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ABSTRACT
Proportional hazards are a common assumption when designing confirmatory clin-
ical trials in oncology. With the emergence of immunotherapy and novel targeted
therapies, departure from the proportional hazard assumption is not rare in nowa-
days clinical research. Under non-proportional hazards, the hazard ratio does not
have a straightforward clinical interpretation, and the log-rank test is no longer the
most powerful statistical test even though it is still valid. Nevertheless, the log-rank
test and the hazard ratio are still the primary analysis tools, and traditional ap-
proaches such as sample size increase are still proposed to account for the impact
of non-proportional hazards. The weighed log-rank test and the test based on the
restricted mean survival time (RMST) are receiving a lot of attention as a poten-
tial alternative to the log-rank test. We conduct a simulation study comparing the
performance and operating characteristics of the log-rank test, the weighted log-
rank test and the test based on the RMST, including a treatment effect estimation,
under different non-proportional hazards patterns. Results show that, under non-
proportional hazards, the hazard ratio and weighted hazard ratio have no straight-
forward clinical interpretation whereas the RMST ratio can be interpreted regardless
of the proportional hazards assumption. In terms of power, the RMST achieves a
similar performance when compared to the log-rank test.

KEYWORDS
log-rank; non-proportional hazards; restricted mean survival time; weighted
log-rank.

1. Introduction

Randomized controlled clinical trials are the gold standard in drug development to
confirm both safety and efficacy of a new compound. The primary objective is usu-
ally to quantify the relative difference between the survival curves of the randomized
treatment groups, which is commonly characterized by the hazard ratio under a pro-
portional hazards assumption (i.e., the assumption that the ratio between the hazard
function of each treatment group is constant over time). It is well known that the
log-rank test is the most powerful nonparametric test under proportional hazards and
thus is the most commonly used testing procedure (see [25]).

Nowadays, it is not uncommon to observe a substantial departure from the propor-
tional hazards assumption in the development of oncology drugs, for example, with
the emergence of novel targeted therapies and immunotherapies. Targeted therapies
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point directly the oncogenic driver mutations and can lead to fast tumor regression (or
disease stabilization) with fewer side effects than standard chemotherapies. However,
cancer cells may develop resistance to such targeted treatment through mutation which
may lead to a progression of the disease. Thus, an early separation of Kaplan-Meier
curves (i.e., hazard ratio < 1) followed by subsequent crossing is not uncommon for this
kind of compounds. On the other hand, immunotherapies aim to boost the immune
system to induce a response against the tumor. The lag between the activation of the
immune cells, their proliferation, and posterior impact on the tumor is described in
the literature as a delayed treatment effect. Another example where the proportional
hazards assumption may not hold is when, for ethical reasons, a patient is allowed
switch treatment after disease progression in a confirmatory trial. Such switching will
not have an impact on progression free survival (PFS), but it may have a high impact
on overall survival (OS) by diluting the treatment effect.

When the proportional hazards assumption holds, the hazard ratio captures the
relative difference between the randomized treatment groups, which has clinical inter-
pretation. However, when the underlying proportional hazards assumption is violated,
the log-rank test loses power and the hazard ratio does not has a straightforward clini-
cal interpretation as its value depends on the accrual distribution, dropout pattern and
the study follow-up time, which may lead to different trial results and parameter esti-
mates in different trials even if patients come from the same population and survival
curves are identical (see [23]). Alternative approaches to deal with non-proportional
hazards patterns include the weighted log-rank test and the test based on the restricted
mean survival time (RMST).

The weighed log-rank test, through the Fleming and Harrington class of weights [3],
allows to down-weight early, middle, or late events, and is proposed in the literature
as a way to increase the power at the end of the trial in an intention to treat (ITT)
population where treatment groups are compared as originally randomized. Using ITT
in a non-proportional hazards setting as the primary analysis may underestimate the
true treatment effect although it would prevent from a type-I error rate increase (see
[10, 14]). However, tuning the parameters (ρ, γ) is not straightforward since they do not
have a clinical interpretation and a misspecification may cause an even larger power
drop with respect to the log-rank test (see [11]). The Fleming and Harrington class of
weights can also be used to derive a weighted hazard ratio [16]. It can be thought as an
average weighted treatment effect, although it does not have a straightforward clinical
interpretation plus it has inherent ethical problems as it implies that some patients’
lives are less important than others.

The RMST is a robust and clinically interpretable measure of the survival time
distribution that does not require the proportional hazards assumption. Unlike the
median survival time, it is estimable even under heavy censoring and has received
considerable attention over the last years (see e.g., [21, 22, 29, 30, 34]) as an alternative
to estimate treatment effects under non proportional hazards. The RMST depends on
the selection of cutoff (truncation) time, which needs to be pre-specified to avoid
selection bias. As pointed out by [7], it is discussed in the literature whether the test
based on the RMST may be more a sensible approach to determine superiority given
the agreement in terms of statistical significance between the test based on the RMST
and the log-rank test (see [28]).

In a recent publication, [5] made a review of existing methods to test and estimate
treatment effects and concluded that “methods for accommodating non-proportional
hazards such as RMST, weighted log-rank tests, and others can be useful secondary
analyses because it is often difficult to have a single summary measure to accurately re-
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flect the totality of clinical effect. However, before abandoning log-rank based primary
analyses of definitive randomized clinical trials, we will need to see more convincing
evidence of how these alternative methods can improve development of effective can-
cer therapies”. We believe that the article by [5] reflects to some extent the current
practice in confirmatory trials where the standard log-rank test and the hazard ratio
are still the primary analysis tools.

In this article, we conduct a simulation study comparing the performance and op-
erating characteristics of the log-rank test, the weighted log-rank test and the test
based on the RMST, including a treatment effect estimation, where different non-
proportional patters are taken into consideration.

In Section 2, we provide a brief overview of the log-rank test, the weighted log-rank
test, and the test based on the RMST, as well as how to estimate the treatment effect.
In section 3 we introduce the simulation set-up we use throughout the manuscript and
present the results of the simulation study. We conclude in section 4 with a discussion.

2. Methods

Let S(t) = 1 − F (t) be the probability of survival at time t ≥ 0, where F (t) is a
differentiable cumulative distribution function and f(t) is its corresponding probability
density function. The hazard function can then be defined as h(t) = f(t)/S(t) =
−S′(t)/S(t).

If we assume that we have a control and an experimental arm, then we have a
survival function S0(t) and S1(t), and a hazard function h0(t) and h1(t) for the control
and experimental groups respectively.

In a regular phase III study, we are interesting in testing the hypothesis

H0 : S0(t) = S1(t) ∀ t vs. H1 : S0(t) < S1(t) ∃ t, (1)

to evaluate whether there is benefit of using the experimental treatment with respect
to the control treatment, which may be the standard of care.

Let T be a vector that contains the event times, Let t1 < · · · < tk be the k distinct,
ordered event times. The number of patients at risk at time tj is denoted by ni,j
with nj := n0,j + n1,j . Let di,j denote the number of events on arm i at time tj with
dj := d0,j + d1,j .

2.1. The standard log-rank test and the hazard ratio

The standard log-rank test statistic is then defined as

U =

k∑
j=1

(
d0,j − dj

n0,j

nj

)
, (2)

where the expression inside the sum describes the difference in actual and expected
number of events on the control arm at each distinct time. Under H0, we would have
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E[U ] = 0. The variance of U is given by [2] as

V (U) =

k∑
j=1

(
n0,jn1,jdj(nj − dj)

n2
j (nj − 1)

)
. (3)

For large sample sizes the test statistic Z = U/
√
V (U) is normally distributed with

mean 0 and variance 1 under H0, by the central limit theorem. For a model with
proportional hazards, meaning h0/h1 = c, where c > 0 is any constant, the standard
log-rank test is optimal (see Schoenfeld [25]) and power will increase with sample size.
When the proportional hazards assumption is violated, the hazard ratio (i.e., h0/h1)
can be interpreted as an average hazard ratio (see Schemper et al. [24]), which is not
straightforward from a clinical point of view, and the averaging depends on the overall
follow-up of patients. Thus under non-proportional hazards, it is not clear to which
estimand the log-rank test and the hazard ratio are associated.

As pointed out by Xu et al. [32], the standard way to account for the impact of non-
proportional hazards in a setting with delayed effects is either ignoring the delay or
increasing the sample size but still using the standard log-rank test. In general, under
the presence of delayed effects, the power increases with the sample size, although this
approach may translate into unrealistically big sample sizes for middle to large delays.
In Figure 1 we present a toy-example that shows how the power behaves when defined
as a function of the number of events under proportional hazards and delayed effects.
This example uses the simulation set-up described in section 3.1 where 258 events are
required to achieve a 90% power under proportional hazards. At 258 events and with
a delay 2 months, we observe that power goes from 0.90 to 0.67, This translates into a

relative efficiency of
(

Φ−1(0.975)+Φ−1(0.90)
Φ−1(0.975)+Φ−1(0.67)

)2
= 1.82, which means that we would need

82% more patients if we would choose to use the standard log-rank test in this delayed
effects example.

Therefore, accounting for the impact of the delayed effects by increasing the number
of events, although theoretically possible, would not be feasible from a practical point
of view given the potentially large additional sample size the trial would need to
assume. On the other hand, if we choose it ignore the delay, the trial will not be
sufficiently powered and most likely will not be accepted by any health authority
under normal circumstances.

Figure 1. Empirical power in a toy-example with proportional hazards and delayed effects.
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2.2. Weighted log-rank tests and the weighted hazard ratio.

An alternative to the standard log-rank test is the weighted log-rank test, defined as

U =

k∑
j=1

wj

(
d0,j − dj

n0,j

nj

)
, (4)

with variance

V (U) =

k∑
j=1

w2
j

(
n0,jn1,jdj(nj − dj)

n2
j (nj − 1)

)
. (5)

The rational for this weighted test comes from the assumption that under non-
proportional hazards we expect a higher treatment effect in a particular time of the
study. Intuitively, by down-weighting for example late events, we may achieve higher
power than the standard log-rank test in a setting with delayed effects.

The test statistic is defined as Z = U/
√
V (U) ∼ N(0, 1) under H0 [3]. By setting

the weights wj = 1 (or any other constant) we get the standard log-rank test.
A general class of weighted log-rank tests was introduced by Fleming-Harrington [6]

Gρ,γ with a weight function of the form wj = (Ŝ(tj))
ρ(1− Ŝ(tj))

γ where ρ ≥ 0, γ ≥ 0,

and Ŝ(tj) is the estimated pooled survival function immediately prior to time tj .
Several log-rank tests can be derived with different ρ and γ combinations.

For example, with (ρ = 1, γ = 0) = G1,0 we obtain the Prentice-Wilcoxon test,
where higher weights are assigned to early survival differences. With G0,1 and G1,1

we emphasize late and mid differences and with G0,0 we obtain the standard log-rank
test. In Figure 2 we show the estimated power in a toy-example under the presence of
delayed effects with all ρ and γ combinations where we see how G0,1 is clearly the most
powerful parameter combination for this type of non-proportional hazards. See [11] for
an extensive evaluation of the use of the Fleming-Harrington class of weights under
non-proportional hazards caused by delayed effects. The choice of ρ and γ requires
extensive knowledge of the shape of survival curves and plays a key role that may
result in loss of power of the weighted log-rank test. Therefore, due to the uncertain
nature of non-proportional hazards, specification of ρ and γ is difficult.

As a possible solution, [15] proposed a versatile max-combo test, which takes the
maximum value of a set of different Gρ,γ , each of which is most powerful in detecting
a certain pattern of non-proportional hazards. The multiple testing adjustment is
conducted via a Dunnett-type parametric method.

The treatment effect linked to weighted log-rank test is known as the weighted
hazard ratio (see e.g., [6, 16, 23]), a weighted average treatment effect where the
weights are those from the associated weighted log-rank test. For instance, in a delayed
effects setting, we would use G0,1 to down-weight the early treatment effect and be
more reflective of the hazard ratio in the later part of the curve. This would measure
the average weighted treatment effect, which does not have a straightforward clinical
interpretation plus it has inherent ethical problems as it implies that some patients
lives are less important than others.
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Figure 2. Power for each ρ and γ combination of the Fleming and Harrington class of weights in a scenario

with a median OS for the control group of 6 months, a median OS for the experimental group of 9 months,

and a delay of 4 months.
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2.3. The restricted mean survival time (RMST)

The RMST has been proposed as an alternative summary for the survival curve (see
[9, 28–30]) and is defined the expected value of survival time up to a fixed time point
t∗. In other words, the RMST is the average survival time estimate which corresponds
to the area under the Kaplan-Meier curve up from the beginning of the trial until time
t∗. Inferences about the RMST have been extensively discussed in the literature (see
e.g., ([13, 21, 27, 34]).

Moreover, it is currently under discussion whether using the ratio (or difference) of
two RMST may be more sensible to determine superiority given also the agreement in
terms of statistical significance between the test based on the RMST and the log-rank
test (see [7, 20, 28–30]).

Let µ(t∗) be the mean of a survival function truncated at time t∗ > 0. This
corresponds to the area under the survival curve S(t) = P (T > 0), and thus

µ(t∗) =
∫ t∗

0 S(t)dt. Also let σ2(t∗) = 2
∫ t∗

0 tS(t)dt −
[∫ t∗

0 S(t)dt
]2

. To estimate µ(t∗)

in we can use the Kaplan-Meier estimator of Ŝ(t), and therefore µ̂ =
∫ t∗

0 Ŝ(t)dt,
where µ̂(t∗) approximately follows a normal distribution with variance V (µ̂(t∗)) =∑D

i=1

[∫ t∗
ti
Ŝ(t)dt

]2
di

Yi(ti−di) , where di and Yi are the number of events and number of

subjects at risk at time ti respectively.
Let the estimated difference between treatment arms in terms of RMST be defined

as

U =

∫ t∗

0

(
Ŝ1(t)− Ŝ0(t)

)
dt = µ̂1(t∗)− µ̂0(t∗), (6)

where Ŝ1(t) and Ŝ0(t) are the estimated survival curves of the experimental and control
groups respectively. The estimated variance term is defined as

V (U) = V (µ̂1(t∗)) + V (µ̂0(t∗)), (7)
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and the test statistic as Z = U/
√
V (U) ∼ N(0, 1) under H0.

Another alternative would be to compute
∫ t∗

0 Ŝ0(t)dt/
∫ t∗

0 Ŝ1(t)dt, a measurement
of the relative risk similar to the hazard ratio (i.e., a ratio below 1 implies a treatment
effect in favor of the experimental arm) with a variance term estimated using the delta
method.

One of the limitations of the RMST is that the RMST value depends on the value
of t∗, which is constrained to the duration of the follow-up and the censoring. This is
found quite frequently in the literature (see e.g., [5]) as a justification for selecting the
log-rank test (and hazard ratio) over a RMST-based approach. However, the log-rank
test is a sequence of hypergeometric tests that requires both the number of patients
at risk and number of events to be greater than zero (see [4]). This implies that the
log-rank (and by extension the hazard ratio) depends on a time-window. Moreover,
as pointed out by [26], the maximum time-window allowed by the RMST is actually
wider than the one for the log-rank test, which means that the RMST uses more data
than the log-rank test. This is very well illustrated in [8] (Figure 1A), where we can
see how the the time-window for RMST difference is larger than the time-window of
the log-rank, indicating that RMST uses more data than log-rank.

On this matter, [33] proposed to summarize the survival distribution via the RMST
up to a sequence of t∗’s in an interval. In theory, these intervals should be pre-specified
based on clinical and feasibility consideration to know what possible time window we
can choose to compute the RMST estimates.

Figure 3. Power as a function of the cutting time (t∗) in the RMST under proportional hazards, delayed ef-

fects, crossing hazards and decreasing effects using the simulation set-up described in section 3.1. The thresholds
where the hazard ratio changes for the delayed effects, crossing hazards and decreasing effects non proportional

hazards pattern are 4, 9 and 9 months, respectively.
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In Figure 3 we present the power of the test based on the RMST in the setting de-
scribed in section 3.1 as a function of the cutting time (t∗) under proportional hazards
and under non-proportional hazards. We can observe how, under decreasing effects
and crossing hazards patterns, increasing t∗ causes power loss, which is consistent
since true treatment effects tend to disappear over time in both settings. In the de-
layed effects and proportional hazards patterns, increasing t∗ causes a power increase.
The selection of t∗ has been briefly discussed in several papers (see e.g., [21, 22, 28])
and it is recommended that t∗ is pre-specified to minimize selection bias and to protect
the integrity of the trial. Moreover, and as pointed out by [7], t∗ should be clinically
meaningful and closer to the end of the study follow-up so that most survival outcomes
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are covered by the time interval [0, t∗]. In this article, in order to have a fair compari-
son with the approaches based on the log-rank and the weighted log-rank tests, t∗ is
linked to the data and is defined as the minimum of the maximum observed (event or
censored) time of each treatment group (i.e., minimax observed time).

Another possible t∗ could be the minimum of the maximum event time of each
treatment group (i.e., minimax event time). However, as pointed out by [7], for delayed
effect settings, t∗ equal to the minimax event time could lead to poor outcomes, while
for settings with crossing hazards and belly-shape curves, t∗ equal to the minimax
event time performs slightly better than the minimax observed time.

3. Simulated study

3.1. Setup

In this section we describe the simulation set-up we use in this article. Following [11],
we employ a scenario that imitates a realistic phase III in oncology where survival data
is simulated from a piece-wise exponential distribution. Under proportional hazards,
we assume that the control group has a median OS of 6 months while the experimental
group has a median OS of 9 months. Thus, the true hazard ratio (i.e., full effect) is
equal to 0.667.

In Figure 4 we present the 3 non-proportional hazard patterns under study in this
article where the time in which there is a change in the hazard ratio function is chosen
to be equal to 4 months for illustration purposes. We establish a total study duration of
25 months, a total enrollment period of 17.5 months, randomization ratio 1:1, a power
of 90% and a one-sided level α of 2.5%. We assume an enrolment of 330 patients with
a minimum of 258 events to achieved the desired operating characteristics when the
assumption of proportional hazards. All the results are based on 104 simulated trials
implemented in R. In this article we assume a 22% of censoring rate, including potential
dropouts.

Under delayed effects, as shown in Figure 4A, the hazard ratio is assumed to be
equal to 1 until the time in which there is a change in the hazard ratio function, and
equal to 0.667 afterwards. Under crossing hazards, as shown in Figure 4B, the hazard
ratio is assumed to be equal to 0.667 until the time in which there is a change in the
hazard ratio function, and equal to 1.5 afterwards. Under decreasing effects (Figure
4C), the hazard ratio is assumed to be equal to 0.667 until the time in which there
is a change in the hazard ratio function, and equal to 1 afterwards. In the simulation
study, for each non-proportional hazards pattern, different threshold values are used
and power is calculated with the log-rank test, the weighted log-rank test with the
Fleming-Harrington class of weights G0,1, G1,1 and G1,0 (see section 2.2) and with the
test based on the RMST. Treatment effect will be quantified using the hazard ratio,
the weighted hazard ratio using G0,1, G1,1 and G1,0 and both the difference and the
ratio between the RMST of each treatment group.

3.2. Power and treatment effect

3.2.1. Delayed effects

Figure 5A shows the empirical power and estimated treatment effects of the scenario
described in section 3.1 under delayed effects with a threshold that indicates the change
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Figure 4. Hazard functions from the 3 non-proportional hazard patterns used in this article assuming hazard

ratio change threshold (e.g., when the effect of the immunotherapy kicks in a delayed effects setting) of 4

months.
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in the hazard ratio function (i.e., delay) ranging from 0 (i.e., proportional hazards)
to 4 months. In terms of power, we observe a general decrease as the delay increases.
We notice that, as expected, the weighted log-rank tests G(0,1) and G(1,0) are the tests
that achieve the highest and lowest power overall, respectively. The standard log-rank
test and the test based on the RMST achieve very similar power values regardless the
delay value.

In terms of the quantification of the treatment effect we observe that, as the delay
increases, the estimated treatment effect increases towards 1 as presented in Figure
5B. The hazard ratio, represented with the “LR” line, has a treatment effect of 0.67
under proportional hazards that increases up to 0.82 when the threshold that indicates
the change in the hazard ratio function is equal to 4 months. As previously mentioned,
0.87 would be an average hazard ratio which does not a clear clinical interpretation.

The value obtained from the weighted hazard ratio represents the hazard ratio
linked to the weighted log-rank test, which down-weights early, middle or late events
conditional to the selection of ρ and γ (see section 2.2). These treatment effects esti-
mates are represented in Figure 5B with the lines “G01”, “G10” and “G11”. We can
see how when the threshold that indicates the change in the hazard ratio function is
equal to 4 months, G01 yields an estimated treatment effect of 0.73, which is close to
the full effect, whereas G10 yields an estimated treatment effect of 0.87. Nevertheless,
these results do not have a straightforward clinical interpretation even if the estimated
treatment effect of G01 seems to be closer the full effect when S1(t) > S0(t). Moreover,
it is not clear to which estimand they are linked and, as previously mentioned, it has
inherent ethical problems as it implies that some patients lives are less important than
others due to the use of Gρ,γ .

The ratio between RMST is represented in Figure 5B with the “RMST” line and
regardless the value of the threshold that indicates the change in the hazard ratio
function, we can always interpret it from a clinical point. We can see how under
proportional hazards, the ration between RMST is equal to 0.75 under proportional
hazards and 0.86 when threshold that indicates the change in the hazard ratio function
is equal to 4 months. To have a better understanding of these values, in Table 1 we
present all the RMST for each treatment group and for each threshold value considered
in this setting. We observe that the RMST values of the control group barely change
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and range from 7.9 and 8 months. This is because the control group does not have
any delayed effect and hence the average survival time does not change. In contrast,
the RMST values of the experimental group start at 10.6 months under proportional
hazards and decrease until 9.2 months when the threshold that indicates the change
in the hazard ratio function is equal to 4 months. The rational for this behaviour
is that if the threshold is higher, the time until we can observe the full effect will
also be higher which makes the average survival time of the experimental group be
closer the average survival time of the control group. Hence, it is straightforward to
interpret and understand why when the threshold is equal to 4 months, the ratio
between RMST is equal to 0.86, and how as the threshold increases, the ratio between
average survival times will tend towards 1. In Table 1 we also provide the difference
between the RMST of each group, where we see that these difference tend toward 0
as the threshold increases.

Table 1. RMST of each treatment group in a delayed effects setting for values of the threshold that indicates

the change in the hazard ratio function ranging from 0 (i.e., proportional hazards) to 4 months.

Threshold (months) 0 1 2 3 4
RMST in control group 8.0 8.0 7.9 7.9 7.9

RMST in experimental group 10.6 10.1 9.8 9.4 9.2
Difference between RMST 2.6 2.1 1.9 1.5 1.3

Figure 5. Power (A) and treatment effect (B) estimation using the standard log-rank test, weighted log-rank

test and RMST in a delayed effects setting.
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3.2.2. Crossing hazards

In Figure 6 we present the empirical power and the estimated treatment effects of the
proposed scenario under crossing hazards with a threshold that indicates the change
in the hazard ratio function ranging from 0 to 12 months. In terms of power, we
observe a general increase as the threshold that indicates the change in the hazard
ratio function increases. This behaviour is consistent since when the threshold is equal
to 0, S0(t) > S1(t) throughout the entire study and therefore we never reject H0 (i.e.,
power is equal to 0). Then, as the the threshold increases, the time throughout the
study in which S1(t) > S0(t) is also higher, and hence it is more likely to reject H0,
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which causes a power increase. We notice that, as expected, the weighted log-rank
tests G(1,0) and G(0,1) are the tests that achieve the highest and lowest power overall,
respectively. We again notice that the standard log-rank test and the test based on
the RMST achieve very similar power values regardless the value of the threshold that
indicates the change in the hazard ratio function.

In terms of the quantification of the treatment effect we observe that, as the thresh-
old increases, the estimated treatment effect decreases, which is consistent with the
nature of this type of non-proportional hazards since the higher the threshold the
higher amount of time throughout the study in which S1(t) > S0(t), which would
translate into treatment effect estimates in favor of the experimental group (i.e., treat-
ment effects below 1). The hazard ratio represented in Figure 6B with the “LR” line,
has a treatment effect equal to 1.5 when the threshold is equal to 0, and equal to 0.75
when the threshold is equal to 12 months. However, this estimate would be an aver-
age hazard ratio which does not a clear clinical interpretation under non-proportional
hazards and could be only interpretable when the threshold is equal to 0, which is an
extreme case placed here for illustration purposes. In fact, 1.5 is the true hazard ratio
(i.e., full effect) in this setting when S0(t) > S1(t) as we can see in Figure 4B.

The weighted hazard ratio represented in Figure 6B with the “G01”, “G10” and
“G11” lines also start yield a treatment effect estimation of 1.5 the threshold is equal to
0. However, when the threshold is relatively high, say 6 months, we can see howG01 and
G10 yield a treatment effect 1.18 and 0.85 respectively. The reason for these differences
is that G01 down-weights early events and G10 down-weights late events. Nevertheless,
these results do not have a straightforward clinical interpretation even if the estimated
treatment effect of G10 seems to be closer the full effect when S1(t) > S0(t). These
results also highlight the impact of misspecifying the values of ρ and γ which do not
have a clinical interpretation.

The ratio between RMST is represented in Figure 6B with the “RMST” line. To
have a better understanding of these values, in Table 2 we present all the RMST
for each treatment group and for each threshold value considered in this setting. We
observe that the RMST values of the control group barely change and range from 7.4
and 7.8 months. Again, this is because the control group does not have any delayed
effect and hence the average survival time does not change. In contrast, the RMST
values of the experimental group start at 5.4 months when the threshold is equal to
0 and increase until 9.6 months when the threshold that indicates the change in the
hazard ratio function is equal to 12 months. The rational for this behaviour is that if
the threshold is higher, the time through the study in which S1(t) > S0(t) is also higher
which makes the average survival time of the experimental group increases. Hence, it
is straightforward to interpret and understand why when the threshold is equal to 12
months, the ratio between RMST is equal to 0.91, and how as the threshold increases,
the ratio between average survival times will decrease. In Table 2 we also provide the
difference between the RMST of each group, where we see that, in line with the type
of non-proportional hazards (i.e, crossing hazards), these difference go from negative
values to positive values as the threshold increases.

3.2.3. Decreasing treatment effects

In Figure 7 we present the empirical power and the estimated treatment effects of the
proposed scenario under decreasing effects with a threshold that indicates the change
in the hazard ratio function ranging from 0 to 10 month. In the context of this type
of non-proportional hazards pattern, this means that from the beginning of the study

11



Table 2. RMST of each treatment group in a crossing hazards setting for values of the threshold that indicates

the change in the hazard ratio function ranging from 0 to 12 months.

Threshold (months) 0 3 6 9 12
RMST in control group 7.4 7.5 7.6 7.7 7.8

RMST in experimental group 5.4 6.9 8.0 8.9 9.6
Difference between RMST -2.1 -0.6 0.4 1.2 1.8

Figure 6. Power (A) and treatment effect (B) estimation using the standard log-rank test, weighted log-rank

test and test based on the RMST in a crossing hazards setting.
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until a time threshold S1(t) > S0(t), and after the threshold S1(t) = S0(t) . In terms
of power, we observe a general increase as the threshold that indicates the change in
the hazard ratio function increases.

This behaviour is consistent since when the threshold is equal to 0, S0(t) = S1(t)
throughout the entire and hence the probability of rejecting H0 is α = 0.025. Then,
as the the threshold increases, the time throughout the study in which S1(t) > S0(t)
is also higher, and hence it is more likely to reject H0, which causes a power increase.
As expected, the weighted log-rank tests G(1,0) and G(0,1) are the tests that achieve
highest and lowest power overall, respectively. Also, the standard log-rank test and
the test based on the RMST achieve very similar power values regardless the threshold
that indicates the change in the hazard ratio function.

In terms of the quantification of the treatment effect we observe that with a thresh-
old of 0 months (i.e., S1(t) = S0(t)), all treatment effect estimations presented in
in Figure 7B are equal to 1. Then, as the threshold increases, the estimated treat-
ment effects decreases favoring the experimental treatment group. This behavior is
consistent with the nature of this type of non-proportional hazards since the lower
the threshold the earlier the full treatment effect disappears and we start to observe
that S1(t) = S0(t). The hazard ratio represented in Figure 7B with the “LR” line,
has a treatment effect equal to 1 when the threshold is equal to 0 months, and equal
to 0.74 when the threshold is equal to 10 months. However, under non-proportional
hazards (i.e., threshold > 0) this would be an average hazard ratio which does not a
clear clinical interpretation under non-proportional hazards.

The weighted hazard ratio represented in Figure 7B with the “G01”, “G10” and
“G11” lines also start yield a treatment effect estimation of 1 the threshold is equal to
0. However, when the threshold is high, say 10 months, we can see how G01 and G10

yield a treatment effect 0.8 and 0.7 respectively. The reason for these differences is
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that G01 down-weights early events and G10 down-weights late events. Nevertheless,
these results do not have a straightforward clinical interpretation even if the estimated
treatment effect of G10 seems to be closer the full effect when S1(t) > S0(t).

The ratio between RMST is represented in Figure 7B with the “RMST” line. To
have a better understanding of these values, in Table 3 we present all the RMST
for each treatment group and for each threshold value considered in this setting. We
observe that the RMST values of the experimental group barely change and range
from 10.8 and 11.1 months. In contrast, the RMST values of the control group start
at 11.1 months when the threshold is equal to 0, and decrease until 8.5 months when
the threshold is equal to 10 months.

Mind that in this non-proportional hazards setting, we observe the full treatment
effect until a time-threshold in which, for example, patients in the control group switch
to the experimental treatment group. Therefore, the rational for this behaviour is that
if the threshold is higher, the time through the study in which S1(t) > S0(t) is also
higher, which makes the average survival time of the control group decrease since these
patients would switch treatment later.

Hence, it is straightforward to interpret and understand why when the threshold is
equal to 10 months, the ratio between RMST is equal to 0.78, and how as the threshold
increases, the ratio between average survival times will decrease. In Table 3 we also
provide the difference between the RMST of each group, where we see that, in line with
the type of non-proportional hazards (i.e, decreasing effects), these differences increase
as the threshold that establish when patients in the control group switch treatment
increases.

Table 3. RMST of each treatment group in a decreasing effects setting for values of the threshold that
indicates the change in the hazard ratio function ranging from 0 to 10 month.

Threshold (months) 0 2 4 6 8 10
RMST in control group 11.1 10.3 9.7 9.1 8.8 8.5

RMST in experimental group 11.1 11.1 11.0 10.9 10.9 10.8
Difference between RMST 0 0.8 1.3 1.8 2.1 2.3

Figure 7. Power (A) and treatment effect (B) estimation using the standard log-rank test, weighted log-rank
test and RMST in a decreasing effects setting.
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3.3. Type-I error

In this section we present the empirical type-I error under the null hypothesis defined
in equation (1) for the 3 non-proportional hazards patterns presented in Figure 4 using
the simulation set-up presented in section 3.1, which uses a one-sided level α of 2.5%.
Mind that, with the simulation set-up used in this article where the control arm is
the same in all non-proportional hazards patterns, we can present the empirical type-I
error for all non-proportional hazards patterns in only one plot (Figure 8). Therefore,
under H0 where S0(t) = S1(t), the survival curves in each of the non-proportional
hazards patterns have the same shape. In Figure 8A, Figure 8B and Figure 8C we
observe that type-I error rate is controlled for the standard log-rank, the weighted log-
rank and the test based on the RMST either under delayed effects, decreasing effects
and crossing hazards, respectively.

Figure 8. Empirical type-I error of the log-rank test, weighted log-rank test and test based on the RMST

under delayed effects (A), decreasing effects (B) and crossing hazards (C).
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In a hypothetical delayed effects setting, we may be interested in testing H0 : δ0 =
δ1 ⇒ S0(t) = S1(t), where δ represents the threshold that indicates the change in
the hazard ratio function (i.e., delay). For example, we may be comparing an im-
munotherapy compound against a combination of the same immunotherapy compound
and another compound that may potentially reduce the delay.

Under H0 : δ0 = δ1, the hazard of each treatment group is presented in Figure 9A
using the same simulation set-up used in section 3.1 and assuming, for illustrating
purposes, a delay equal to 4 months. The corresponding survival functions are pre-
sented in Figure 9B. Under this other type of H0 we see how both hazard functions
and survival functions completely overlap. In Figure 10 we see how, under this type of
H0, the type-I error is perfectly controlled when using the log-rank test, the weighted
log-rank test and the test based on the RMST.

Alternative null hypotheses such us H0 : δ0 ≤ δ1 ⇒ S1(t) ≤ S0(t) could be tested.
However, a proper type-I error assessment is recommended since, as pointed out by
[18] (Figure 5), type-I error is not controlled in a delayed effects setting when using
the weighted log-rank test using the Fleming and Harrington class of weights under a
null hypothesis of the type H0 : S1(t) ≤ S0(t).
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Figure 9. Hazard (A) and survival (B) function from the control and the experimental arm when H0 : δ0 = δ1.
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Figure 10. Empirical type-I error of the log-rank test, weighted log-rank test and test based on the RMST
under a delayed effects non-proportional hazards pattern with the null hypothesis H0 : δ0 = δ1. The type-I

error is calculated using different time-points (thresholds) that represent the moment at which the hazard

function of each treatment group changes.
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4. Discussion

Despite the extensive existing literature about statistical methods to deal with non-
proportional hazards, the log-rank test and the hazard ratio are generally considered
the gold-standard approaches even if they implicitly assume a constant treatment effect
(i.e., proportional hazards) over time. However, it is well known that when treatment
effect is not constant over time, the log-rank test loses power although it is a valid
test.

Under a delayed effects’ type of non-proportional hazards, it is argued in the litera-
ture that we may account for the impact of the non-proportional hazards by increasing
the sample size. This may be feasible with relatively small delays, but with medium to
large delays the cost related to the additional sample size would be too high and hence
would not be feasible. However, non-proportional hazards not only have an impact on
the power; the hazard ratio becomes a biased estimate of the treatment effect and
looses its clinical interpretation.
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Non-proportional hazards are not rare nowadays in clinical trials, specially with the
development of immunotherapy compounds, which are not typically directed to the
tumor itself and aim to boost the patient’s immune system. Potential positive effects
with these compounds may not be observed immediately and the lag between the
activation of immune cells, their proliferation, and impact on the tumor are described
in the literature as a delayed treatment effect.

The weighted log-rank test together with the Fleming and Harrington class of
weights (see [3]) have gained a lot of attention over the last year as they allow to
down-weight early, middle or late events which can result in a power increase with
respect to the standard log-rank test while controlling type-I error rate depending
on the non-proportional hazards pattern and the null hypothesis under consideration
(see [18]). Nevertheless, the choice of ρ and γ in the Fleming and Harrington class
of weights requires extensive knowledge of the shape of survival curves and plays a
key role that may result in loss of power of the weighted log-rank test. Therefore, due
to the uncertain nature of non-proportional hazards, specification of ρ and γ is dif-
ficult. To preserve the integrity of the trial, these parameters should be pre-specified
in advance. However, due to their complex interpretation, it would be interesting to
explore whether, in a group sequential design setting, these parameters could be up-
dated based on interim data since there exist methods to control the type-I error such
us the conditional error function approach (see [1, 12, 19, 31]).

In this article we have also discussed how it is possible to use a weighted version
of the hazard ratio using the Fleming and Harrington class of weights. The weighted
hazard ratio can be thought as an average weighted treatment effect, although it does
not have a straightforward clinical interpretation plus it has inherent ethical problems
as it implies that some patients lives are less important than others.

Another approach that has gained a lot of attention over the last years is the
restricted mean survival time (RMST), a well-established, yet underutilized measure
that can be interpreted as the average survival time up to a pre-specified, clinically
important time point. It is equivalent to the area under the Kaplan-Meier curve from
the beginning of the study until a cutting point. In this article we have discussed how
it is not as powerful has the weighted log-rank test although it achieves an almost
identical performance compared to the standard log-rank test, which is nowadays
gold-standard approach. However, the RMST most important benefit over the hazard
ratio and the weighted hazard ratio is that it is always interpretable, even under non-
proportional hazards.

One of the most common critiques against the RMST is that the statistical signifi-
cance of the results depends on the cutting time, which is constrained to the duration
of the follow-up and the censoring. However, the log-rank test is a sequence of hyper-
geometric tests that requires both the number of patients at risk and number of events
to be greater than zero (see [4]). This implies that the log-rank test (and by extension
the weighted log-rank test) depend on a time-window. Moreover, the maximum time-
window allowed by the RMST is actually wider than the one for the log-rank test,
which means that the RMST uses more data than the log-rank and weighted log-rank
tests (see [8]).

However, using a relative risk measure (i.e., the hazard ratio, the weighted hazard
ratio or the ratio based on the RMST) has its own limitation as it does not provide
absolute benefit of the treatment effect. It is well known that relative risk measures
have the advantage of being stable across populations with different baseline risks. This
is particularly useful when, for example, we aim to combine the results of different
trials in a meta-analysis. However, they have the major disadvantage that do not
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reflect the baseline risk of the individuals with respect to the outcome that is being
measured. In other words, relative risk measures such us the hazard ratio do not take
into consideration the individuals risk of achieving the outcome of interest without
the administration of a drug and therefore do not really tell how much benefit the
individual would obtain from its use.

We may consider the robust milestone (or landmark) analysis and the RMST dif-
ference as simple and clinically interpretable alternatives to the relative risk measures
mentioned above. The robust milestone analysis would have the difficulty of selecting
the milestone, although several options exist in the literature to protect the study
against a poor choice of the milestone (see e.g., [17]).

One topic we would like to explore further in the future is the use of the weighted
log-rank test in a delayed effects setting with small sample sizes. The weighted log-rank
test gives higher weights to late survival times. This may make the test susceptible to
small sample sizes as the latter part of the survival curve is estimated based on the
smaller sample sizes (i.e., very small number of at-risk groups later part of the study
follow-up). In this case, we wonder whether the RMST may have some advantage over
the weighted log-rank test in this situation in terms of power.
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