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transportation resource allocation in a job shop: 

a simulation approach 
Erica Pastore*a, Arianna Alfieria 

aPolitecnico di Torino, Department of Management and Production Engineering, c.so 

Duca degli Abruzzi 24, 10129 Torino, Italy 

Abstract   In scheduling problems with fixed routing, usually the transportation of jobs 

among the machines is not considered (i.e., the transportation time between two stages is 

negligible, and the number of transportation resources is unlimited). However, in real con-

texts, this assumption can be unrealistic, especially when human supervision is needed for 

transportation, and hence not considering transportation can lead to low quality scheduling 

solutions. This paper considers a job shop in which transportation resources are limited and 

free to move among all the machines (no fixed routes). The aim is the integration of machine 

scheduling and transportation resource allocation, i.e., to decide for each machine the job 

sequence, and for each free transportation resource the routing. Due to the complexity of the 

problem, a Discrete Event Simulation approach is used to compare different scheduling and 

transportation resource allocation policies through scenario analysis. 

Introduction     

In manufacturing systems, different layouts are used to organize machines. 

Among them, the job shop allows to achieve the maximum flexibility in the pro-

duction process. The job shop can handle a varying mix of products (that can be the 

result of the increasing variability in customer orders) to be produced in small 

batches and with different production cycles. Every product manufactured in a job 

shop has its own operation sequence and, therefore, its own routing in the system. 

Moreover, since transports between machines are hardly automatized in the job 

shop, the position of the machines on the shop floor is chosen to limit the time 

wasted to move a batch from an operation to the following one. However, due to 

the variety of production cycles, many products might have to travel through the 

entire shop floor to fulfil all the required operations. For this reason, the job trans-

portation between machines is a critical issue in the job shop management.  

Although the relevance of the transportation issue, few research works have ad-

dressed the job shop scheduling with transportation resources, with respect to the 

amount of job shop scheduling literature in which transportation has been neglected 

(the standard assumption is that number of transportation resources is unlimited and 

the transportation time is negligible). 

Even without transportation resources, the job shop scheduling problem is a very 

complex optimization problem and belongs to the class of non-deterministic poly-

nomial time (NP hard) problems [1]. Due to this reason, many of the approaches 
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proposed in the literature are heuristic, as exact approaches (e.g., branch and bound 

or dynamic programming) can solve only small-scale problems. Just to cite few, not 

exhaustive, examples, the most common algorithms are genetic algorithms [2,3], 

tabu search [4] and particle swarm [5,6]. 

When transportation is included, the complexity of the scheduling problem in-

creases, as the complete problem can be seen as the integration of two sub-prob-

lems: a classical job shop scheduling problem and a vehicle routing problem. As 

previously mentioned, fewer papers have addressed it [7]. To illustrate some exam-

ple, the flexible job shop scheduling problem in a cellular manufacturing environ-

ment has been considered [8], including intercellular transportation times but omit-

ting empty transportation times (i.e., the time the available transportation resource 

takes to arrive to the machine with a job needing to be moved). Also, the problem 

of simultaneous scheduling machines and AGVs in a flexible manufacturing system 

has been addressed [9]. The automated guided vehicles do not have to return to the 

load/unload station after each delivery, and the problem is solved by an iterative 

procedure in which admissible time windows for the trip are constructed by solving 

the machine scheduling problem, which generates the completion times of each op-

eration with a heuristic procedure. The flexible job shop scheduling problem with 

transportation constraints has been addressed [10], where a set of identical transpor-

tation resources and empty transportation are considered, and a tabu search proce-

dure is proposed for its solution. The classical job shop scheduling problem with 

transportation resources able to carry more than one task at a time has also been 

studied [11].  

From the examples discussed above, it clearly emerges that most of the literature 

focuses on the flexible job shop, in which each operation is not associated to a fixed 

machine but to a set of machines among which one has to be chosen. Although this 

problem can be harder to model and to solve than the job shop with fixed association 

among operations and machines (especially with exact solution approaches), the 

possibility to choose the machine can simplify the problem from the transportation 

resource standpoint. Moreover, to the authors’ knowledge, no work focuses on the 

optimal schedule for the transportation resources, rather they are treated as addi-

tional time to be considered (thus, the objective function includes only the comple-

tion time).  

In this paper, we consider the integrated job shop scheduling problem with trans-

portation resources, in which the job shop is characterized by fixed routing and fixed 

association between operations and machines, and the transportation includes the 

empty transportation time. Differently from most of the papers in the literature, the 

objective function includes penalties for tardy jobs and transportation resource 

costs, with the aim of finding the optimal (from the economic standpoint) number 

of transportation resources, together with the optimal schedule of jobs on machines 

and transporters.  

The integrated job shop machine and transportation resource scheduling is mod-

eled by a mixed-linear programming model. Due to the complexity of the problem, 
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a simulation-optimization solution approach is proposed, and a case study from the 

textile industry is used to test its applicability in a real context.  

The reminder of the paper is organized as follows. In Section 2 the problem is 

mathematically represented as a MILP model and its solution complexity is dis-

cussed. The simulation-optimization approach and its application to the case study 

are presented in sections 3 and 4, respectively. Section 5 concludes the paper dis-

cussing the limitations of the approach and future research directions. 

Problem description     

As discussed in the previous section, the integrated job shop scheduling problem 

with transportation resources can be seen as a classical job shop, in which job oper-

ations have to be sequenced on machines, with the additional requirement of sched-

uling the transportation activities on the transporters. In the considered problem, the 

additional request of finding the optimal number of transportation resources is con-

sidered.  

Specifically, let 𝑁 be the jobs to process. Each job 𝑖 has a set ℵ𝑖 of consecutive 

operations to be performed. To simplify the notation, it is assumed that operation j 

of job i is exactly the j-th operation of the job in ℵ𝑖. The route of each job in the 

shop floor (i.e., the sequence of machines associated to the operations of the job) 

could be partially or entirely different from that of the other jobs.  

Job 𝑖 has a release date 𝑟𝑑𝑖 and a due date 𝑑𝑑𝑖. If the job is not completed before 

𝑑𝑑𝑖, a tardiness penalty is paid. The processing time 𝑝𝑖𝑗 of operation 𝑗 of job 𝑖 is 

known and fixed, and so is the machine 𝑘𝑖𝑗 on which it has to be processed. Due to 

the limited number of transportation resources and to the not negligible transporta-

tion time between machines, for each job, each operation cannot start immediately 

after the end of the previous one, but the job has to be transported to the machine 

associated to the next operation. When a transporter becomes available, the next job 

to be transported must be decided considering both the completion time of jobs at 

their machines and the distance between the current position of the available trans-

porter and the jobs waiting to be moved.   

The objective is to select the appropriate number of transportation resources (also 

referred to as transporters, in the following), and to sequence all the jobs on the 

machines and on the transportation resources, in order to minimize the total cost of 

the tardiness and of the transportation resources.  

Table 1. Parameters and decision variables of the mathematical model 

Parameters 

𝑐𝑇𝐴  

𝑔𝑇𝑅 

Unit cost of tardiness 

Unit cost of transportation resources 

𝑟𝑑𝑖 Release date of job 𝑖 
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𝑝𝑖𝑗 

𝑘𝑖𝑗 

𝑛𝑖 

Processing time of operation 𝑗 of job 𝑖 

Machine associated to operation 𝑗 of job 𝑖 

Number of operations of job i 

𝑑𝑖𝑗𝑖′𝑗′ Distance (expressed in time units) between machines 𝑘𝑖𝑗 and 𝑘𝑖′𝑗′  

𝑑𝑑𝑖 

T 

Due date of job 𝑖 

Upper bound on the number of transportation resources 

M Large positive number (the so-called big-M) 

DECISION VARIABLES 

𝑪𝒊𝒋 Completion time of operation 𝑗 of job 𝑖 

No table of contents entries found. 

𝑻𝑪𝒊 Total completion time of job 𝑖 

𝑾𝑻𝒊′𝒋′𝒊𝒋𝒕 
Time at which transporter 𝑡 is available to transport job 𝑖 at opera-

tion 𝑗 if it had previously transported job 𝑖′ at operation 𝑗′ 

𝑻𝑨𝒊 Tardiness of job 𝑖 

𝜷𝒊𝒋𝒊′𝒋′ Binary variable equal to 1, if operation j of job i is scheduled be-

fore operation j’ of job i’; 0, otherwise 

𝜶𝒊𝒋𝒕 Binary variable equal to 1 if, if operation j of job i is assigned to 

transporter 𝑡; 0, otherwise 

𝜸𝒊𝒋𝒊′𝒋′𝒕 

 

𝜹𝒕 

Binary variable equal to 1, if operation j of job i is assigned to 

transporter 𝑡 before operation j’ of job i’; 0, otherwise 

Binary variable equal to 1 if transporter t is used; 0 otherwise 

 

Using the parameters and the variables summarized in Table 1, the integrated job 

shop machine and transportation resource scheduling problem can be modelled as 

follows. 

min 
∑ cTA ∙ TAi

N
i=1 +  ∑ gTRδt

T
t=1   

 
 

(1) 

 

s.t. Ci1 ≥ rdi + pi1 + di1i2           ∀ i (2) 

 Cij ≥ Ci(j−1) + pij + diji(j+1)           ∀ i, j = 2, … , ni (3) 

 
Cij ≥ WTi′j′ijt + diji(j+1)          ∀ t, i ≠ i′, j = 1, … , ni, j′

= 1, … , ni′ 
(4) 

 

Cij ≥ Ci′j′ + pij − Mβiji′j′           ∀ i ≠ i′, j ϵ ℵi, j′ϵ ℵi′,   
kij =  ki′j′ 

 

(5) 

 

Ci′j′ ≥ Cij + pi′j′ − (1 − βiji′j′)M           ∀ i ≠ i′, j ∈ ℵi, j′ ∈ ℵi′,   
kij =  ki′j′ 

 

(6) 

 
WTi′j′ijt ≥ Ci′j′ − pi′j′ + di′j′ij

− M(2 − αijt − αi′j′t + γiji′j′t)
 
  

∀ t, i ≠ i′, j = 1, … , ni, j′

= 1, … , ni′ 
(7) 
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WTiji′j′t ≥ Cij − pij + diji′j′

− M(3 − αijt − αi′j′t

− γiji′j′t)
 
       

∀ t, i ≠ i′, j = 1, … , ni, j′

= 1, … , ni′ 
(8) 

 ∑ αijt = 1

T

t=1

           ∀ i, j = 1, … , ni (9) 

 TCi ≥ Cij           ∀ i , j = 1 … ni (10) 

 TAi ≥ TCi  − ddi                  ∀ i (11) 

 γiji′j′t ≤
αijt + αi′j′t

2
        

   ∀ t, i ≠ i′, j = 1, … , ni, j′

= 1, … , ni′ 
(12) 

 δt ≥
∑ ∑ αijt

ni
j=1

N
i=1

T
           ∀ t, (13) 

 Cij ≥ 0          ∀ i, j =  1 … ni (14) 

 TCi ≥ 0           ∀ i (15) 

 
WTiji′j′t ≥ 0          ∀ t, i ≠ i′, j = 1, … , ni, j′

= 1, … , ni′ 
(16) 

 TAi ≥ 0              ∀ i   (17) 

 
βiji′j′ ϵ {0, 1}           ∀ i, i′, j = 1, … , ni, j′

= 1, … , ni′ 
(18) 

 αijt ϵ {0, 1}           ∀ t, i, j = 1, … , ni (19) 

 
γiji′j′t ϵ {0, 1}           ∀ t, i, i′, j = 1, … , ni, j′

= 1, … , ni′ 
(20) 

 δt ϵ {0, 1}        ∀ t (21) 

  

The objective function (1) minimizes the total tardiness penalty and the transpor-

tation resource cost. Constraints (2) state that the first operation of each job cannot 

be completed before its release date 𝑟𝑑𝑖 plus the first operation processing time and 

the time needed to move the job to the next machine. Constraints (3) and (4) ensure 

the precedence between consecutive operations of the same job. Specifically, con-

straints (3) represent the technological precedence while constraints (4) are needed 

as jobs are not always transferred to the next operation as soon as they are ready to 

be transported, as the transporters could be already busy in other transports. Con-

straints (5) and (6) guarantee that at most one part is processed by each machine at 

the same time. They are the classical disjunctive constraints and are used to se-

quence operations of different jobs requiring the same machine. Constraints (7) and 

(8) schedule the transporters and set their availability time. These constraints are 

only relevant when operation j of job i and operation j’ of job i’ are both assigned 

to the same transporter 𝑡 (i.e., 𝛼𝑖𝑗𝑡 = 𝛼𝑖′𝑗′𝑡 = 1). Constraints (9) assure that each 

transport is performed by a single transporter. Constraints (10) and (11) define the 

completion time of the last operation of job 𝑖 and its tardiness, respectively. Con-

straints (12) link the binary variable used to assign each job to a transporter with the 

one used to schedule the transports assigned to every transporter. Constraints (13) 
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are used to assess if a transporter is used. The number of used transportation re-

sources is then given by ∑ 𝛿𝑡
𝑇
𝑡=1 . Finally, variable domains are set by constraints 

(14) - (21).  

 

Due to the huge number of binary values and big-M constraints, the proposed 

model is hard to solve with standard approaches or commercial solvers (e.g., ILOG 

Cplex). In such a case, two alternatives are usually available: 1) to develop exact ad 

hoc methods, mainly based on decomposition into sub problems, which, however, 

can hardly address very large instances; 2) to use heuristic or meta-heuristic ap-

proaches, which can easily treat very large problems, but without any guarantee on 

the solution quality. In both cases, however, it is difficult to address the variability 

of processing times and due dates (i.e., customers’ orders). 

To efficiently take the variability into account, in this paper, the problem is 

solved by a simulation-based optimization procedure, implemented within a com-

mercially available software. Specifically, Rockwell Arena simulation software is 

used to develop a Discrete Event Simulation model to replicate the job shop sched-

uling with transportation resources and evaluate the performance of different sched-

uling and transportation policies with a fixed number of transporters; the commer-

cial optimization tool OptQuest, instead, is used to vary the number of transporters 

to find the optimal one.  

This approach is heuristic, as OptQuest adopts heuristic algorithms to solve the 

optimization problem, and the machine and transportation scheduling are both 

based on “rules” (e.g., maximum priority, minimum distance, etc.). However, it has 

the flexibility to easily address very different scenarios and, hence, to find bounds 

that could be further used in optimization approaches. For this reason, various op-

erational problems are usually evaluated through simulation-optimization using 

commercially available software [12,13,14].  

As the proposed approach is based on a simulation model, which is case-depend-

ent, the case study will be presented before the discussion of the simulation-optimi-

zation model. 

Case study     

As an example of integrated job shop machine and transportation scheduling, the 

finishing department of a textile company (that will remain anonymous for confi-

dentiality reasons) has been considered. 

The finishing department is the last phase, and one of the more complex depart-

ments, of the textile production. It includes very different processes made on many 

different product types, to assure that every manufacturing process can be properly 

completed. More than one thousand different items need to be finished in this de-

partment. They can be divided in two main families, worsted (used to make coats) 

and woolen fabrics (used to produce suits). The pieces of fabrics are often grouped 
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in small lot sizes due to the large demand variety. Although all the final products 

are pieces of fabric, the sequence of the operations varies from item to item. For 

instance, at the beginning of the production process, worsted fabrics must be singed, 

to obtain an even surface by burning off projecting fibers, while woolen fabrics have 

to be carbonized, to remove vegetable fibers from wool in an acidic treatment. 

Moreover, within the same operation, a lot of differences can arise, as every piece 

of fabric can be washed and fulled in many ways (depending on the final aspect the 

product must have), thus resulting in very different processing times.  

The fabric production cycles are often very long, as they include both wet and 

dry finishing operations, and a lot of transports are necessary to move every batch 

from a machine to the next one, especially when operations of the wet and dry fin-

ishing are done alternatively, and this usually takes a lot of time. The transportation 

issue becomes very critical within high demand periods, as the shop floor is almost 

100% saturated and buffers are full. Currently, when the machine operator finishes 

processing a batch, she has to stop the machine and transport the fabrics to the ma-

chine where the successive operation has to be done. Therefore, some machines risk 

being idle even if there are jobs to work, thus risking inefficiency in the system 

(e.g., lower service level). For this reason, the Company is evaluating the possibility 

of introducing some new operators to manage the fabric transportation, thus avoid-

ing that the machine workers stop their process. 

In this context, the proposed simulation-optimization approach has been applied 

to quantify the impact of shop floor transportation on the global performance of the 

shop floor. Specifically, a simulation-based optimization model has been created to 

solve the cost optimization problem modeled in Section 2, and, hence, to identify 

the optimal number of transportation resources the Company should have.  

The simulation-based optimization model 

Simulation-based optimization procedures are usually exploited to solve complex 

optimization problems. They are traditionally composed of two detached modules 

that work iteratively until the optimal solution is found, or a defined stopping con-

dition is met15. The optimization module gives as output a system configuration that 

is given as input to the simulator. The system performance of the proposed config-

uration is evaluated with the simulation, whose performance measures are given 

back to the optimization module16.  

In this paper, the simulator (implemented in Arena) evaluates the performance of 

different scheduling and transportation policies, given a fixed number of transport-

ers (and fixed transportation and tardiness costs) as input. Referring to the mathe-

matical model in Section 2, the simulator addresses all the constraints related to the 

scheduling and transportation dynamics, i.e., equations (2)-(12). The optimization 

tool (OptQuest), instead, let the model vary the number of transportation resources. 

More generally, the optimization is used to define the scenarios to evaluate with the 
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simulator, and to choose the optimal one. The objective function in equation (1) is 

evaluated, and various values of transportation resources are identified and given as 

input to the simulator. Error! Reference source not found. summarizes the simu-

lation-optimization iterations, and the information given as input to the two mod-

ules.  

Fig. 1.   Simulation-based optimization scheme 

  

The simulation module replicates the operations of the finishing department of 

the Company. As more than 1000 items are processed in the finishing department, 

to reduce the complexity of the simulation, they have been grouped in 12 fabric 

categories, each one including items characterized by similar production cycles, and 

the finishing processes of these categories have been simulated (𝑖 = {1, … ,12}). For 

each category, the due date distributions have been fitted from historical data (pro-

vided by the Company), and the same holds for the processing times of each opera-

tion. For each category, the set ℵ𝑖 of consecutive operations to be performed is given 

as input, and all the machines that perform the operations are modelled in the simu-

lation environment. The set ℵ𝑖 contains from 8 to 20 operations for each fabric cat-

egory. Each machine picks a job from its queue and processes it. To assure the min-

imization of the tardiness, the machines always pick the job with the closest due 

date. The machines process the fabrics in batches, whose size varies according to 

the specific fabric category. When a job finishes to be processed in a machine, it 

waits for an available transporter to be delivered to the next operation. When a trans-

porter becomes idle, it moves to the closest machine with a job waiting to be moved. 

The total number of transporters per working shift is given as input from OptQuest.  

Using as input the tardiness of the jobs given by the simulator, the optimization 

module finds the optimal number of transporters (i.e., the one that minimizes the 

objective function), and so on until no new solution is found by the optimization 

module. 
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Experimental Design 

The simulation-optimization experiment has been designed as in the following. 

The simulator, for each given number of transporters, performs 15 replicates of one 

year (i.e., the length of each replicate is 1 year of simulated time). This number of 

replicates has been chosen through the two-steps method [15], and it leads to a reli-

able confidence interval of the throughput of the bottleneck machines (which is a 

critical performance measure for the considered production system).  

To compute the objective function in (1), the unit cost of transporters and the unit 

cost of tardiness are needed (they are given as input to the optimization tool). The 

cost of the transporter 𝑔𝑇𝑅 has been estimated by the Company and it includes, in 

addition to the salary, all the training courses constantly done, the medical assurance 

provided by the Company, the subsidy for the meal in the canteen, the medical ex-

aminations each worker has to do periodically and their necessary equipment. The 

estimated transporter cost is not reported in the paper for confidentiality reasons. 

The cost of the tardiness, instead, is more complex to estimate. For some fabrics it 

is negligible, for others it might depend on the length of the delay, and sometimes 

tardiness might even cause the cancellation of the order and might contribute to the 

loss of a customer. For this reason, different levels of cost were considered. Thus, 

the daily unit cost of tardiness has been varied from 0 to 1000 €/(pcs*day) with a 

step of 5. Moreover, two different speed values have been considered for the trans-

porter movements: 40 m/min and 60 m/min. 

Numerical results 

Error! Reference source not found. shows how the optimal number of trans-

porters varies with different values of the tardiness cost and of transporter speed. 

With low speed (40 m/min), one transporter per working shift is the optimal solution 

if the daily unit tardiness is below 30 €/(pcs*day); two transporters per working shift 

are needed when the cost of tardiness increases above 30 €/(pcs*day). In this case, 

even increasing the tardiness penalty to unreal values, more than two transporters 

per working shift are never necessary. This is explained by the high cost of trans-

portation resources together with the small reduction in the total tardiness that an 

additional transporter would allow to reach. In other words, the saving in tardiness 

cost does not offset the cost of additional transporters.  

Similar results are obtained for the case of transporters with high speed (60 

m/min). In this case, two transporters are needed when the cost of tardiness is 

greater than 120 €/(pcs*day). The boundary unit tardiness cost increases with re-

spect to the previous case because, as the transporters are faster in their movements, 

the total tardiness is smaller (being transported in a short time, the jobs will have a 

smaller completion time and hence a smaller tardiness, all the rest being equal) and 
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one more transporter per working shift becomes necessary for larger costs of tardi-

ness. Also in this case, however, three transporters are never necessary.  

As no more than two transporters are required for each value of the tardiness 

cost, for readability reasons, Fig. 2 is reporter only for values till 200 €/(pcs*day). 

Fig. 2.    Optimal number of transporters with varying cost of tardiness 

 
The above discussed system behavior can be more deeply analyzed by consider-

ing the low-speed case (as it is the most critical one). As reported in Table 2, with 

low speed, Cta = 40
€

𝑝𝑐𝑠∗𝑑𝑎𝑦
  and two transporters per working shift, 8.87 % of the 

total fabrics produced in one year are delivered to the customers with a delay, 

whereas the 9.33 % of produced fabrics are late if only one transporter per working 

shift is used. With three transporters per working shift, no improvement can be ap-

preciated, meaning that, when three transporters are available, the transporters are 

no longer the bottleneck of the process. Moreover, it appears that transporters can 

reduce the number of late jobs but not the average delay. This can be related to the 

naive priority rule approach in the management of machine and transporter queues; 

however, it gives an indication on the severity of the bottleneck and how it can 

change from transporters to machines, depending on the system conditions. This is 

also confirmed by the comparison with the current situation with no transporter: the 

introduction of transporters is able to reduce the late jobs but not the average delay. 

Notice that, although the variation of the percentage of fabrics with delay is small, 

the saving of adding one more transporter can be relevant depending on the total 

yearly number of orders. For instance, in the case of 20000 orders per year, switch-

ing from 0 to 1 transporter would decrease the number of fabrics with delay from 

1874 to 1866 delayed fabrics. If the cost of tardiness is 40 €/day*pcs, then 4160 

€/year are saved. If the tardiness is a relevant penalty (for instance, 125 €/pcs*day), 

then moving to 0 to 1 transporter would let the Company save 13000 €/year. The 

yearly saving should be considered as part of a trade-off with the cost of hiring one 

more transporter and with the target customer service level the Company aims at 

Cta = 30 Cta =  120
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achieving. The results for higher speeds are similar, and for this reason, they are not 

reported in the paper. 

Table 2.    System performance with different transporters, speed = 40 m/min 

Number of transporters 
Percentage of  

fabrics with a delay 
Mean days of delay 

0 9.37 % 13 

1 9.33 % 13 

2 8.87 % 13 

3 8.87 % 13 

 The results discussed above depend on the numbers of jobs (i.e., of customer 

orders) that have to be processed and, since the fabrics produced and sold by the 

Company are affected by seasonality, the possibility of hiring a second seasonal 

transporter only for the months with larger demand must be evaluated. With larger 

demand, the machines are highly saturated, possibly causing some delivery delays. 

In this case, having more transportation resources available can assure a continuous 

and fast supply of every machine to prevent additional delay. To study this situation, 

the mean percentage of fabrics with delay and the mean delays have been considered 

separately for each month. The case of transporter speed = 40 m/min is reported in 

the following, but similar results hold for the case of higher speed.  

As shown in Error! Reference source not found., the months with larger pro-

duction volumes correspond to the months with larger mean days of delay and per-

centage of delayed fabrics. During May, which is the month with the most critical 

delay (i.e., 1.13 % of the annual produced fabrics are delayed in May), 0.12% of the 

annual produced fabrics on average are delivered on time by adding one transporter 

(i.e., an improvement of 10.5%). However, no improvement in the mean days of 

delay can be appreciated. The investment in hiring another transportation resource 

would be justified only if the cost of tardiness was very high compared to the cost 

of the transportation resource. 

From the results, it clearly appears that the transportation is not always the bot-

tleneck process of the finishing department. By analyzing the utilization of the ma-

chines, some machines can reach 100% utilization, especially in the peak-periods, 

and this is the main cause (in the current configuration of the finishing department 

and for the number of jobs causing these saturation levels) of the delays in the de-

liveries. If these bottlenecks were eliminated, by varying the number or speed of the 

machines, the schedule of every operation on each machine would surely change, 

and this change would possibly impact on the need for transportation resources of 

hiring more than one transporter per working shift. 
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Table 3.    Monthly system performance measures (speed = 40 m/min)  

 Month 

One transporter Two transporters 

Mean days of delay % of entities with a delay 
Mean days of 

delay 

% of entities with a 

delay 

January 12 0.51 % 12 0.49 % 

February 13 0.67 % 13 0.63 % 

March 14 0.86 % 14 0.85 % 

April 14 0.97 % 14 0.91 % 

May 14 1.13 % 14 1.01 % 

June 13 0.93 % 13 0.84 % 

July 13 0.75 % 13 0.70 % 

August 13 0.70 % 13 0.68 % 

September 12 0.58 % 12 0.58 % 

October 12 0.72 % 12 0.70 % 

November  12 0.73 % 12 0.71 % 

December 12 0.78 % 12 0.77 % 

Total  9.33 %  8.87 % 

Conclusions 

Nowadays, customers demand a large variety of products in very short times, 

thus companies need to be flexible to respond as fast as possible to customers’ or-

ders. Managing thousands of different articles (characterized by different produc-

tion cycles) and avoiding delays in product delivery to the customers (maintaining 

a high service level) are crucial issues for firms. 

When the large variety of final products corresponds to a low volume of each of 

them, to achieve the maximum flexibility, manufacturers usually design the shop 

floor as a job shop. However, due to the variety of production cycles, products travel 

all around the shop floor to fulfil their operations. As a consequence, managing 

together the job shop scheduling and the transportation among machines is a very 

relevant and critical issue. 

This paper dealt with the integrated job shop machine and transportation resource 

scheduling problem in which also the best number of transporters to be included has 

to be chosen. A mathematical model that includes the job shop scheduling and the 

transportation routing was developed. By minimizing the cost of late deliveries (i.e., 

the cost of the total tardiness) and the cost of the transportation resources, the model 
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optimizes both the schedule of jobs on machines, the number of transportation re-

sources needed in the shop floor per working shift, and the scheduling of jobs on 

transporters.  

The solution procedure for the resulting mathematical model is highly complex 

and time consuming, thus a simulation-based optimization procedure was devel-

oped. The simulation module is used to evaluate the performance of naive schedul-

ing and transportation policies, given a fixed number of transporters. The optimiza-

tion module finds the optimal number of transporters, given the unit tardiness cost 

and the unit transportation resource cost. The two modules iterate exchanging the 

respective output until no more new solution is found. 

The simulation-based optimization procedure was tested in a real case study of 

the finishing department of a textile company. More than one thousand different 

products need to be finished in the department, each of them with a specific se-

quence of operations, performed in tens different machines within the shop floor. 

Currently, the machine operators move the jobs from one machine to the other, 

causing inefficiency and large delays. The model developed in the paper and the 

simulation-based optimization solution procedure were used to find the optimal 

number of transporters per working shift to hire by the Company.  

The solution procedure was implemented using Rockwell Arena and OptQuest 

software, and various scenarios of tardiness cost and transporter speed were evalu-

ated, whereas the cost of the transporter was considered as fixed. Results showed 

that two transporters are enough to minimize the delays related to the transportation. 

In fact, when the number of transportation resources is larger than 2, some of the 

machines become the bottleneck of the department, which are 100% saturated in-

dependently from the number of transporters in the job shop.  

Although the interesting results, which highlight the importance of correctly and 

efficiently managing transportation in complex shop floors as job shops, due to the 

interaction between transportation and machine utilization, the sim-opt developed 

in the paper is a heuristic approach, and, hence, give no assurance about the quality 

of the found solution. Future research will address the development of an exact al-

gorithm able to solve the job shop scheduling with transportation model, which has 

been formalized in the paper. Due to the complexity of the complete model, the 

exact algorithm should exploit some properties of the system. For instance, as the 

problem includes both a job shop scheduling and transportation issues, approaches 

based on a decomposition of the problem in these two aspects could be considered. 

In this case, attention must be paid to the coordination between the two sub-prob-

lems. Possible schemes are Bender [17] or Dantzig-Wolfe [18] decompositions. 
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