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DESIGN OF LUNAR-GRAVITY-ASSISTED ESCAPE TRAJECTORIES

Lorenzo Casalino∗, and Gregory Lantoine†

ABSTRACT

Lunar gravity assist is a means to boost the energy and C3 of an escape trajectory. Trajectories with two lunar

gravity assists are considered and analyzed. Two approaches are applied and tested for the design of missions aimed at

Near-Earth asteroids. In the first method, indirect optimization of the heliocentric leg is combined to an approximate

analytical treatment of the geocentric phase for short escape trajectories. In the second method, the results of pre-

computed maps of escape C3 are employed for the design of longer Sun-perturbed escape sequences combined with

direct optimization of the heliocentric leg. Features are compared and suggestions about a combined use of the

approaches are presented. The techniques are efficiently applied to the design of a mission to a near-Earth asteroid.
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INTRODUCTION

For spacecraft interplanetary missions, lunar flybys are often beneficial because they may significantly increase the

hyperbolic escape energy (C3, in km2/s2) for a modest increase in flight time,1 thus improving the useful mass for a

mission to a specific target. This strategy has been used in the past both for missions with low positive values of C3

(STEREO) and larger C3 values (ISEE-3, Nozomi).

Exploration of the solar system requires relatively large values of escape energy. The escape mass that a given

launcher provides with a direct launch is a decreasing function of the energy. However, the escape velocity can be

properly directed to reduce the propellant consumption of the heliocentric flight, so an optimal trade-off usually exists.

When the heliocentric flight employs a propulsion system with larger specific impulse compared to the launcher (e.g.,

electric propulsion), an interplanetary transfer to a near Earth target typically requires escape C3 of a few km2/s2.

Lunar-gravity-assist (LGA) trajectories may provide a free increase of the escape C3, and the design of LGA escape

trajectories for interplanetary missions is the object of the present paper. Most of the literature has focused on low

energy trajectories, and only a limited number of papers can be found on high energy escape/capture trajectories,2, 3
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with the addition of propulsive maneuvers4 or with the aid of gravity assists from multiple satellites in the Jovian

system.5

The patched conic approximation is usually adopted for preliminary analysis of interplanetary transfers. The escape

phase is therefore treated separately from the heliocentric leg. The purpose of the present analysis to find a suitable

escape sequence to start a heliocentric trajectory that reaches the target while maximizing the final mass. The escape

sequence is defined, for instance, by date and C3 at departure and following LGA trajectories; the asteroid 2008 EV5

is the target in this paper. It is clear that the methods to analyze the two phases should somehow be complementary

for an efficient optimization.

Two approaches can in fact be envisaged to deal with the design on LGA escape trajectories. The first one1, 6, 7 pre-

computes and maps the escape C3 as a function of date (i.e., position of the Moon along its orbit) and C3 value before

the flyby, and eventually couples these results with the analysis of the interplanetary leg. This approach is necessary

when solar perturbation is relevant, as the required numerical integration of the trajectories makes the availability of a

pre-computed database of solutions extremely useful and time-saving.

For short escape sequences, when the Sun’s gravity is negligible, an analytical treatment of the LGA escape is

available. If the optimization of the heliocentric leg is sufficiently fast, an alternative approach8 may be adopted:

the interplanetary leg is treated first and trajectories to the target asteroid are computed for different departure dates

and values of hyperbolic excess velocity. For each trajectory, feasibility and performance of a LGA escape are then

computed by means of the analytical approximation, thus providing an immediate evaluation of the mission overall

performance. In addition, the approximate solution may also provide tentative solutions for a more detailed analysis.

In this paper the two approaches are applied and tested for the design of trajectories aimed at Near-Earth asteroids,

with 2008 EV5 being the reference target; solar electric propulsion (SEP) is employed. Escape trajectories with two

lunar gravity assists are considered. First, short trajectories, which should be less affected by solar perturbation, are

treated with the approximate analytical approach coupled with an indirect optimization method developed at Politec-

nico di Torino. This approach directly provides evaluation/optimization of launch C3 and mass, escape C3 and final

mass at target arrival. Solar perturbation is relevant during longer Moon-to-Moon transfers and it is introduced for

the evaluation of the pre-computed C3 values that correspond to planar escape sequences and assess their feasibility.

These results are then coupled with direct optimization of the interplanetary leg, performed with JPL’s tool MALTO,9

for a complete mission optimization. The features of the two approaches are presented.

ANALYTICAL APPROACH FOR UNPERTURBED ESCAPE

In preliminary analysis, the patched-conic approximation is commonly adopted and the two-body problem equations

are used to describe the motion of the point-mass spacecraft (with variable mass). For this approach, the heliocentric

phase is treated with an indirect optimization method, based on the theory of optimal control.10, 11
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The indirect optimization method assumes escape date, mass and hyperbolic excess velocity magnitude as initially

assigned. Escape date and velocity magnitude are parametrically varied to obtain the corresponding set of escape

velocity components and target arrival masses for an escape mass initially fixed at 10000 kg. A 28-day window is

sampled with a 1-day step to consider a whole lunar period. The initial escape mass will then be updated after the

escape analysis and the corresponding final mass at arrival will thus be evaluated.

The optimization procedure provides the escape velocity components, the optimized arrival date and the control

time-history (thrust magnitude and direction) to maximize the final mass. The procedure takes advantage of the

limited computational effort required by the indirect method, as each trajectory is optimized in less than 1 second on

a standard 64-bit Intel i7 3.6 GHz processor.

For each escape condition, an approximate analysis is carried out to define the feasibility of LGA escape trajectories,

compute the actual escape mass and re-evaluate the corresponding mass at target arrival. The best solution, that is the

one that maximizes the arrival mass, is then selected. Due to the LGA feasibility constraint, the departure date will

generally be different from the optimal escape date of the heliocentric leg. This combination of indirect heliocentric

optimization and analytical analysis of the flyby was used in Ref. 8 for a single lunar flyby, and is here extended to

trajectories with a double lunar flyby.

The LGA trajectory must reach given hyperbolic escape conditions determined with the above mentioned heliocen-

tric analysis. Escape time and velocity (relative to the Earth) components in the J2000 heliocentric ecliptic frame are

specified. The time of the last flyby is assumed to coincide with the start of the heliocentric leg (which assumes coinci-

dent positions for Earth and spacecraft). Variables are made non-dimensional by using the Earth equatorial radius and

the corresponding circular velocity as reference values. Position and velocity of the Moon at escape time are obtained

from JPL Ephemerides∗ DE405. The osculating orbit is employed for Keplerian propagation of the Moon’s motion.

The approximate analysis is carried out with a reference frame based on the Moon’s osculating orbit: x-axis towards

the ascending node of the Moon’s orbit with respect to Earth’s equator, z-axis along angular momentum, y-axis to

complete a right-handed reference frame: V esc is the escape velocity vector expressed in this frame.

The analysis is based on a patched-conic approximation that neglects the dimension of the Moon’s sphere of influ-

ence. The trajectory is split into three geocentric legs. The inner leg (subscript 1) goes from trajectory perigee (usually

imposed by the launcher) to the Moon; the intermediate leg (subscript 2) is a Moon-to-Moon transfer, the outer leg

(subscript 3) goes from the Moon to escape. LGA is modeled as an instantaneous relative velocity rotation at the

Moon’s intercept, which separates the geocentric legs. The trajectory is analyzed backward.

∗JPL Planetary and Lunar Ephemerides, https://ssd.jpl.nasa.gov/? planet eph export, accessed April 3, 2017.
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Moon to Escape

This analysis follows the work of Okutsu et al.12 and is here summarized. The Moon’s orbit is on the x-y reference

plane and its angular position at the last flyby is known. This position must coincide with one of the nodes of the

spacecraft escape hyperbola, so that two values are possible for the right ascension of the ascending node (RAAN) Ω3.

For each value of Ω3, the remaining orbital parameters of the escape leg hyperbola can, in fact, be determined.

The escape velocity gives

a3 = −
1

V 2
esc

(1)

A unit vector pointing to the ascending node un (components along x, y and z are cosΩ3, sinΩ3, and 0, respectively)

defines the remaining orbital elements: first, the angle between ascending node and escape velocity α = cos−1(un ·

V esc/Vesc) is determined. Then, the unit vector along angular momentum uh is computed; it results to be parallel

and concurrent with (un×V esc) when the escape velocity component along the z-axis Vesc,z is positive, whereas it is

in the opposite direction when Vesc,z is negative. The inclination is thus related to the angular momentum component

along the z-axis

i3 = cos−1(uh,z) (2)

direction of 
outgoing 
asymptote

line of nodes

v
esc

perigee

desc. node

asc. node

-ω

α

Φ

Figure 1. Geometry of generic escape hyperbola after last flyby for positive Vesc,z .

Since the flyby is at a node, one has (see for example Fig. 1; other geometries12 may be found but the analysis

does not present relevant differences) either α + Φ − ω3 = π (positive Vesc,z , an index iz = +1 is introduced) or

α − Φ + ω3 = π (negative Vesc,z , the index is iz = −1), where the hyperbola half-angle Φ = cos−1(1/e3), i.e., the

difference between π and the true anomaly at infinity) has been introduced. The distance from the Earth must be the
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same for the spacecraft and the Moon at flyby, that is,

rM =
a3(1− e23)

1 + e3 cos ν3
(3)

In general, flyby can occur at either node for any Vesc,z , with the true anomaly at flyby ν3 = −ω3 (flyby at ascending

node, an index ia = +1 is introduced) or ν3 = −ω3 + π (descending node, ia = −1). However, flyby at descending

node for positive Vesc,z and at ascending node for negative Vesc,z cannot take place if ν3 < −Φ (the node would be

on the wrong branch of the hyperbola).

By manipulating these equations one gets

iaiz sinα
√

e23 − 1 = −(1− ia cosα)− (a3/rM )(e23 − 1) (4)

which is squared to obtain a quadratic equation in e23 − 1. The quadratic equation is solved to obtain e3. The largest

of the two solutions (plus sign in the quadratic solving formula) is the only admissible solution of the radical equation

(4) for flyby at ascending node and positive Vesc,z or flyby at descending node and negative Vesc,z . The lower solution

(minus sign) must instead be selected when flyby and escape are on opposite sides with respect to the direction of the

outgoing asymptote. This solution does not exist when the hyperbola crosses the reference plane only once, that is,

when ν3 < −Φ. Once e3 has been determined, Φ, ω3, and ν3 are immediately obtained. From the orbital elements,

one easily finds the relative velocity at Moon’s flyby V ∞+. For the sake of simplicity, in this approximate analysis

the Moon’s orbit is assumed to be circular to compute rM and the relative velocity vector.

Moon to Moon

Three kinds of Moon to Moon transfer (subscript 2) are considered. In resonant transfers, spacecraft and Moon

orbital periods are in a ratio of small integer numbers (e.g., 2:1); the Moon is intercepted at the same place after an

integer number of revolutions. In backflip transfers the Moon is intercepted at points 180 degrees apart, that is, at the

intersections of the spacecraft and the Moon orbit planes. In planar transfers, the trajectory lies entirely on the Moon’s

orbit plane.

For resonant transfers, semimajor axis and velocity magnitude at flyby are known from the selected orbital reso-

nance. Since the hyperbolic excess velocity is conserved during a flyby, its value is also known. If the Moon’s orbit

is assumed to be circular and the velocity components u, v, and w in the radial, eastward and northward directions are

introduced, one has

V 2
∞−

= u2 + (v − VM )2 + w2 = V 2 − 2vVM = V 2
∞+ (5)

where the eastward velocity component at r = rM is v =
√
p2/rM cos i2. This equation becomes Tisserand’s
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equation, rewritten as

1

a2
+ 2

√

a2(1− e22)

r3M
cos i2 =

3

rM
− V 2

∞
(6)

which is solved for e2 for inclination values varied at 1-degree steps from 0 to 180 degrees. Check on perigee height is

performed to eliminate trajectories that would crash on Earth. The remaining orbital parameters are easily determined

as in the previous leg. Only 1:1 and 2:1 resonances are considered to avoid orbits that move the spacecraft to large

distances from the Earth, where the Sun’s perturbation could significantly alter the trajectory.

Backflip transfers see an inclined spacecraft orbit that, at ±90 degrees from its perigee, intercepts the Moon orbit.

Thus, p2 = rM and νfb = ±π/2. The time equation is iteratively solved to find the eccentricity that matches the

required time-of-flight. Again, to avoid large distances from the Earth, only intercept of the Moon after 1.5 revolution

is considered, with the spacecraft performing either 0.5 or 1.5 revolutions on an elliptic orbit. Finally, in addition, a

1:1 resonant transfer with the spacecraft also on an inclined circular orbit and flybys after 0.5, 1 or 1.5 revolutions is

also analyzed. In any case, Eq. (6) provides the inclination.

For planar transfers, the only known orbit parameter is the inclination (0 with respect the lunar orbit plane). Four

conditions for this leg fix the radius at flybys (equal to the radius of the Moon’s orbit: therefore, the flybys are

symmetric with respect to the line of apsides) and the constant magnitude of the hyperbolic excess velocity. Time

equation must also be fulfilled to achieve lunar encounter. These conditions determine a2, e2 and the true anomalies

at flybys (and ω2, as a consequence). The nonlinear system is solved numerically, by introducing the ratio of periapsis

radius to the Moon’s orbit radius ρ = rp/rM as additional unknown. One has

e2 =
1− ρ

ρ− cos νfb
(7)

a2 =
ρ

1− e2
rM (8)

and the time of flight is expressed as a function of ρ and νfb, and solved numerically for νfb, given ρ. The latter is

then iterated until Eq. (6) is satisfied. The leg is characterized by the direction of the radial velocity at flybys, which

can be either inbound (’i’, when negative) or outbound (’o’, when positive). Figure 2 illustrates the four possible

combinations (i.e. ’oi’, ’oo’, ’ii’, ’io’ transfers). Note that the ’ii’ and ’oo’ families correspond to resonant transfers

in the absence of perturbations, but the resonance is lost when Sun’s gravity is considered; for simplicity, they are not

considered in this method. Limiting to two the number of revolutions, there are therefore four combinations available;

two ’io’ transfers (the spacecraft performs more than one revolution, the Moon either less or more than one) and two

’oi’ transfers (the Moon performs more than one revolution, the spacecraft either less or more than one). Note that the

formulation of the time equation takes specific forms according to the transfer under examination.
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Figure 2. Classification of Moon-to-Moon transfers.

Perigee to Moon

Trajectories from perigee to the Moon (subscript 1) that allow feasible flybys to match the escape conditions are

here found. Intercept is again on the reference plane and must occur at a node of the spacecraft orbit: Ω1 = Ω2 when

the flyby is either at the ascending or at the descending node of both orbits, whereas Ω1 = Ω2 + π when it is at the

ascending node of one orbit and descending node of the other one.

The magnitude of the relative velocity before and after the flyby must be the same, which gives the radical equation

(V 2
∞+ − 3/rM ) + (1− e1)/rp = −2

√

rp/r3M cos i1
√
1 + e1 (9)

Among the solutions, the larger one (plus sign) must be selected for i1 ≤ π/2, whereas the correct solution is the

lower one (minus sign) for retrograde orbits i1 ≥ π/2. From e1, one has a1 = rp/(1 − e1). The solution must be

discarded for elliptical orbits (a1 > 0) if the apogee ra = a1(1 + e1) is lower than rM . For acceptable solutions,

rM = a1(1 − e21)/(1 + e1 cos ν1) provides ν1 (only outgoing trajectories are here considered and 0 < ν1 ≤ π). The

argument of periapsis is then determined, being ν1 = −ω1 (ascending node) or ν1 = −ω1 + π (descending node).

Velocity rotation at both flybys is given by the angle between the computed V ∞+ and V ∞− vectors

δ = cos−1[(V ∞− · V ∞+)/V
2
∞
] (10)

According to the patched-conic approximation

δ = 2 sin−1 µM/rps

V 2
∞

+ µM/rps
(11)

with µM being the Moon’s gravitational parameter and rps the flyby periselenium, which can thus be determined.

Trajectories are deemed feasible when the periselenium is at least 50 km above the Moon’s surface.

For any feasible flyby, the values of position and velocity at perigee (Vp) are evaluated and then rotated to the J2000
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geocentric frame to determine the corresponding latitude, longitude and azimuth. The departure energy gives the

required launch C3. Azimuth (launch occurs from Kennedy Space Center at 28.5 degrees latitude) and ∆Vp = Vp−Vc

allow one to evaluate the mass that the launcher can insert into the escape trajectory. The following assumptions are

here made to replicate the Delta IV Heavy performance.13 The starting mass on the initial 200-km parking orbit is the

sum of useful mass (mu) and upper stage dry mass md (3550 kg). The useful mass given by NASA’s Launch Vehicle

Performance Website∗ is here approximated with the quadratic equation

mu = 26280− .6642(A− 90)2 (12)

where mu is in kg and the azimuth A in degrees. The following burns sum up to ∆V = 1.046(Vp − Vc), that is

the difference between the perigee velocity at the start of the trajectory to the Moon and the circular velocity on the

parking orbit, with the addition of a 4.6 % margin, which has been selected to attain a reference value of 9995 kg for

the escape mass when C3=-1.5 km2/s2. The useful escape mass is evaluated with the rocket equation

mesc = (mu +md)exp[−∆V/c]−md −mPA/PAF (13)

where the stage dry mass and the payload adapter/payload attach fitting mass (900 kg) are subtracted from the final

mass. The stage effective exhaust velocity c corresponds to a 460 s specific impulse. The heliocentric leg is then

re-optimized with the correct escape mass for each date that allows for a feasible LGA sequence (and provides a

reasonable mass).

NUMERICAL APPROACH FOR SOLAR-PERTURBED ESCAPE

For long lunar-assisted escape sequences, solar gravitational perturbations between the two lunar flybys may sig-

nificantly alter the trajectory and naturally produce additional escape energy.1 However, designing solar-perturbed

trajectories connecting two lunar flybys is challenging using the method described in the last section because these

trajectories are no longer simply conic.

Switching to another approach, a pre-computed database of Moon-to-Moon transfers in the Sun-Earth CRTBP is

used to connect two lunar flybys. Moon gravity is neglected in this analysis and trajectories depart from and arrive

at the Moon’s center. Planar trajectories on the Moon’s orbital plane are considered. This database is described in

detail in Ref. 7. Moon-to-Moon transfers are grouped in different families according to the approximate number

of lunar revolutions between lunar encounters (a classification analogous to traditional resonances in the two-body

problem). As a result, each family name starts with an uppercase letter whose order in the alphabet corresponds to the

approximate number of months between lunar encounters. In addition, two lowercase letters, “o” and “i”, are added

∗Launch Vehicle Performance Website, https://elvperf.ksc.nasa.gov/ pages/Query.aspx, accessed April 3, 2017.
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after the uppercase letter to specify whether the first and second lunar flybys are outbound or inbound, respectively.

The families are parameterized by the initial lunar relative velocity and the initial solar phase angle (angle between

Sun-Earth and Earth-Moon lines at the first lunar flyby). Note that each trajectory within a family corresponds to

a different solar phase angle. In the context of this paper, an initial lunar relative velocity (i.e., hyperbolic excess

velocity) of 1 km/s is appropriate. In fact, direct launch trajectories to the Moon tend to produce similar lunar relative

velocity values when encountering the Moon for the launch C3 values of interest in this application (between -2 and

0 km2/s2). Only families with 1 km/s initial lunar relative velocity will be therefore considered in this section. The

exact value is not critical because of the low sensitivity of the families with respect to initial lunar relative velocity.7

Complete “oi” and “ii” families of solar-perturbed Moon-to-Moon transfers with initial relative velocity of 1 km/s

are shown in Figure 3. One can see that the trajectories are strongly affected by variations in solar phase angles.

Contrary to the analytical approach, the ”ii” families are considered here for completeness, however the results would

not change significantly if they were excluded.

Figure 3. Complete families of solar-perturbed Moon-to-Moon transfers for an initial lunar relative velocity of 1 km/s.
The Moon’s positions at the initial and final flybys are shown by black and green dots, respectively. Within a given
family, each trajectory corresponds to a different solar phase angle. To visually emphasize variations between
family members, all trajectories are rotated to start at the same lunar location on the x-axis.
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Now that all possible trajectories connecting two lunar flybys have been identified, the next step is to enumerate all

possible escape options and characterize how the maximum achievable escape C3 varies with departure direction. For

all “oi” and “ii” family members the second lunar flyby is modeled as an instantaneous rotation of the hyperbolic excess

velocity. The bending angle between the incoming and outgoing v∞ vectors at the final lunar flyby is sampled at 0.1

deg increments, in order to span the complete range of possible escape directions and energies, assuming Keplerian

motion after the flyby and circular Moon’s orbit. A minimum flyby altitude of 50 km is enforced, which sets an upper

bound in the achievable bending angles. Then the resulting escape C3, right ascension and declination values of the

escape asymptote are recorded for each sampled flyby condition and stored in the lunar escape database. Note that the

declination is measured with respect to the ecliptic plane since the Moon is assumed to be in the same plane as the

Sun and the Earth in the simplified model of the Moon-to-Moon transfer database.7 To simplify the search space, “oo”

and “io” families, as well as lunar backflips, are not included in this analysis (adding these families in the analysis is a

possible future work topic). In addition, families with transfer durations longer than 6 months are not included either

to avoid unreasonable flight times.

Figure 4. Maximum escape C3 vs pump angle for each solar-perturbed double lunar flyby family (0-deg declination).

Figure 5. Pump angle definition diagram.

For all considered “oi” and “ii” families, Figure 4 shows the maximum achievable escape C3 versus the pump angle
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of the outbound asymptote (see Figure 5) with respect to the Earth velocity vector, where an escape pump angle of 0

deg denotes a near-Hohmann transfer to NEOs. All results in Figure 4 are for planar escapes (0-deg declination). The

C3 data of all families are then combined in Figure 6 to produce one single max C3 vs pump angle curve. Note that

the curve would be probably smoother if longer families had been considered (such as the G and H families, see Ref.

7). As shown in Figure 6, solar-perturbed double lunar flyby sequences can produce an escape C3 between 2.5 and

3.2 km
2/s2 for planar departures. Large C3 values higher than 3 km

2/s2 are available for a narrow range of pump

angles between 120 and 130 deg. However, to be conservative, only the lowest C3 value is kept across all pump angles

(flat dashed line in Figure 6). In other words, it is assumed that the maximum achievable C3 for a planar lunar escape

is 2.5 km
2/s2 for all right ascension directions. This conservatism is necessary because of the simplifications in the

model adopted in the database (particularly the circular orbit of the Moon in the ecliptic plane). It is worth noting that

this method only finds a lower limit for escape C3 but does not provide its actual value and its relation to the launch

C3.

Figure 6. Combined maximum escape C3 vs pump angle (0-deg declination). The flat dashed line is the conservative
C3 value selected for this particular declination.

The procedure described above is repeated for increasing declination angles up to 85 deg. Figure 7 shows how the

resulting available escape C3 varies with declination. This curve gives the maximum escape capability a double lunar

flyby is guaranteed to provide (at least in the simplified CRTBP model of the database). As expected, the maximum

escape C3 decreases with increasing declination, since a flyby is most effective when the v∞ vector of the spacecraft

aligns with the orbital velocity of the encountered body. Nevertheless, the escape C3 tapers off in a more gradual

way compared to the analytic approach for unperturbed escape and other previous results in the literature, which used

two-body approximation only and similar initial relative velocity with the Moon.14 An escape C3 up to 1.5 km
2/s2 is

guaranteed for any right ascension and declination directions. Note that these results are also applicable for the reverse

problem of capturing a spacecraft in the Earth-Moon system from deep space. The maximum declination available
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with an escape, or arrival (for Earth capture problems), C3 of 2 km
2/s2 is +/- 30 deg. These values are consistent

with the typical C3 and declination constraints used in the literature.15

Figure 7. Maximum escape C3 vs declination with lunar-assisted escape.

To facilitate the design of the interplanetary trajectory when a lunar escape sequence is exploited, the curve shown in

Figure 7 may be viewed as a “lunar-assisted” launch vehicle curve. In fact, the performance of a given launch vehicle is

effectively boosted by the lunar escape technique. Since the nominal escape sequence is ballistic, the curve presented

in Figure 7 can be applied to any missions. Ideally, the entire curve should be provided to an interplanetary trajectory

optimization tool so that it is possible to move along that curve during the optimization process and find the optimal

solution with best escape conditions. The adaptability of the approach to indirect methods will be object of future

work. In practice, however, it is often not possible to enter directly the full curve in the existing tools; in that situation,

one can simply run multiple cases with different escape C3 and declination constraints along that curve and pick the

best trajectory among all cases. In this analysis, the MALTO software performs this first interplanetary optimization.

MALTO is a preliminary low-thrust trajectory design tool that uses a series of impulsive burns to simulate continuous

low-thrust trajectory arcs about a single gravitational body and a direct optimization scheme.16 Because of the inherent

approximations involved in the lunar-assisted escape curve, it is not necessary to adopt a high-fidelity trajectory design

tool.

Once an optimal interplanetary solution is computed, the corresponding escape conditions are recorded (magnitude

and direction of the hyperbolic velocity vector). Then one can simply look up the escape database and retrieve a

double lunar flyby sequence that matches these particular escape conditions. This solution is then optimized taking

into account the real ephemeris and the full gravity of the Sun, the Earth and the Moon. Typically, the optimized,

high-fidelity trajectory closely resembles the initial guess trajectory in the simplified model.7 Note that the departure
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date does not generally match exactly the optimal escape date of the interplanetary trajectory because this date is

constrained by the phasing of the Moon. The departure date can change by up to 14 days to ensure the Moon is at a

favorable location. Fortunately, SEP trajectories tend to offer some flexibility in the launch (or escape) date, so this

slight discrepancy is generally not an issue.

The last step is to optimize the trajectory end-to-end (i.e. with lunar escape and interplanetary legs) to reconcile the

departure date across all legs, produce a fully continuous trajectory and optimize further the escape conditions using

the actual, high-fidelity lunar escape sequence without approximations. A high-fidelity trajectory optimization tool is

necessary for this step, such as Mystic17 or Copernicus.18

ARRM EXAMPLE

The lunar escape design methodologies are applied to a rendezvous mission with 2008 EV5, which is consistent

with the reference ARRM scenario.19 Launch is constrained to be no earlier than December 2021, which yields an

escape date in the mid-2022 range. All other mission assumptions are detailed in Ref. 19.

For the short escape trajectories, the interplanetary leg is first optimized with the indirect method and the optimal

departure date for the heliocentric leg (June 18, 2022) is determined. Trajectories with escape dates at 1-day steps

in a 28 day window centered at the optimal departure are also evaluated to explore a whole lunar period. Values of

escape velocities in the 1.3 - 1.4 km/s range are assumed. The optimal escape declination is about 67.5-68 degrees.

Escape trajectories with a single LGA are not available. Among trajectories with two LGAs, backflips are feasible both

for last flyby at the ascending and descending node of the escape hyperbola and both for elliptic and circular orbits.

Elliptic transfers with last flyby at the descending node have slightly better performance and attention is here focused

on them. The actual arrival mass is estimated based on the results of the heliocentric leg (propellant consumption for

a reference escape mass of 10000 kg) and geocentric leg (actual escape mass), assuming the propellant consumption

of the heliocentric leg to be proportional to the escape mass. The best solution in terms of arrival mass, which

corresponds to escape on June 21, 2022 and escape velocity 1.4 km/s, is picked. The dependence of the heliocentric

leg performance on escape velocity is rather weak; for instance, only 30 kg of additional propellant are needed for a

reduction from 1.4 km/s to 1.3 km/s (2% of the overall propellant consumption, which is about 1500 kg).

Figure 8 shows different views of the resulting optimal lunar escape sequence. The first lunar flyby occurs on May

4, 2022 with an altitude of 670 km. The second lunar flyby occurs on June 14, 2022 (i.e. 1.5 lunar periods after the

first flyby) with an altitude of 109 km. The relative velocity is always 1.66 km/s. Launch (from perigee) occurs on

May 2, 2022 with a launch C3 of 0.02 km
2/s2 for a theoretical escape mass of 9664 kg (eastward launch from 28.5

degrees). However, in reality, it is necessary to add phasing loops after launch to provide a 21-day launch period,

which moves back the actual launch date. These phasing loops are described in detail in Ref. 19 and are omitted in

this analysis. Note that in an ideal case with impulsive maneuvers and no perturbations, the total ∆V is split into two
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(a) In-plane view.
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(b) Out-of-plane view.

Figure 8. Lunar escape trajectory with backflip for the reference ARRM mission concept to 2008EV5 in the equato-
rial J2000 inertial frame (Earth-centered). Lunar orbit is in red.

impulses, but the propellant consumption does not change: the first impulse, usually provided by the launcher, inserts

the spacecraft into an elliptical orbit with proper period to attain the correct phasing and the second one, performed by

the spacecraft, into the orbit to intercept the Moon. However, an escape mass of 9550 kg is assumed (instead of the

nominal value 9664 kg), to account for additional Xenon and hydrazine consumption.19 Following this lunar escape

sequence, arrival at 2008EV5 then occurs on August 21, 2023 with a final mass, also considering 75 kg of additional

xenon and hydrazine consumption,19 of 8186 kg.

The escape trajectory is verified by means of a high-fidelity four-body model in an Earth centered frame. Earth’s

oblateness (up to 8-th degree), lunisolar gravitational perturbation and solar radiation pressure are considered. JPL’s

DE405 ephemeris are employed for the positions of the perturbing bodies. In agreement with past experience,8 the

analytical solution results to be quite accurate. The theoretical escape mass (9692 kg) is only 28 kg larger than the value

of the approximate solution, as a slightly smaller launch C3 is required, with a mass delivered to the target asteroid

of 8210 kg. The only relevant difference concerns the flyby altitudes, which results to be larger in the high-accuracy

model.

For the solar-assisted lunar escape design methodology, the interplanetary trajectory is first optimized in Malto using

the lunar escape performance curve (see Figure 7) to find that a June 2022 escape is optimal with -65 deg declination.

Looking up the escape database, a member of the Doi family is retrieved that reproduces well the escape conditions.

The full trajectory is then optimized in high-fidelity. Figure 9 and Figure 10 show the resulting optimal lunar escape

sequence in different frames. The first lunar flyby occurs on February 21, 2022 with an altitude of 5119 km and a

relative velocity of 1.05 km/s. The second lunar flyby occurs on June 09, 2022 (i.e. 108 days after the first flyby)

with an altitude of 55 km and a relative velocity of 2.15 km/s. The produced escape C3 is 1.74 km
2/s2 with an

ecliptic declination of -67.6 deg. One can observe that this performance is slightly better than the one advertised in the
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(a) In-plane view. (b) Out-of-plane view.

Figure 9. Solar-perturbed lunar escape trajectory of the reference ARRM mission concept to 2008EV5 in the ecliptic
J2000 inertial frame (Earth-centered). Lunar orbit is in red.

(a) In-plane view. (b) Out-of-plane view.

Figure 10. Solar-perturbed lunar escape trajectory of the reference ARRM mission concept to 2008EV5 in the Sun-
Earth rotating frame (Earth-centered). Lunar orbit is in red.

lunar-assisted escape curve (see Figure 4), which confirms the conservatism embedded in this curve. In this example

trajectory, launch occurs on February 18, 2022 with a launch C3 of -1.75 km
2/s2. Again, phasing loops must be

considered and the actual launch date is moved back to the end of December 2021. The corresponding escape mass is

9821.9 kg when representative maneuvers during phasing loops are included. Following this lunar escape sequence,

arrival at 2008EV5 then occurs on August 25, 2023 with an arrival mass19 of 8432.8 kg. The improvement with respect

to the short escape sequence is about 250 kg.

CONCLUSION

Methodologies are presented to facilitate the design of double lunar flyby escape sequences suitable for missions to

near-Earth asteroids with SEP. The methodologies can however be applied to different missions, provided the required
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value of escape velocity is not excessively large. A simplified analytic approach deals with short escape sequences

which are not decisively affected by solar perturbation. Both planar and noncoplanar Moon-to-Moon trajectories are

considered. The numerical example highlights that backflip maneuvers are useful when a large escape declination

is sought. Solar-perturbed longer escape sequences are computed by exploiting a pre-computed database to allow

mission designers to quickly explore the trajectory space and choose appropriate trajectories for specific missions.

Even though the methods assume circular orbit for the Moon, numerical verifications showed that the impact of the

eccentricity is limited to a small fraction of the propellant consumption. The representative examples given confirm

that these techniques are effective to design missions to NEOs. In particular, adding a lunar escape sequence proved

to be critical for designing a feasible trajectory of the ARRM mission concept.
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