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Abstract

This paper presents a novel approach to evaluate the role of non-classical effects, e.g., shear deformability,

over a shell finite element model. Such an approach can identify the areas of a structural model in which

the use of first-order shear deformation theories may lead to significant inaccuracies. Furthermore, it

can indicate optimal distributions of structural theories over the finite element mesh to trade-off accuracy

and computational costs. The proposed framework exploits the synergies among four methods, namely, the

Carrera Unified Formulation (CUF), the Finite Element Method (FEM), the Node-Dependent Kinematics

(NDK), and Neural Networks (NN). CUF generates the FE matrices for higher-order shell theories and

provides numerical results feeding the NN for training. Via NDK, the shell theory is a property of the

node; that is, a distribution of various shell theories over the FE mesh is attainable. The distributions of

theories and the thickness of the structure are the inputs of multilayer NN to target natural frequencies.

This work investigates the accuracy and cost-effectiveness of well-known NN. The results look promising

as the NN requires a fraction of FE analyses for training, can evaluate the accuracy of FE models, and

can incorporate physical features, e.g., the thickness ratio, that drives the complexity of the mathematical

model. In other words, NN can inform on the FE modeling without the need to modify, rebuild, or rerun

an FE model.
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1 Introduction

The accuracy of shell finite elements (FE) depends on the problem in hand, and the kinematics adopted

over the thickness. Usually, the kinematics is the same for every node and element of the model. For

instance, shell elements have kinematics from the classical theories of structures, namely, the classical

lamination theory (CLT) and the first-order shear deformation theory (FSDT) [1–6], with a maximum

number of six nodal degrees of freedom (DOF), namely, three displacements and rotations. Recently, the

node dependent kinematics (NDK) [7, 8] has allowed one to build FE models in which the kinematics is a

property of the node; that is, each node can have different structural theories with the aim to use refined

models only where necessary.

Refined kinematics is necessary to overcome the limitations of classical models whose accuracy is high if

the structure is thin, there are no local effects, and in-plane stress and transverse displacements are of

interest. The limitations of classical models are particularly relevant in the case of composite structures.

Several phenomena fall beyond the prediction capabilities of classical models [9, 10]; e.g., high transverse

deformability and anisotropy, edge-effects, local distortions, higher-order oscillations, cracks, contacts, and

multifield interactions in which the material characteristics can change significantly and anisotropically.

Over the years, many refinement strategies have emerged to include shear and normal transverse stresses,

and variations of the displacement field at the interface between two layers with different mechanical

properties, i.e., the zig-zag effect [11–22].

The present paper considers the free vibration analysis of composite shells via FEM. Many efforts focused

on the development of exact, analytical, or semi-analytical solutions to verify numerical approaches.

Leissa and Reddy are among the main contributors with special attention paid to 3D solutions and shear

deformation theories [16, 23, 24]. Comprehensive reviews on this topic are available in Qatu’s works

[25, 26]. A brief overview of works focused on the free vibration analysis via shell FE follows.

The finite element method (FEM) emerged a few decades ago [27–29]. The research activity focused on

the element type, i.e., four- [30–32], eight- [33, 34], and nine-node elements [35, 36]. and the the order of

the structural model [37–40]. Recent works aimed to improve numerical solutions via various approaches,

e.g., assumed strain FE [41], wave FE and wave based method [42, 43], Haar wavelet method [44, 45],

spline collocation and convolution method [46–48], and the reverberation ray matrix [49].

This paper proposes the use of neural networks (NN) to select the shell kinematics at the FE level
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and identify the regions of a structure in which the refined kinematics has a primary importance. The

underlying idea behind NN stems from biological nervous systems and leads to simple computational units

interlinked by a system of connections [50] with the aim of learning through training and samples. The

use of NN in structural and material simulation is increasing due to the superior computational efficiency

[51–53]. Recent applications for composites and FE concern the prediction of the elastic properties

[54, 55], buckling load [56], strength and failure analyses [57–61], structural dynamics [62–65], virtual

manufacturing [66, 67], linear and nonlinear analyses [68–70], and optimization [71, 72].

This paper combines NN with the Carrera unified formulation (CUF), the axiomatic/asymptotic method

(AAM), and the node dependent kinematics (NDK). CUF [73] provides the governing equations for all

the structural models, independently of the order of the theory or the completeness of the expansions.

Similarly, the FE version of CUF [74] obtains all the FE matrices and arrays compactly and independently

of the order of the structural theory. AAM [75, 76] is a method to evaluate the accuracy of any structural

theory. Two of the outcomes provided by the AAM are the best theory diagram (BTD) [77] and the

relevance factor (RF) [78]. BTD is a 2D plot to localize a structural theory via its nodal degrees of

freedom and accuracy. RF is a parameter providing the relevance of a generalized variable or a set of

variables.

Refined structural theories can tackle several mechanical phenomena. Given a structural problem, the

spatial distribution of such phenomena can vary significantly. For instance, the proximity of geometrical

and mechanical boundary conditions can require the use of refined models. The necessity to use refined

models in an area of the structure signals the presence of non-classical effects. NDK offers the capability

of locally inserting refined models by allowing a node-wise distribution of structural theories [7, 8]. This

paper presents a novel strategy to evaluate the best distributions of shell theories over a 2D mesh, and,

therefore, to determine the most critical areas to model.

This paper is organized as follows: the governing equations and the methodology are in Sections 2, 3, and

4; results in Section 5, and conclusions in Section 6.
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2 CUF and finite element formulation

Using the reference frame in Fig. 1, the CUF displacement field for a 2D model is

u(x, y, z) = Fτ (z)uτ (x, y) τ = 1, . . . ,M (1)

The Einstein notation acts on τ . Fτ are the thickness expansion functions. uτ is the vector of the

generalized unknown displacements. M is the number of expansion terms. In the case of polynomial,

h/2Ωk

α β

z

k-1

Rβ Rα

hk

k

k+1

Figure 1: Shell geometry

Taylor-like expansions, a fourth-order model, referred to as N=4, has the following displacement field:

uα = uα1 + z uα2 + z2 uα3 + z3 uα4 + z4 uα5

uβ = uβ1 + z uβ2 + z2 uβ3 + z3 uβ4 + z4 uβ5

uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + z4 uz5

(2)

N=4 has fifteen nodal DOF. The order and type of expansion is a free parameter. Thus, the structure of

the theory is an input of the analysis. The metric coefficients Hk
α, Hk

β and Hk
z of the kth layer are

Hk
α = Ak(1 + zk/R

k
α), Hk

β = Bk(1 + zk/R
k
β), Hk

z = 1 (3)

Rk
α and Rk

β are the principal radii of the middle surface of the kth layer, Ak and Bk the coefficients of

the first fundamental form of Ωk, see Fig. 1. This paper focuses only on shells with constant radii of
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curvature with Ak = Bk = 1. The geometrical relations are

εkp =

{
εkαα, ε

k
ββ , ε

k
αβ

}T
= (Dk

p +Ak
p)u

k

εkn =

{
εkαz, ε

k
βz, ε

k
zz

}T
= (Dk

nΩ +Dk
nz −Ak

n)uk
(4)

where

Dk
p =




∂α
Hk
α

0 0

0
∂β
Hk
β

0

∂β
Hk
β

∂α
Hk
α

0




Dk
nΩ =




0 0 ∂α
Hk
α

0 0
∂β
Hk
β

0 0 0




Dk
nz =




∂z 0 0

0 ∂z 0

0 0 ∂z




(5)

Ak
p =




0 0 1
Hk
αR

k
α

0 0 1
Hk
βR

k
β

0 0 0



Ak
n =




1
Hk
αR

k
α

0 0

0 1
Hk
βR

k
β

0

0 0 0




(6)

The stress-strain relations are

σkp =

{
σkαα, σ

k
ββ , σ

k
αβ

}T
= Ck

ppε
k
p +Ck

pnε
k
n

σkn =

{
σkαz, σ

k
βz, σ

k
zz

}T
= Ck

npε
k
p +Ck

nnε
k
n

(7)

where

Ck
pp =




Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66




Ck
pn =




0 0 Ck13

0 0 Ck23

0 0 Ck36




Ck
np =




0 0 0

0 0 0

Ck13 Ck23 Ck36




Ck
nn =




Ck55 Ck45 0

Ck45 Ck44 0

0 0 Ck33




(8)

The FEM formulation adopts a nine-node shell element based on the Mixed Interpolation of Tensorial

Component (MITC) method [79]. The displacement vector becomes

δus = Njδusj , uτ = Niuτi i, j = 1, · · · , 9 (9)
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Figure 2: MITC9 tying points

uτi and δusj are the nodal displacement vector and the virtual displacement, respectively. The strain

expression becomes

εp = Fτ (Dp +Ap)Niuτi

εn = Fτ (DnΩ −An)Niuτi + Fτ,zNiuτi

(10)

MITC avoids the membrane and shear locking via a specific interpolation strategy for the strain compo-

nents on the nine-node shell element, as follows:

εp =




εαα

εββ

εαβ




=




Nm1 0 0

0 Nm2 0

0 0 Nm3





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εααm1

εββm2

εαβm3




εn =




εαz

εβz

εzz




=




Nm1 0 0
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0 0 1






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εβzm2

εzzm3




(11)

Strains εααm1 , εββm2 , εαβm3 , εαzm1 , and εβzm2 result from Eq. 10 and

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(12)

Subscripts m1, m2 and m3 indicate the point groups (A1,B1,C1,D1,E1,F1), (A2,B2,C2,D2,E2,F2), and

(P,Q,R,S), respectively, see Fig. 2.
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FSDT

N=4

Figure 3: Distribution of FSDT and fourth-order shell theories over a 2D mesh

According to the Principle of Virtual Displacements (PVD),

∫

Ωk

∫

Ak

δεk
T
σkHk

αH
k
βdΩkdz +

∫

Ωk

∫

Ak

ρkδuk
T
ükHk

αH
k
βdΩkdz = 0 (13)

Ωk is the in-plane domain of a layer over the element, and Ak is the thickness one. Via the constitutive

equations, geometrical, MITC and CUF relations, the following governing equation reads

mk
τisjü

k
τi + kkτsiju

k
τi = 0 (14)

kkτsij andmk
τsij are 3×3 matrices referred to as the fundamental nucleus of the stiffness and mass matrices,

respectively. The components of the nuclei are given in [74]. The assembly over all nodes and elements

and the introduction of the harmonic solution leads to the well-known eigenvalue problem,

(−ω2
nM +K)Un = 0 (15)

In CUF, the shell theory is a property of the node. In other words, each node can have a shell theory, and

the neighbor nodes others. In this work, the shell theory is the same for each node of an element; FSDT

and N=4 are the models adopted. Figure 3 shows an example of a shell mesh in which each element is

either N=4 or FSDT. For more details on NDK, the reader may refer to [7, 8].

3 Axiomatic/asymptotic method and best theory distributions

The axiomatic/asymptotic method (AAM) is a methodology to assess the influence of generalized variables

and the accuracy of structural models [75, 76]. In previous works, AAM acted on the set of variables

of the expansion, e.g., in the case of N=4, AAM considered the fifteen primary variables and evaluated
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Figure 4: FE distributions in a 2D Cartesian reference frame and an example of BTD

their influence. In the present paper, AAM acts on the distribution of shell theories over a given mesh.

For instance, in the case of a 4×4 mesh, AAM evaluates the accuracy of every combination of FSDT and

N=4, as shown in Fig. 3. Overall, 216 mesh distributions are evaluated. The implementation of the AAM

may follow various approaches; in this work:

1. Definition of parameters such as geometry, boundary conditions, materials, and layer layouts.

2. Axiomatic choice of a starting theory and definition of the starting nodal unknowns. Usually, the

starting theory provides 3D-like solutions. The fourth-order, equivalent single-layer shell model is

the reference model of this paper.

3. Definition of a FEM mesh. In this work, a 4×4 mesh nine-node mesh was used as, for the considered

problems provides good accuracy.

4. The CUF generates the governing equations for the theory distributions considered.

5. For each structural theory distribution, the accuracy evaluation makes use of one or more control

parameters; in this paper, the first ten natural frequencies.

6. The analysis is carried out multiple times to evaluate the relevance of problem parameters, e.g.,

thickness, orthotropic ratio, stacking sequence, boundary conditions.

Two parameters can identify a distribution, namely, the number of DOF of the model and the error or

accuracy provided. The use of two parameters allows the insertion of each FE distribution in a Cartesian

reference frame, as in Fig. 4a. The Best Theory Distribution (BTD) is the curve composed of all meshes

with a given number of N=4 and FSDT elements providing the minimum error, see Fig. 4b. In the case
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of sixteen elements, the BTD will have sixteen models, the first one with all N=4 and the last one with

all FSDT. To have a single error parameter, the BTD uses the average of the errors as follows:

Error =
10∑

i=1

fi/f
N=4
i

10
(16)

Where fi is the i-th frequency from a generic shell model, and fN=4
i is the one from the reference solution

and having fourt-order kinematics in all elements.

4 Neural networks and coding

CUF FE analyses generate inputs to train NN. In this paper, the inputs are the structural theories of the

elements and the thickness ratio, and outputs are the errors over the first ten frequencies. Figure 5 shows

the two ways adopted in this paper to build the BTD, i.e.,

� CUF generates the governing FE equations for all the shell FE models from combinations of FSDT

and N=4 distributions. Given a 4×4 mesh, overall, 216 FE shell models are available. The two limit

cases are those in which all elements are FSDT, or all are N=4.

� The FE way runs 216 analyses and reports the error and number of FSDT and N=4 elements in a

2D plot.

� The NN way runs one-tenth of the FE analyses and uses them for training. Then, the 2D plot stems

from querying the trained NN with all 216 shell models.

� If a/h is a training variable, and, e.g., three a/h values are available, the overall number of analyses

is 3×216, and the query of the NN includes the thickness ratio.

The aim is to build the BTD with less than 216 analyses and avoid new FE analyses as the thickness ratio

changes. In Fig. 5, the NN training set has 10% of all analyses, as this is a typical value used in this

paper. Also, the figure shows only one hidden layer, although more layers could be necessary.

The NN is a multilayer feed-forward with early stopping and the mean squared error as the objective

function. Depending on the numerical case, each layer has ten to twenty neurons, and three to six layers

are used. This paper adopts Levenberg-Marquardt training functions [80]. The input coding is a vector

with seventeen elements, that is, all the elements of the FE model and the thickness ratio. Each element
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Table 1: S-S, 0/90/0, a/h=10, ω=ω
√

ρa4

h2ET

Model

HSDT [24] 12.060
FSDT [23] 12.372
CLT [84] 15.233
LD4 [81] 11.685
N=4 11.972

status is either ’1’ or ’0’ to indicate an N=4 or FSDT structural theory, respectively. Each input has an

associated output composed of a vector containing the error, Eq. 16.

5 Results

The numerical results consider spherical shells with geometrical and material characteristics retrieved

from [24, 78, 81, 82]. The shell has a=b, Rα=Rβ=R, and R/a=5. The material properties are E1/E2=25,

G12/E2=G13/E2=0.5, G13/E2=0.2, ν=0.25. The accuracy of the FE models is computed over the first

ten frequencies of symmetric modal shapes, and the FE considers a quarter of shell via a 4×4 mesh as

in [78]. The analysis of symmetric modes allowed us to use a reduced number of elements via symmetric

boundary conditions with a significantly lower computational cost. As shown in [83], the constraint on

the symmetric modes does not modify the results to a great extent.

5.1 Evaluation of NN with fixed thickness ratio

The first assessment deals with a moderately-thick shell and two sets of boundary conditions and stacking

sequences. The first set is simply-supported (S-S) on all edges; the second one has the top and bottom

edges clamped and the lateral ones free (C-F). This set of analyses aims to evaluate the accuracy of the

NN for a given thickness ratio before adding a/h as a training feature.

Table 1 shows the first natural frequency from different models, including higher- and first-order shear

deformation theories, HSDT and FSDT, respectively, classical lamination theory, CLT, a layer-wise fourth-

order model, LD4, and the present equivalent single layer full fourth-order expansion, N=4. The latter,

obtained via a 4×4 mesh, provides good accuracy if compared to LD4 and is set as the reference solution

to build the BTD. Figure 6 shows the error given by each of the 216 mesh combinations. For the sake

of readability, some 20% of all cases are shown and randomly picked. The results from the complete
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FE solution, and the ones from NN are reported. As mentioned above, the NN solution uses 10% of

216 FE analyses for its training and, then, obtains all cases. The vertical axis reports the ratio between

the total DOF of a given mesh and the total DOF in the case of the mesh with only fourth-order shell

theories. The boundary values are D=1, i.e., fifteen DOF per node and 1215 in total, and D=0.333, i.e.,

five DOF per node and 405 overall. Figure 7 shows the mesh configurations with the minimum error. The

vertical axis reports the number of elements with the fourth-order shell theory and ranging from sixteen

- all N=4 - to zero - all FSDT. As in the previous plot, the FE and NN solutions are reported. Figure

8 shows some of the mesh configurations from the previous plot. Mesh distributions having four, eight,

and twelve elements with fourth-order kinematics are shown with the error, E, indicated in the captions.

Such figures show where the higher-order kinematics is relevant. E.g., considering four N=4 elements, the

best configurations shown indicate the zones in which those elements are more necessary to minimize the

error. The same plots for the 90/0 lamination are given in Figs. 9, 10 and 11. The results suggest the

following:

� The maximum error - given by the use of all FSDT elements - is about 12% for 0/90/0 and 10% for

0/90, and there is a quite linear behavior of the BTD as the number of N=4 elements changes. In

all cases, the use of N=4 elements over 75% of the mesh ensures errors smaller than 1-2%.

� The zones of the mesh in which the refined shell kinematics is necessary are highly influences by the

geometrical boundary conditions and, to a smaller extent, by the stacking sequence. In the S-S case,

the areas with higher deformations, i.e., those far from the supports, require the refined kinematics

first. In the C-F case, the clamped zones are those more critical.

� The NN can obtain the FE results with high accuracy and a perfect match if the BTD is considered.

This result is relevant by considering that the NN required only 10% of FE analyses and, given that

both training and use of NN needed a fraction of the computational costs of FE - In a laptop with

four cores, the total time required by training and use of NN is smaller than five minutes- it can be

stated that NN can obtain the FE results with one-tenth of the computational time.
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Figure 11: Best mesh distributions for 90/0, a/h=10

16



5.2 Evaluation of NN with a/h as a training feature

The second set of results concerns the use of a/h as an additional training feature. For instance, two

thickness ratios are used for the FE analyses and to train the NN; then, the NN is used to obtain the

results for a third thickness ratio with no need for new FE analyses. The S-S, 0/90/0 shell of the previous

section, is used.

Figure 12 shows the BTD for three thickness ratios, namely, 75, 50 and 25. FE and NN results are

compared, and, as indicated in the sub-captions, the NN training used two ratios. The aim is to investigate

the accuracy of NN in detecting the results within the range of the training. Figure 13 shows the best

mesh distributions with four, eight, and twelve FSDT or N=4 theories, together with the error. The

results obtained by FE and NN are compared. Similarly, Figs. 14 and 15 shows the results for the other

two a/h values. The results suggest that

� Considering the BTD, the accuracy of NN is good. Some discrepancies are visible in the lower part

of the plot for a/h=50 and 25. Most likely, the differences are due to the FSDT at a/h=25, 75, 50,

and a/h=10, i.e., a/h of the training sets. For a/h=75 such difference is not present as for a/h=50

and 100, FSDT provides similar accuracy.

� The mesh distributions with the best accuracy are very well predicted by NN. There are a few

differences for a/h=50, four FSDT, and a/h=75, eight FSDT. In both cases, the difference is due

to only one element.

� Considering the results of the previous section for a/h=10, three best mesh distributions were found.

One is valid for a/h=10, the second for a/h=25 and 50, and the last one for a/h=75. For thicker

shells, the appearance of fourth-order theories follows a vertical direction from the center to the

boundaries. For thinner shells, the direction is diagonal.

� As well-known, the error ranges vary significantly with thickness. The maximum values are 5% for

a/h=75 and 10% for a/h=25. In other words, the use of FSDT is more reliable as a/h increases.
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6 Conclusions

This paper has proposed a novel use of neural networks (NN) as estimators of critical zones over shell finite

element (FE) meshes concerning the presence of non-classical effects requiring higher-order kinematics.

The approach makes use of the Carrera unified formulation (CUF) to generate any-order structural

theory; the node-dependent kinematics (NDK) to assign different shell theories to FE nodes; NN is then

trained using the FE results. The inputs of the training are the shell theories assigned to each element

and the thickness of the structure. The target is the error over the first ten natural frequencies. The NN

architecture has three to six layers and 10 to 20 neurons per layer. The size of the training set is one-tenth

of the all possible combinations of mesh distributions required by FE to evaluate the best shell theory for

every element. The numerical results considered various stacking sequences, boundary conditions, and

thickness ratios. The analysis of the results shows that

� NN is accurate enough to substitute FE with a significant reduction of computational costs. N

requires some 10% of the computational time of FE. The NN training can incorporate physical

features of the problems such as the thickness ratio allowing to obtain results without the need for

new FE analyses and preprocessing.

� The performances of NN can lead to the analysis of more complex structural configurations requiring

larger FE models or iterations due to nonlinearities or optimization procedures.

� Concerning the most critical zones of the mesh, the presence of geometrical boundary conditions, as

well-known, is the main feature to consider. However, changes in the type of constraints - supported

or clamped -, stacking sequence and thickness can significantly affect the distribution of the critical

areas. As a general guideline for thin shells, the areas demanding the use of refined models are in the

proximity of the higher deformations. For thick shells, on the other hand, the vicinity of boundary

conditions is a more significant indicator.

� The accuracy of the various mesh distributions can change significantly. For thick shells, in partic-

ular, errors higher than 10% may appear.

� Potential critical aspects of this approach emerged as the training considered simultaneously thin

and thick shells. Such a scenario requires further investigations and the adoption of more advanced

NN architectures as those developed in the scientific machine learning scenario.
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The synergy between CUF and NN is promising given that the former can provide thousands of data

sets in minutes and benchmarking for the rigorous assessment of results; the latter can increase the

computational efficiency and widen the applicability of virtual modeling. Future investigations should

focus on the use of NN for multiple targets, e.g., multi-point stress values, and the addition of more

physical features in the training process, such as material properties and boundary conditions.
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