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Energy redistribution patterns in damaged elastic framesI
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Abstract

Frames structures are systems made of connected elements and are widely diffused in civil and industrial engineering. Like other
structural types, they can suffer damages. Element removal can cause the collapse of the whole structure. Alternate load path
is a strategy to prevent collapse through the redistribution of the forces to the safe elements. Although this approach is largely
adopted in the design of robust structures, the knowledge on how the redistribution mechanism act is still limited. To understand
the mechanisms that raise, the strain energy in each structural component is considered as indicator. Two dimensionless quantities,
i.e., beam-to-column flexural stiffnesses and transposed-to-proper column inertia are found to be the two relevant terms that rule
the patterns of strain energy on the damaged frame. A relationship between the patterns, the increment of energy and the two
dimensionless quantities is found, providing interesting insights into the behavior of such statically indeterminate structure. The
results can be used for new approaches to robustness-oriented structural design.
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1. Introduction

Frame structures are systems of elements, namely beams
and columns, that are joined together to form an assembly. Such
types of structures are able to carry the loads applied on them
since moment-resisting mechanisms develop. From a statical
point of view, the frames are statically indeterminate structures
with a high degree of indeterminacy. Due to their stiffness to
vertical and lateral loads, they are largely diffused in all fields
of construction engineering, either civil or mechanical [1, 2, 3].
Frames structures are found at a wide range of scales and ar-
tifacts: from tall buildings [4, 5], to medium component scale
[6, 7], to material scale [8, 9], from aircraft [10] to ship engi-
neering [11]. They are largely adopted in addictive manufactur-
ing for highly engineered materials [12, 13]. Although they are
in man-made products, there are examples of frame structures
in Nature [14].

As all the other structures, frames can suffer damages. The
causes of the major collapses of frame structures encompasses
explosions (Murrah Federal Building, Oklahoma City [15]), im-
pacts (World Trade Center, NYC [16]), fire (Plasco Building,
Teheran [17]) or overloads (Sampoong Dept. Store, Seoul [18]).
The failure of frame structures represents a major concern in
civil engineering since such structural types are largely diffused.
Thus, their behavior after the removal of one element has been
studied with the special purpose to assess the robustness of the
structure under all the possible loading scenario that can occur
[19, 20]. The majority of such analyses have been performed
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using numerical softwares, which are able to model material
behavior [21], as well to account for the interaction between
the elements [22, 23]. Although complete, such analyses lack
of generality, since working examples are proposed, e.g., in
[24, 25, 26]. Moreover, the collapse response largely differs
depending on the type of numerical model adopted for the anal-
ysis [26]. Studies on damaged frame structures also include
two main problems: damage detection and damage assessment
[27]. To this aim, many approaches have been implemented, in-
cluding machine learning techniques and artificial intelligence
[28, 29]. Theoretical studies on the robustness of frame struc-
tures subjected to column removal are oriented towards the dy-
namic effects that originates from the sudden element removal
[30, 31], to interpret the results of experiments [32] and to pro-
gressive collapse mechanisms [33, 34, 35, 36].

Limited studies on energy aspects on damaged frame struc-
tures have been found in the literature. In the Eighties, Sih and
Hartranft [37] formulated a preliminary study on the possibil-
ity of applying fracture mechanics for the study of the failure
of frame structures. Briefly, they argued that the kinetic en-
ergy released from the removal of one member cause the failure
of the system to proceed and, thus, a progressive collapse oc-
curs. This idea was later explored by Masoero and colleagues
[38, 39, 40] who discussed about the analogies between the fail-
ure of a frame and fracture mechanics finding scaling laws and
ductile-brittle transition in the process. A previous study by
the Author on a connected structure made of members with lin-
ear elastic material law illustrates that progressive element re-
moval through a simple damage model [41] follows a nonlinear
structural response [42]. As highlighted in the study of simpli-
fied schemes [43], this is due to the static indeterminacy of the
structural scheme and the presence of preferential load paths
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that drive the overall behavior [44]. Unusual strain energy be-
haviors have been recently observed and detailed by Karpov
and colleagues [45, 46]: they studied periodic and lattice meta-
materials subjected to localized loads finding that anomalous
patterns originates within the structure to distribute the force
applied on the boundary.

In frame structures, when an element is removed the loads
carried by it are redistributed to the safe elements, usually the
adjacent members. Alternate Load Path (ALP) is a strategy
widely used in the design of robust structures: when a damage
occurs, the loads are rerouted to other elements [47]. Frame
structures, thanks to their moment resisting capacity, are able
to perform such redistribution [48]. Nevertheless, comparing
the undamaged and the damaged schemes, one cannot pinpoint
the changes since the elements are subjected to a multitude of
forces (two shear forces, one axial force, two bending moments
and one torsional moment). Thus, as already proposed by the
Author, the internal energy is selected as unique parameter able
to summarize the behavior of the structure [44]. The aim of this
paper is to highlight how the internal energy is redistributed
within the safe structure after element removal. This would
serve for a better understanding of frame behaviors and, pos-
sibly, for a robustness-oriented structural design.

To this purpose, a discussion following Sih and Hartranft
[37] on the energy increments due to element removal in frames
structures is first proposed and enriched. Then, dimensionless
quantities that describe the geometry and the distribution of the
stiffnesses on the scheme are determined thanks to an exam-
ple on a simple structure. The patterns that originate on a frame
structure subjected to element removal are discussed with refer-
ence to four possible damage locations. Finally, the results are
discussed and the similarities between the determined patterns
and the total energy increments are highlighted.

2. Energy aspects in element removal

The well recognized practice in simulating element removal
in structures consist in the following four steps [49, 50]. Fig-
ure 1 illustrates the process on a simple plane structure sub-
jected to column removal.

1. Solve the undamaged system and get the internal forces
at the ends of the element to be removed (Figure 1.a).

2. Create a novel system made of two components: a sys-
tem (namely, Structure 1, S1) without the element to be
removed and a system (namely, Structure 2, S2) repre-
sented by the removed element; add as extra nodal forces
the internal forces computed at step 1 (Figure 1.b).

3. Apply on the nodes of Structure 1 and Structure 2 pro-
gressively increasing forces that are opposite to the ones
inserted at step 2 (Figure 1.c).

4. When the opposite forces have the same magnitude as the
one of step 2 the element is removed (Figure 1.d).

Some considerations about the internal energy during the
element removal process are now discussed, also on the base of

the previous studies by Sih and Hartranft [37]. The internal en-
ergy in the statically indeterminate structure, i.e., the one con-
sidered at the step 1, is named as U0, where subscript 0 relates to
the undamaged structural scheme. Referring to Figure 1.a, the
term U0 is the sum of two contributions: U01 referring to the en-
ergy in the horizontal beam computed from the internal forces
(bending moment, axial and shear forces); U02 referring to the
energy in the vertical element computed in the same way (only
axial force is present). Menabrea’s theorem, which was initially
introduced for solving statically indeterminate structures [51],
can provide interesting insights into the removal process.

Referring to step 2, the two created structures S1 and S2
with the extra force(s) can be considered equivalent to the un-
damaged scheme in terms of total internal energy since the in-
ternal forces (bending moment, axial and shear forces) are ex-
actly the same. A similar conclusion can be reached consider-
ing that two structures are statically determinate (i.e., in equi-
librium) and, thus, following Menabrea’s theorem [52, 53], the
value of N is the one for which the displacement compatibil-
ity, i.e., vA1 = vA2 , (where v denotes the vertical displacement)
holds. In fact, the internal energy has a minimum in correspon-
dence of the true force:

∂U
∂X

∣∣∣∣∣
X=N

= 0, (1)

where X is the generic axial force and U is the internal energy.
For the previous considerations about the internal forces in S1
and S2, U1 = U01 and U2 = U02, where U1 and U2 are the
internal energies in S1 and S2, respectively. Since U = U1+U2,
recalling Eqn. (1):

∂ (U1 + U2)
∂X

∣∣∣∣∣
X=N

=
∂ (U1)
∂X

∣∣∣∣∣
X=N

+
∂ (U2)
∂X

∣∣∣∣∣
X=N

= 0. (2)

Following Castigliano’s second theorem [54], the derivative of
the internal energy with respect to a force is the displacement
component of the point of application of the force. Consid-
ering that downward force and, consequently, downward dis-
placement is positive, it results:

−vA1 + vA2 = 0 for X = N, (3)

which is the compatibility condition previously mentioned.
In the incremental process reported in step 3, the total force

on the nodes can be considered as the sum of the contribution
of N and λN. Increasing the λN, each structure would remain
in equilibrium and, thus, the internal energies would modify.
Since the U has a minimum for the internal forces that satisfy
the compatibility (following Menabrea’s theorem), modifying
the forces, the total internal energy would increase, it results
that

∂U
∂X

∣∣∣∣∣
X=N−λN

, 0, (4)

from which it results that −vA1 + vA2 , 0. This means that the
compatibility of the displacements does not hold during pro-
gressive removal process.

When the opposite forces reaches the value of N, i.e. λ = 1,
the element is completely removed. The internal energy re-
lated to this step is named as Ud, where subscript d stands for
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Figure 1: Sequence for modeling the removal of the vertical rod: (a) the axial (compressive) force is computed, (b) Structure 1 and 2 are created and the internal
axial force is added as extra nodal force on nodes A1 and A2, (c) progressively increasing forces are added on the nodes, (d) the column is removed.

“damaged”. It is now interesting to study how the internal en-
ergy changes from the undamaged to the damaged situation.
With reference to the undamaged structure sketched in Fig-
ure 1.a, subjected to an uniformly distributed load q, remem-
bering Clapeyron’s theorem, the internal energy is

U0 =
1
2

∫
S

qv (z) dz, (5)

i.e., half the integral over the entire structure S of the force qdz
times the displacement in the undamaged structure v0 (z), with
z a linear coordinate along the structure. The expression can be
rearranged introducing the term

C0 =

∫
S

v0 (z) dz

q`2 (6)

which stands as a compliance term [37]. Thus, Eqn. (5) turns
into

U0 =
1
2

q2`2C0 (7)

As expected from the previous discussion, the internal energy
for the scheme of Figure 1.b is still U0 since the forces N per-
form equal, but opposite, works. When the forces λN are pro-
gressively applied, Figure 1.c, mutual works are created. With
reference to Figure 1.d, the work from the undamaged (0) to the
damaged (d) state is

U0→d = q2`2 (Cd −C0) −
1
2

N
(
vA1d − vA10

)
−

1
2

NvA20. (8)

where tthe terms vA10 and vA1d relate to the vertical displace-
ments of point A1 in the undamaged (Figure 1.a) and damaged
(Figure 1.d) schemes, respectively. Similar nomenclature holds
for the vertical displacements of point A2.

To further simplify Eqn. (8), consider the structure S1, as
depicted in Figure 2. Applying Betti-Maxwell theorem, it re-
sults that

q2`2 (Cd −C0) = NvA1d. (9)

Substituting the left hand-side term of Eqn. (9) equality into
Eqn. (8) and remembering that vA10 = vA20, the following ex-
pression of the increment of internal energy is obtained

U0→d =
1
2

q2`2 (Cd −C0) , (10)

N
A1 A1

(0) (d)

Figure 2: Structure S1 onto which Betti-Maxwell theorem is applied.

from which the internal energy in the damaged system is

Ud = U0 + U0→d =
1
2

q2`2Cd. (11)

To evaluate the increment of internal energy due to the dam-
age it is sufficient to solve the structure without the damaged
element.

Substituting the right hand-side term of Eqn. (9) equality
into Eqn. (8), the increment of internal energy turn out to be
equal to

U0→d =
1
2

NvA1d, (12)

i.e., larger than the internal energy in the damaged element be-
fore the removal (U02 = 1

2 NvA10, with vA10 < vA1d). This means
that the deformability of the structure after element removal de-
fines the increment on internal energy.

3. Column removal on a simple frame structure

A simple example is proposed to highlight the parameters
that rule the change in internal energy in an elastic frame sub-
jected to element removal. The study case is represented by a
one storey five columns frame, as depicted in Figure 3. Column
height and beam length are h and `, respectively. The column
has cross-section area and inertia Ac and Ic, respectively, and
Young’s modulus Ec. Similarly, beams are characterized by in-
ertia Ib and elastic modulus Eb. In the following discussion, the
quantities EAc, EIc and EIb are considered and the subscript
condensed. Vertical downward loads act on the top nodes.

Damage is simulated through the removal of the middle col-
umn (in red in Figure 3). To determine the internal energy in
the structure after the removal, the symmetry of the damaged
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Figure 3: Simple frame structure.
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Figure 4: synthetic structural scheme of the damaged frame structure. The
squares identify the nodes.

system is considered. Thus, half structure, i.e., the scheme re-
ported in Figure ??, is studied and its internal energy is doubled.
To further simplify the problem, only the top beam is consid-
ered. Two allowed displacements are considered for each node:
rotational and vertical. The horizontal nodal displacements are
not considered in the present analysis since the magnitude of
the axial forces in the beams is negligible and, thus, the axial
elongations are close to zero. The contribution of each column
can be condensed into two springs: a rotational spring having
rotational stiffness kr and a vertical springs having stiffness ka.
In general, such stiffnesses depend on the inertia and the cross-
section area of the columns. For the i-th node, it results

kri = αi
EIc

h
kai = βi

EAc

h
(13)

where αi and βi depend on the bottom support condition; the
subscript i serves for identifying the node. Figure 4 illustrates
the simplified scheme. In the present analysis it results αi = 4
and βi = 1 for i = 1, 2.

According to the displacement method for structural anal-
ysis [55], the following equilibrium equations can be written



(
4EIb

`
+ kr1

)
φ1 +

2EIb

`
φ2 +

6EIb

`2 v1 −
6EIb

`2 v2 = 0

2EIb

`
φ1 +

(
5EIb

`
+ kr2

)
φ2 +

6EIb

`2 v1 −
6EIb

`2 v2 = −P
`

4
6EIb

`2 φ1 +
6EIb

`2 φ2 +

(
12EIb

`3 + ka1

)
v1 −

12EIb

`3 v2 = P

−
6EIb

`2 φ1 −
6EIb

`2 φ2 −
12EIb

`3 v1 −

(
12EIb

`3 + ka2

)
v2 =

3
2

P

(14)

The first and the second equations refer to the moment equilib-
rium of nodes 1 and 2, respectively; the third and the fourth to
the vertical forces equilibrium of nodes 1 and 2, respectively.

For a regular frame, four dimensionless quantities can be
determined rearranging the equations

ρ =
EIb h
EIc `

(15)

ξ =
EAc `

2

EIc
(16)

µ =
P`2

EIb
(17)

δi =
vi

`
(18)

These are obtained by multiplying the first and the second equa-
tions times `/EIb, the remaining times `2/EIb and remembering
the identity (`EIc)/(`EIc). Parameter ρ is a dimensionless pa-
rameter representing the ratio between beam-to-column flexural
stiffnesses, ξ is the dimensionless transposed-to-proper column
inertia, µ is the dimensionless load and δ the dimensionless ver-
tical displacement. Civil engineering concrete frame structures
are characterized by ρ ranging from 0.1 to 10, while ξ larger
than 10.

It can be proven that the solution of the system of equations
can be expressed as a function of the parameters that defines the
shape and the distribution of stiffnesses on the frame and on the
terms αi and βi that describes the contribution of the condensed
columns. In general, the solutions have the form

φi = µρ fφi

(
ρ, ξ, α j, β j

)
(19)

δi = µρ fδi

(
ρ, ξ, α j, β j

)
(20)

with j = 1, 2, where fφ and fδ are multiplying terms that, in
general, depend upon ρ, ξ and on the αs and βs. Referring to
the top beam, the bending moment, which varies upon the con-
sidered point described through the variable z, is

Mb (z) =
EIb

`
µρ mφ

(
z, ρ, ξ, α j, β j

)
+

EIb

`2 µρ
[
`mδ

(
z, ρ, ξ, α j, β j

)]
+ P` mP (z) , (21)

where mφ, mδ and mP are dimensionless functions that describe
the bending moment associated to the rotations, to the displace-
ments and to the external forces, respectively. The term into the
square brackets is the (true) displacement of the nodes and P`
can be rewritten as µ EIb

`
. The internal elastic energy associated

to the bending moment is

Um =
1
2

∫
S

[Mb (z)]2

EIb
dz, (22)

where the integral is extended over the entire beam. The Um

can be rewritten as

Um =
1
2

(EIb

`
µ2

)
Lm, (23)
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where Lm = Lm

(
ρ, ξ, α j, β j

)
denotes the definite integral and is

a scalar quantity dependent upon the dimensionless structural
parameters.Referring to the energy in the rotational springs, it
is possible to compute

Ukr =
1
2

2∑
i=1

kriφ
2
i =

1
2

EIc

h
µ2ρ2

2∑
i=1

βi f 2
φi
. (24)

Rearranging the dimensionless quantities, Ukr turns into

Ukr =

(EIb

`
µ2

)
ρKr. (25)

where Kr = Kr

(
ρ, ξ, α j, β j

)
stands for the summation of Eqn. (24).

Similarly, the elastic energy in the vertical springs can be com-
puted as

Uka =
1
2

2∑
i=1

kaiv2
i =

1
2

EAc

h
µ2ρ2`2

2∑
i=1

βi fδi . (26)

Similarly, the elastic energy in the vertical springs is

Uka =
1
2

(EIb

`
µ2

)
ξρKa (27)

where Ka = Ka

(
ρ, ξ, α j, β j

)
is the summation of Eqn. (26).

Considering the symmetry, the total internal energy after
element removal (the so-called damaged structure) is twice the
sum of the three contributions

Ud =

(EIb

`
µ2

) [
Lm + ρKr + ξρKa

]
. (28)

Adopting the dimensionless quantities, the internal energy of
the undamaged structure, Eqn. (??) can be rewritten as

U0 =
5
2

(EIb

`
µ2

)
ρ

ξ
(29)

The increment (Ud − U0) = U0→d of the total energy de-
pends on the geometric quantities ρ and ξ and on the term EIb

`
µ2,

which acts as a scaling parameter since it sets the value of the
flexural stiffness, the size of the frame and the magnitude of the
loads. To generalize, the same conclusions can be drawn even if
the span of the beams varies from beam to beam and interstory
drift changes from level to level. Similarly, non homogeneous
loading on the structure allows to consider that the total energy
depends on ρ, ξ and EIb

`
µ2. In fact, a reference length `∗, a ref-

erence height h∗ and a reference load P∗ must be introduced in
such a way that beam lengths are all related to their reference
values. Similar approach holds for height and loads.

4. Energy redistribution patterns in damaged frames

It was proved that the analysis of two separate structures,
the damaged and the undamaged, let to determine the increment
of internal energy that occurs in an element removal process on
a linear elastic frame. Besides, it results that the increment de-
pends upon geometrical quantities that determine the “shape”

of the structure and upon a scaling quantity. Comparing un-
damaged and damaged schemes, the differences refer to the ge-
ometrical quantities, since the scaling terms are kept equal.

Since the increment in internal energy U0→d is positive, it is
interesting to study how the increment is distributed across the
entire scheme, if it only affects certain elements, or if a diffused
behavior is recorded. Obviously, it is expected that a budget be-
tween increases and decreases occurs, i.e., if there are elements
in which there is a decrease of internal energy, by consequence,
other elements would record larger increments. To study how
the energy is redistributed across the scheme, to each element
the following dimensionless quantity is assigned

χi =
Ud,i − U0,i

Ud − U0
, (30)

where index i denotes each element of the damaged structure
(the removed element is not considered), Ud,i and U0,i are the
internal energies in the i-th element in the damaged and undam-
aged structure, respectively. Such values can be computed from
the internal forces. As Ud =

∑
i Ud,i and U0 =

∑
i U0,i, it results

that
∑

i χi = 1. The term χ is a measure of the contribution of
the element with respect to the whole increment of internal en-
ergy. If χ > 0, the element accumulate energy, while a loose
is seen for χ < 0. For χ ≈ 0, i.e., Ud,i ≈ U0,i, no changes are
observed.

Tests are performed on a 20 storey 21 columns (420 ele-
ments, in total) plane frame structure subjected to vertical down-
ward top loads sketched in Figure 5. For sake of clarity, inter-
story height h is set equal to beam length `, thus a square nodal
grid is generated. Damages consist in column removal; due to
the simplicity of the structure in terms of force transfer [44],
vertical columns act as load paths and, thus, the removal of a
beam does not make any change in load transfer. Four possible
damage locations are identified (the red numbers). These are:
case 1 (column I-11, central bottom column), case 2 (column
I-3, lateral bottom column), case 3 (column X-11, central mid-
dle column), case 4 (column X-3, lateral middle column). As
χ is a ratio between energies, the scaling terms simplify, thus it
results χi = χ (ρ, ξ, i). To remember, ρ and ξ are the beam-to-
column flexural stiffnesses and transposed-to-proper column in-
ertia ratios, respectively defined in Eqns. (15) and (16). Various
parameters configurations were studied: ρ in the range 0.001
to 1000, i.e., from weaker beam-stiffer column to stiffer beam-
weak column, respectively; ξ in the range 0.001 to 1000, i.e.,
from large to small inertia keeping the cross-section area fixed.

Two types results are reported within this section. Figure 6
shows two identical structures subjected to the removal of the
central bottom column, Case 1 with (ρ; ξ) = (1; 10). The left-
hand side plot depicts the values of χi are associated to each ele-
ment. To highlight increments and reductions, two color scales
are adopted: green-to-blue elements are those which experi-
ence increments in the internal energy, pink-to-yellow elements
record reductions in internal energy. In the following each plot
would have its color-scales. Black narrow lines relate to the el-
ements for which −10−3 ≤ χ ≤ 10−3, i.e., those for which no
changes are observed. The right-hand side plot summarizes the
results depicting, in red color, those elements in which there is
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Figure 5: Sketch of the test structure. The vertical alignments of the columns
are marked with Arabic numerals (1 to 21), the levels with Roman numerals
(I to XX). The removed elements are identified with the red rectangles. The
vertical loads are applied on the top of the structure, only.

an increase internal energy. Green elements the ones into which
a reduction is observed (the internal energy is still positive, but
smaller than in the undamaged case). All the calculations were
performed with a Matlab script recalling OpenSees solver [56].

4.1. Case 1: central bottom column

Figure 7 reports the sign of the variation of internal energy
into the frame structure subjected to the removal of the central
bottom column (Case 1). Each row of the matrix plot of Fig-
ure 7 refers to a value of ρ, each column to a value of ξ. A
strong influence between ρ, ξ and the sign patterns of χ over
the structure after the removal of the central bottom column
emerges.

It is first highlighted that an increase of the internal energy
(red elements) occurs in the surrounding columns and a reduc-
tion (green elements) is in general observed in the columns
above the removed element. The variations are not limited to
columns, but, to a lesser extent, also to the beams. The ex-
tent of the variations largely depends on the values of the di-
mensionless parameters ρ and ξ, as discussed in the following.
Recalling the idea that after element removal there is a sort of
energy influence area due to frame redistribution mechanism
in which some components are subjected to smaller or larger
forces, thus, strain energy, the trends that emerge are the results
of two opposite macro-behaviors, as described below.

Referring to parameter ξ, its increment tends to tighten and
rise the effects, i.e., the influence area, in term of energy varia-
tions due to column removal across the storeys. Fixing a value
of ρ, say 0.001, and comparing the plots for low and large ξ, i.e.,

scrolling the matrix plot of Figure 7 along the rows, it clearly re-
sults that the patterns in column energy increments (in red) dif-
fers. For low ξ, the increments are seen across all the columns
in the bottom levels, while for large ξ the affected columns are
those between the alignment of the removed vertical element.
Referring to elements in which energy increments are seen are
similar: increasing ξ the effect propagates upwards and the in-
fluence area tends to close. The same pattern can be seen for
the other values of ρ, i.e., along the rows of the matrix plot of
Figure 7. In general the number of affected beams increases as
much as ξ increases, while their position tends to be across the
alignment of the removed column.

On the contrary, referring to parameter ρ, its increase tends
to enlarge and flatten the influence area. Similarly to as before,
fixing a value of ξ, say 10, and comparing the plots for low and
large ρ, that is scrolling the matrix plot of Figure 7 along the
columns, it clearly emerges that the location of the elements
into which the variation is recorded tends to stretch from the
alignment of the removed column. As a second effect, the loca-
tions of the affected elements rearrange towards the bottom of
the frame, where the removed element was placed.

Such behaviors can be explained recalling that beams are
able to laterally redistribute the loads carried by the removed
element to the adjacent columns. The stiffer the beam, the more
laterally the load is transferred. Transfer beams promote such
load paths homogenization across all the columns. The parame-
ter ρ controls such transfer capacity, with larger values implying
larger lateral load redistribution. The stiffness of the column
arrangement is handled by parameter ξ. Large values imply
larger contribution to the whole inertia of the set of columns
rather than of the single vertical element. Large ρ and ξ mean a
system of rigid beams (with respect to flexure) connecting large
columns. Small ρ and large ξ relate to a system into which large
columns are connected by weak beams. Large ρ and small ξ re-
flect a system with rigid beams lying on weak columns.

The last point can be related to the typical case of a frame
with deep beams that are able to transfer the loads to the safe
elements when a column is removed. In this case, as much as
the loads are laterally redistributed, energy increments on each
column are smaller since there is a larger diffusion, i.e., the
increment is allocated more homogeneously. To better high-
light such phenomenon, the colored plots of Figure 8 depict
the values of χi through the two color ranges previously illus-
trated. Briefly, the same color means similar energy variation.
With reference to the aforementioned case, i.e., ρ = 1000 and
ξ = 0.001 one notes that the bottom columns are green col-
ored (χ ≈ 0.047), while those on the second level are in blue
(χ ≈ 0.005). This does not occur, for example, for ρ = 10 and
ξ = 0.001, where a transition in the colors of the columns is
observed.

Analyzing the case in which ρ = 1000 and ξ = 1000 in Fig-
ure 7, an interesting behavior emerges: side columns are sub-
jected to a reduction in internal energy, while central columns
to an increase. Insights on such behavior can be explained ob-
serving the same configuration in Figure 8: it comes out that the
inner bottom columns are subjected to an increase, the external
to a decrease and the ones in-between to a null increment. Since
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Figure 6: Sample plots aiming at presenting the results. The structures have equal ρ and ξ and are subjected to the same damage. Referring to the left-hand side
plot: the values of χ are presented and two colorbars are adopted: green-to-blue colorbar relates to internal energy increments, pink-to-yellow to internal energy
reductions. Referring to the right-hand side plot: the increment or decrement is highlighted, only: red elements experience internal energy increment while green
elements experience internal energy reduction. In both plots black narrow lines relate to elements into which the increment is negligible.

Figure 7: Patterns of internal energy variation following the removal of the central bottom column (Case 1 of Figure 5). The color of the elements relates to the
variation in the internal energy. Red elements have χ > 10−3, green elements have χ < −10−3, black elements are those for which | χ | < 10−3.
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Figure 8: Values of χ, defined in Eqn. (30) for various pairs of ρ and ξ. The value of the ratio is reported if | χ | > 10−3. Each structure has two colorbars: the
right-hand side green-to-blue colorbar relates to increments of internal energy, i.e.,χ > 10−3; the left-hand side pink-to-yellow colorbar relates to reductions of
internal energy, i.e., χ < −10−3.
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such elements are quasi-exclusively subjected to an axial force,
this can be traced back to a flexural sectional behavior with a
fictitious neutral axis representing the null energy increment.

The plots of Figure 8 details that, in general, the larger local
energy variations occur in those elements that are close to the
removed column. A uniform variation is observed when the
homogeneous behavior is achieved, i.e., for very small ρ and
very large ξ, or viceversa.

Finally, comparing the whole matrix it can be noted that
similar color pattern clearly emerges for different (ρ; ξ) pairs.
For example, there are similitudes between the plots at (0.001;
0.01), (0.01;0.1), (0.1;1), and at (10;10). It can be stated that
similar increase/decrease patterns (green/red columns) are seen
for ξ ≈ 10ρ for ρ ≤ 0.1.

4.2. Case 2: lateral bottom column

The patterns in terms of energy increment and decrements
that originate in the structure when subjected to the removal
of a bottom side column are reported in Figure 9. The mutual
opposite contribution of ρ and ξ highlighted for Case 1 similarly
emerges. What is herein interesting is the presence on the frame
of parts that experience a reduction of strain energy, and others
that are subjected to energy increments. Although the damage
is located on the side of the frame, the effects extend to the
opposite site. Also in this damage case, there are parts of the
structure in which there are no variations, surrounded by parts
in which increase or reductions are observed. This proves that
there is a sort of energy compartmentalization [57] for which,
on one side, there are components that are not affected, while
others are subjected to the effects of the damage. The mutual
contribution of the stiffness of the beams and the stiffness of the
arrangements of columns determine a different lateral diffusion
of the patterns across the various levels of the frame structure.
This aspect clearly appear, for example, at (ρ; ξ) = (1000; 100):
certain columns experience, at the bottom levels, lesser energy,
while the same columns at the higher levels are subjected to
energy increases.

As already noted for the middle bottom column removal,
analogies in the patterns are seen across the matrix plot of Fig-
ure 9. It can be stated that similar increase/decrease patterns
(green/red columns) are seen for ξ ≈ 10ρ for ρ ≤ 1. For larger
ρ, the patterns turn to be roughly independent from the value of
ξ, meaning that the contribution of columns assembly is some-
how negligible.

4.3. Cases 3 and 4: central and lateral middle columns

Figures 10 and 11 detail the patterns that originate in the
structure when the central (Case 3) or lateral (Case 4) columns
at frame mid-height are removed. It is noted that the counter-
posing contribution of the two parameters still emerges in such
damage cases. Briefly, the increase of parameter ρ implies a
narrower and taller extent of the influence area, while the op-
posite effect is achieved by increasing parameter ξ. Horizon-
tal symmetric patterns are clearly highlighted on Case 3. In
general, the effects of column removal can be summarized as
follow. (i) Below and above the removed column, an area of

energy reduction is always observed. In the ultimate case, the
reduction involves the upper elements, only, of the damaged
column alignment. (ii) Energy increases are, on the contrary,
observed on the sides of the damaged element. The damage, in
some cases, can have effects on the whole frame, as observed
in (ρ; ξ) = (0.1; 10) of Figure 10. For the majority of the ex-
amined cases, the effects propagates along the vertical and hor-
izontal directions. For ξ = 1000 and ρ = 0.001, i.e, for the
ultimate cases, the effects are limited to the upper beams, only.
This already emerged in Cases 1 and 2 previously analyzed.

It is interesting to note that, in some cases, there are parts of
the structure located far from the damaged element into which
energy reduction is observed. This is clearly visible, for exam-
ple, in the removal of the side column (Case 4) for those struc-
tures for which ξ = 100 and ρ ≥ 1. As already emerged for
the previously analyzed cases, there are patterns that are simi-
lar along the top-left bottom-right diagonal of both matrix plots,
i.e., for ξ ≈ 10ρ.

5. Discussion

The patterns that have been highlighted show the complex-
ity of frame behavior. Recalling the theoretical results pre-
sented in Section 2, the damage always implies an increment
in the internal energy. The analysis on the simple frame struc-
ture highlights that there are relevant dimensionless quantities
that govern the behavior of the frame and, thus, the internal en-
ergy once loaded. Dimensionless quantities are at the base of
the dimensional analysis approach that follows from Bucking-
ham’s Π-theorem [58]. Following Buckingham’s Π-theorem,
the total number of dimensionless quantities that serve for de-
scribing the system it would be four. This results considering `
and EIb as repeating terms and, thus, creating four dimension-
less quantities for the remaining variables, i.e., h, EIc, Ac and
P. The additional findings on structural behavior proved that
the effective number of dimensionless quantities is three (ρ, ξ
and µ).

Besides the previous consideration, the total energy increase
after element removal, i.e., U0→d, is a measure of the ability of
the structural system to support with limited displacements the
applied loads. The dimensionless increment can be evaluated
through a parameter R, as

R =
Ud − U0

U0
(31)

The value R depends on the location of the removed element,
the size of the frame and on ρ and ξ. Figure 12 depicts the val-
ues of R for various pairs (ρ; ξ) that originates when the middle
bottom column is removed. The reader should note that loga-
rithmic scales are adopted for the three axes. The plot highlights
that for low ρ and large ξ the ratio is larger than 1, meaning that
the total energy in the damaged structure is larger than twice
the energy in the undamaged scheme. A saddle-like surface
plot emerges, with a hill-like increase for small ξ and ρ ≈ 1.
The maximum R related to this part of the surface is around
10−1.81 = 0.0154. With reference to the simulated structures,
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Figure 9: Patterns of internal energy variation following the removal of the lateral bottom column (Case 2 of Figure 5). The color of the elements relates to the
variation in the internal energy. Red elements have χ > 10−3, green elements have χ < −10−3, black elements are those for which | χ | < 10−3.
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Figure 10: Patterns of internal energy variation following the removal of the central middle column (Case 3 of Figure 5). The color of the elements relates to the
variation in the internal energy. Red elements have χ > 10−3, green elements have χ < −10−3, black elements are those for which | χ | < 10−3.
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Figure 11: Patterns of internal energy variation following the removal of the central middle column (Case 4 of Figure 5). The color of the elements relates to the
variation in the internal energy. Red elements have χ > 10−3, green elements have χ < −10−3, black elements are those for which | χ | < 10−3.
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Figure 12: Case 1. Surface plot of the values of the dimensionless energy
increment R for various pairs of ρ and ξ. Logarithmic scales have been chosen
for the three axes.

the minimum R is observed for the largest ρ, i.e., ρ = 1000, and
ξ around 10.

With the purpose to relate the increment R and the energy
pattern on the frame, the contour plots of the value R for the four
cases have been plotted in Figure 13. Due to the large range
and the need of highlighting the local behaviors, the contour
lines refer to log10 R, rather than to R, itself. That is, a value,
say, -2, denotes a R = 10−2 = 0.01. Logarithmic axes have
been adopted for ρ and ξ. The shapes previously illustrated, i.e.,
saddle and hill-like, clearly emerges from the contour lines of
the plots. On the background of the plots, Figures 7, 9, 10 and
11 have been sketched. The blue dots mark on the ρ; ξ axes the
correct position of the pattern plot onto which they are placed.

It clearly appears that the behavior in terms of R are similar
for the four analyzed cases, both in terms of the value of R and
in its trend across the various modeled structures. Although
more or less evident, the saddle-point of R is located around
(ρ; ξ) = (0.1; 1). The upper right part of the plot depicts a pro-
gressively increasing value of R with a constant trend along the
log-log axes plot.

The contour lines divide the ρ; ξ plot into two areas with
similar trends: a right-upper part, namely part A, into which
the contour lines on the log-log axes are oriented along the mi-
nor diagonal (top-left towards bottom-right) with a sharp in-
crease; a left part, namely part B, into which the hill-like shape
is observed. The separation line between the two parts can
be identified by the lines passing through the following points:
(0.001; 0.01)→ (1; 10)→ (1000; 10).

Comparing the trends in the contour lines and the similar-
ities between underneath patterns previously highlighted it ap-
pears that the structural configurations lying in part A and ex-
hibiting the same R, although different, present the same energy
pattern. This does not occur for the structural configurations of
part B.

6. Conclusions

The present paper deals with the behavior of a frame struc-
ture subjected to column removal. In general, damage always
implies a reduction of stiffness and, by consequence, an in-
crease of the internal energy on the system. It was proven that
the amount of increment of energy depends on the deforma-
bility of the system after element removal and on the internal
forces in the removed member before the removal. For linear
elastic plane frame structures it was found that there three are
relevant dimensionless quantities that govern the deformation
and, by consequence, the internal energy of the system once
loaded.

Four tests were performed on a 20 storey, 21 columns frame
structure subjected to column removal in different location. The
modification of the structural scheme caused variation of the in-
ternal energy in the frame. Different energy patterns, intended
as energy increase or decrease, were highlighted. Analogies
in the pattern between different structural configurations were
highlighted. This was confirmed in the plots of the dimension-
less increment, provided that the dimensionless parameters ρ
and ξ describing the distribution of stiffness across the structure
fulfill the following inequalitiesξ ≥ 10ρ for ρ ≥ 0.001

ξ ≥ 10 for ρ ≥ 1
(32)

The theoretical and numerical analyses herein performed
provided an interesting and unusual insight into frame behav-
ior. To generalize the results, a simple comparison between
frames with varying beam length or floor height is performed.
Figure 14 shows the pattern distribution (positive and negative
χ) for a ρ = 1, ξ = 10 frame structure subjected to central bot-
tom column removal. The four structures are characterized by a
double length span (beams between columns 6 and 7) and/or by
a double height floor (storey VI). Although the patterns seems
to be similar, a slightly variation from structure to structure oc-
curs. The main considerations about the effects of ρ and ξ holds:
for ρ increasing, i.e., for a larger h or a lower `, the effects tend
to widen and flatten. This is observed comparing Figure 14.a
and 14.b. The top green columns are three in (a) case, while
only one in (b) case. A symmetrical pattern is present since
the change in the structure is symmetrical. On the contrary, for
a reducing ρ, for example due to a locally larger beam length,
the energy pattern tends to be more narrow and taller. Compar-
ing Figure 14.a and 14.c this clearly emerges: the left part of
the structure, the one in which a local increase of ρ is present,
shows such effects, which contribution also depends on ξ. An
increase of ξ, i.e., larger beam length, produces the same effects
as a reduction of ρ. Case (d) of Figure 14 summarizes the two
opposite trends. This simple, but effective, example provides
a generalization of the findings of the present analyses, show-
ing that a local variation in the geometry of the frame induces a
modification of the energy patterns.

The main results of this study would be the base for more
accurate analyses taking into account, for example, the patterns
that originates when the element is not completely removed,
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Figure 13: Contour plots of the logarithm of the dimensionless energy increment, log10 R, for the four analyzed damage configurations. Logarithmic axes are adopted
for the parameters ρ and ξ, defined in Eqns. (15) and (16), as the beam-to-column flexural stiffnesses and transposed-to-proper column inertia ratios, respectively.
The saddle-like and hill-like shapes are visible in each plot. In the background of each contour plots the corresponding pattern figure is presented. The blue dots
mark, on ρ; ξ axes, the correct position of the pattern plot onto which they are placed.
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Figure 14: Comparison between four different structures having ρ = 1, ξ = 10.
Structure in (b) is characterized by a a double height floor at storey VI, structure
in (c) by a double length span for the beams between columns 6 and 7, while
structure in (d) by both geometry variations. Red elements have χ > 10−3,
green elements have χ < −10−3, black elements are those for which | χ | < 10−3.

or the possibility of compartmentalizing a frame structure to
prevent damage propagation. The findings can be obviously
applied to civil structures: knowing the extent of the damage
would allow to design damage-tolerant systems. Even if the
results hold, in the present stage, for planar frames, it should
be remembered that in civil constructions the primary frames,
i.e., planar frames, carry dead and live loads, while secondary
frames are devoted to support lateral loads. This allows to apply
the present results to real civil engineering study cases. Mean-
while, some results could be interesting in the analysis of peri-
odic structures subjected to damage.
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