavior is the e�ect of the placements of the CDN
nodes of Google, which are very close in terms of RTT to some
nodes, while for others the distance is signi�cantly higher, even
within the same country. In general, we observe that the TTFB is
typically in the order of 100 � 200 ms, with some privileged cases
in which the performance is signi�cantly better.

5.2 Content Location
In this section, we present the content geolocation distributions in
the dataset. Here, we aim to provide an example of the usefulness
and richness of the collected dataset. This work does not focus
on the accurate geo-locating of an IP address. We rely on open-
access databases7 to locate an IP address. We present proximity of
the content for the service with the highest volume of tra�c, i.e.,
Facebook. A similar conclusion can be derived for other services
but it is omitted for the sake of brevity.

Figure 7 presents the word cloud of the contacted servers country
accessed by nodes when accessing Facebook service, illustrating the

6We are neglecting the TLS handshake in case of HTTPS �ows.
7MAXMIND: https://dev.maxmind.com/geoip/geoip2/geolite2/ and
IP2Location: https://lite.ip2location.com/database/ip-country

percentage of the total downloaded data that is retrieved from that
country. It is fairly distinguishable that more than 90% of content is
delivered by a server in the same country as the node (local server).
Figure 7b reports the only exception in Norway, where 76% of the
data volume goes across the border and comes from Sweden.

Figure 8 shows the temporal evolution of the RTT for the coun-
try of origin (y-axis) for the four countries separately. The gray
cells indicate times without samples for that country of origin.
The RTT values in the �gure are calculated as median values over
all samples for all operators in the country for a Facebook visit.
The temporal evolution demonstrates two important observations.
Firstly, the content provided by the local server experience lower
RTTs (brighter cells). Typically, these giant content providers in
today’s Internet achieve this by having caches in most countries
or using Content Delivery Networks (CDN). Secondly, the content
from the same country is continuously provided by these local
servers. Figure 8b re�ects the continuous content delivery from
Sweden to Norwegian nodes.

Finally, Table 2 presents a summary of the characteristics ob-
served in the 4 countries. The �rst column of the table for each
country indicates the median RTT for each origin servers’ country.
Column 2 reports the median value observed for TCP connection
establishment time, Three-Way Handshake Time (TWHT). The
third column shows the median TTFB. Columns 4 and 5 show the
total amount of data provided by the servers in a country and its
percentage of the total, respectively. Table 2 demonstrates that the
content is primarily provided by the local servers, which have better
connection characteristics.

We present content geolocation for a speci�c service in four
countries. This is an example to show the richness of the dataset.
The main limitation of these results are as follow: These results
are based on open source IP location databases. We also use the
most recent version of the database (2020), while the data contain
measurements for 2018 and 2019 which can bias our analysis. How-
ever, we do not further discuss and validate the accuracy of these
databases which is out of the scope of this paper.
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6 CONCLUSION
Mobile networks have turned into the most popular and easy way
to access the Internet. They nowadays account for a large portion
of the total Internet tra�c with a continuous increase. Their di-
verse nature and technological heterogeneity call for large-scale
measurement to ensure the proper functioning of the networks
and anomaly detection. In this paper, we presented and provided
access to the largest open international mobile network dataset
collected using the MONROE platform in six countries, 27 MNOs,
and 120 nodes from January 2018 to December 2019. We illustrated
the data collection platforms and described the major experiments.
We then presented a high-level overview of the dataset with a thor-
ough characterization of our dataset. Finally, we demonstrated the
importance of the dataset with two practical use cases, i.e., the
performance of web services and a study on the content-delivery
infrastructures of Facebook.
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