
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Data processing and information classification— an in-memory approach / Andrighetti, M.; Turvani, G.; Santoro, G.;
Vacca, M.; Marchesin, A.; Ottati, F.; Roch, M. R.; Graziano, M.; Zamboni, M.. - In: SENSORS. - ISSN 1424-8220. -
ELETTRONICO. - 20:6(2020), p. 1681. [10.3390/s20061681]

Original

Data processing and information classification— an in-memory approach

Publisher:

Published
DOI:10.3390/s20061681

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2851499 since: 2020-11-07T18:30:41Z

MDPI AG

sensors

Article

Data Processing and Information Classification—
An In-Memory Approach

Milena Andrighetti 1, Giovanna Turvani 1,* , Giulia Santoro 1, Marco Vacca 1 ,
Andrea Marchesin 1, Fabrizio Ottati 1, Massimo Ruo Roch 1 , Mariagrazia Graziano 2 and
Maurizio Zamboni 1

1 Department of Electronics and Telecommunication (DET), Politecnico di Torino, Corso Castelfidardo 39,
10129 Torino, Italy; milena.andrighetti@studenti.polito.it (M.A.); giulia.santoro@polito.it (G.S.);
marco.vacca@polito.it (M.V.); andrea.marchesin@studenti.polito.it (A.M.);
fabrizio.ottati@studenti.polito.it (F.O.); massimo.ruoroch@polito.it (M.R.R.);
maurizio.zamboni@polito.it (M.Z.)

2 Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Castelfidardo 39,
10129 Torino, Italy; mariagrazia.graziano@polito.it

* Correspondence: giovanna.turvani@polito.it

Received: 31 January 2020; Accepted: 13 March 2020; Published: 18 March 2020
����������
�������

Abstract: To live in the information society means to be surrounded by billions of electronic devices
full of sensors that constantly acquire data. This enormous amount of data must be processed and
classified. A solution commonly adopted is to send these data to server farms to be remotely elaborated.
The drawback is a huge battery drain due to high amount of information that must be exchanged.
To compensate this problem data must be processed locally, near the sensor itself. But this solution
requires huge computational capabilities. While microprocessors, even mobile ones, nowadays have
enough computational power, their performance are severely limited by the Memory Wall problem.
Memories are too slow, so microprocessors cannot fetch enough data from them, greatly limiting their
performance. A solution is the Processing-In-Memory (PIM) approach. New memories are designed
that can elaborate data inside them eliminating the Memory Wall problem. In this work we present an
example of such a system, using as a case of study the Bitmap Indexing algorithm. Such algorithm
is used to classify data coming from many sources in parallel. We propose a hardware accelerator
designed around the Processing-In-Memory approach, that is capable of implementing this algorithm
and that can also be reconfigured to do other tasks or to work as standard memory. The architecture
has been synthesized using CMOS technology. The results that we have obtained highlights that, not
only it is possible to process and classify huge amount of data locally, but also that it is possible to
obtain this result with a very low power consumption.

Keywords: bitmap indexing; processing in memory; memory wall; big data; internet of things

1. Introduction

Nowadays many applications used everyday, defined as data-intensive, require a lot of data to
process. Examples are the databases manipulation and image processing. This requirement is the
effect of the fast improvement of CMOS technology, that has lead to the creation of very powerful and
flexible portable devices. These devices are full of sensors that continuously acquire data. Data can be
elaborated remotely by powerful servers, but sending a lot of information through electromagnetic
waves requires a huge amount of energy, severely impacting the battery life of mobile devices. The only
solution is to elaborate data locally, on the mobile device itself.

Thanks to the scaling of transistors size, mobile microprocessors are now theoretically capable of
such computation. Unfortunately, memory scaling has been following a different path, resulting still

Sensors 2020, 20, 1681; doi:10.3390/s20061681 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8520-906X
https://orcid.org/0000-0003-2920-3357
https://orcid.org/0000-0001-7313-8017
https://orcid.org/0000-0002-8721-9990
https://orcid.org/0000-0001-8179-5973
http://www.mdpi.com/1424-8220/20/6/1681?type=check_update&version=1
http://dx.doi.org/10.3390/s20061681
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 1681 2 of 14

in slow accesses compared to processors computing speed. This discrepancy in performance harms
the computing abilities of the CPU, since the memory cannot provide data as quickly as required by
the CPU. This problem is called Von Neumann bottleneck or Memory Wall. The idea that took form to
solve this problem is to null the distance between processor and memory, removing the cost of data
transfer and create a unit which is capable of storing information and of performing operation on them.
This idea takes the name of Processing-in-Memory.

Many in literature have approached the “in-memory” idea. Some narrowing the physical distance
between memory and computation unit by creating and stacking different layers together. But even if the
two units are moved very close to each other, they are still distinct components. Others exploited intrinsic
functionality of the memory array or slightly modified peripheral circuitry to perform computation.

Among the many example provided by literature, one of the best fitting representative of the PIM
concept is presented in Reference [1]. In this work the proposed architecture is a memory array in
which the cell itself is capable of performing logical operations aimed at solving Convolutional Neural
Networks (CNN). In this paper, our main goal is to introduce a proper example of Processing-in-Memory,
choosing Bitmap Indexing as an application around which the architecture is shaped. In the design,
it was not used a specific memory technology because the idea is to provide a worst-case estimation and
it was also meant to leave space for future exploration to implement the cell with a custom model of the
memory cell. The Bitmap Indexig algorithm has been chosen because it is used for data classification.
This is one of the most important task that must be performed by such mobile devices. Being able to
classify data allows to understand which data must be sent to remote servers and which not, greatly
reducing the overall power consumption. The presented architecture is a memory array in which
each cell is both capable of storing information and to perform simple logical operation on them.
A characteristic of our architecture is its modularity. The architecture is divided in independent memory
banks. A memory bank can work both on its own or interacting with other banks. Moreover it is
possible to build the array with as many banks as needed. This feature lead to great flexibility and high
degree of parallelism. The structure was eventually synthesized for analysis purposes, in a 8.5 KB square
array, using CMOS 45 nm and 28 nm. The storage segment of the proposed PIM cell was synthesized
as a latch. The evaluation showed great results, achieving a maximum throughput of 2.45 Gop/s
and 9.2 Gop/s respectively for the two technologies used. This paper is the extended version of our
prior work [2]. In the conference paper the general idea was introduced. Here we greatly expand the
architecture, moving from the idea to the real implementation. The novelty of this work, in comparison
with other works presented in the literature, consists in an enhanced architecture characterized by a
high level of granularity and flexibility.

2. Background

The Processing-in-Memory paradigm was born to solve the Von Neumann bottleneck, which is
characterized by the gap in performance between memory and processor. Processing-in-Memory thus
tries to reduce the disparity by merging together storage and processing units. Processing-in-Memory
(PIM) can be approached in different ways, depending on the architecture or the technologies to use.
A lot of examples can be found in literature, some of them will be depicted in the following, grouped
in categories.

2.1. Magnet-Based

Magnetic Random Access Memory (MRAM) is a non-volatile memory that uses Magneto-Tunnel
Junctions as its basic storage element. Thanks to their dual storage-logic properties, MTJs are suitable
to implement hybrid logic circuits with CMOS technology suited to implement the PIM principle.
In Reference [3] is presented a MTJ-CMOS Full Adder, which compared to a standard only-CMOS
solution showed better results. In Reference [4] the authors proposed an MTJ-based TCAM, in which
the logic part and the storage element are merged together, and an MTJ-based Non-Volatile FPGA

Sensors 2020, 20, 1681 3 of 14

exploiting MTJs and combinatorial blocks. Both structures resulted in a more compact solution with
respect to conventional ones.

In Reference [5] it is proposed a different way to implement Nano Magnetic Logic (NML) exploiting
the MRAM structure. Since the basic concept of the NML technology is the transmission of information
through magnetodynamic interaction between neighbouring magnets, the MRAM structure has been
modified so that MTJs could interact with each other. Another example is represented by PISOTM [6],
an architecture based on SOT-RAM. It is a reconfigurable architecture in which the main advantage is
that the storage and logic element result identical and for this reason technology conflict is avoided.

2.2. 3D-Stacking

According to the 3D-Stacking approach multiple layers of DRAM memory are stacked together
with a logic layer that can be application-specific ([7,8]) or general purpose [9]. In Reference [7] the
XNOR-POP architecture was designed to accelerate CNNs for mobile devices. It is composed of Wide-IO2
DRAM memory with the logic layer modified according to the XNOR-Net requirements. In Reference [8]
it is proposed an architecture for data intensive applications, where a PIM layer made of memory
and application-specific logic is sandwiched between DRAM dies connected together using TSVs. An
example of general purpose 3D-stacking is 3D-MAPS in Reference [9]. A multi-core structure is used,
and every core is composed of a memory layer and a computing layer.

2.3. ReRAM-Based

Resistive RAM is a non-volatile memory that uses a metal-insulator-metal element as storage
component. The information is represented by the resistance of the device that can be either high
(HRS) or low (LRS). To switch between states the appropriate voltage has to be applied to the cell.
The common structure of a ReRAM array is a crossbar, a structure used in matrix-vector multiplication,
commonly found in neural networks applications. PRIME [10], an architecture aimed at accelerating
Artificial Neural Networks is an example of this kind of implementations. PRIME is compliant with
the in-memory principle, since the computation is performed directly into the memory array with
few modifications to the peripheral circuitry. Memory banks are divided intro three sub-arrays each
with a specific role in the architecture. In Reference [11] is proposed a 3D-ReCAM based architecture
to accelerate the BLAST algorithm for DNA sequence alignment. The architecture, named RADAR,
aims to move the operations in memory, this way there is no need to transfer the DNA database.
In Reference [12] is presented a non-volatile intelligent processor built on a 150 nm CMOS process
with HfO RRAM. The structure is capable of both general computing and the acceleration of neural
networks, in fact it is provided with a FCNN Turbo Unit, enhanced with low-power MVM engines to
perform FCNN tasks.

Another application that is limited by the Memory Wall problem is Graph Processing. In Reference [13]
is proposed a ReRAM-based in-memory architecture as a possible solution. The structure is composed
of multiple ReRAM banks, divided into 2 types: graph banks that are used to map the graph and to store
its adjacency list and a master bank which stores metadata of the graph banks. This allows to process
the graphs that are stored inside the memory. In Reference [14] is presented PLiM, a programmable
system composed of a PIM controller and a multi-bank ReRAM which can work both as a standard
memory and as a computational unit, according to the controller signals. PLiM implemented only
serial operation to keep the controller as simple as possible. In Reference [15] the authors presented
ReVAMP, an architecture composed of two ReRAM crossbars, supporting parallel computations and
VLIW-like instructions. To perform logic operations ReVAMP exploits the native properties of ReRAM
cells that implement a majority voting logic function.

2.4. PIM

In Reference [16] the authors presented TOP-PIM, a system composed of an host processor
surrounded by several units characterized by 3D-stacked memories with an in-memory processor

Sensors 2020, 20, 1681 4 of 14

embedded on the logic die. In Reference [17] is proposed DIVA, a system in which multiple PIM chips
serve as smart-memory co-processors to a standard microprocessor aimed at improving bandwidth
performance for data intensive applications executing computation directly in memory and enabling
a dedicated communication line between the PIM chips. In Reference [18] is presented Terasys,
a massively parallel PIM array. The goal of Terasys was to embed an SIMD PIM array very close
to an host processor in order for it to be seen both as a processor array and conventional memory.
As solution for large-scale graph processing performance bottleneck, in Reference [19] the authors
proposed Tesseract, a PIM architecture used as an accelerator for an host processor. Each element of
Tesseract has a single-issue in-order core to execute operations, moreover, the host processor has access
to the entire Tesseract’s memory whilst each core of Tesseract can interact only with its own. Tesseract
does not depend on a particular memory organization, but it was analyzed exploiting Hybrid Memory
Cube (HMC) as baseline. Such a structure proved to perform better than traditional approaches
thanks to the fact that Tesseract was able to use more of the available bandwidth. In Reference [20] is
presented Prometheus, a PIM-based framework, which proposes the approach of distributing data
across different vaults in HMC-based systems with the purpose of reducing energy consumption,
improving performance and exploiting the high intra-vault memory bandwidth.

In Reference [21] is proposed a solution to accelerate Bulk Bitwise Operations. PINATUBO is
an architecture based on resistive cell memories, such as ReRAMs. The structure is composed of
multiple banks which are also subdivided into mats. Pinatubo is able to eliminate the movement of
data, since computation is performed directly inside memory, executing operations between banks,
mats and subarrays. This way PINATUBO interacts with CPU only for row addresses and control
commands. Another example of PIM architecture to accelerate bulk bitwise operations was conceived
by the authors of Reference [22], who presented Ambit, an in-memory accelerator which exploits
DRAM technology to achieve total usage of the available bandwidth. The DRAM array is slightly
modified to perform AND, OR and NOT operations. Moreover, the CPU can access Ambit directly, this
way it is not necessary to transfer data between CPU memory and the accelerator. In Reference [23] is
proposed APIM, an Approximate Processing-in-Memory architecture which aims to achieve better
performance despite a decrease in accuracy. It is based on emerging non-volatile memories, such as
ReRAM and it is composed of a cross-bar structure grouped in blocks. All the blocks are structurally
identical but divided into data and processing blocks. They are linked together through configurable
interconnections. Furthermore APIM is able to configure computation precision dynamically, so that it
is possible to tune the accuracy runtime.

In Reference [24] is presented ApproxPIM, an HMC-based system in which each vault is independent
from one another and communication with the host processor is based on a parcel transmission protocol.
This results in energy and speedup improvements with respect to the used baselines. In Reference [25]
the authors presented MISK, a proposal to reduce the gap between memory and processor. Since data
movement imply a great energy cost, MISK is intended to reduce it by implementing a monolithic
structure, avoiding physical separation between memory and CPU. In fact, MISK is to be integrated
into the cache and it is not conceived to work on its own, but embedded in the CPU. This way it is
possible to achieve great results in terms of energy-per-cycle and execution time. In Reference [26]
is introduced Gilgamesh, a system based on distributed and shared memory. It is characterized by a
multitude of chips, called MIND chips, which are connected together through a global interconnection
network. Each chip is a general purpose unit equipped with multiple DRAM bank and processing
logic. In Reference [27] Smart Memory Cube is presented, a PIM processor built near the memory,
in particular HMC, which is connected to an host processor. HMC vault controls are modified to
perform atomic operations. The PIM processor interacts with the host processor so that smaller tasks
are executed directly side by side the memory.

Sensors 2020, 20, 1681 5 of 14

In References [28,29], the authors presented in-memory architectures on which the Advanced
Encryption Standard (AES) algorithm was mapped, showing great result in speed and energy saving
compared to other solutions. In Reference [1], the authors presented an architecture based on the
in-memory paradigm aimed at Convolutional Neural Networks (CNN). The structure is a memory
array in which each cell is provided with both storage and computation properties and with the support
of an additional weight memory which is designed to support CNN data flow and computation inside
the array. This structure showed great result compared with a conventional CNN accelerator in terms
of memory accesses and clock cycles.

3. The Algorithm

The Processing-in-Memory principle requires that the storage and logic components are merged
together. In order to implement an architecture compliant with such a requirement it was necessary
to firstly shape it according to a suitable application. For this purpose Bitmap indexing was selected.
Bitmap indexes are often used in database management systems.

Taking as an example the simple database in Figure 1A, each column of the database represents
a particular characteristic of the profile of the entry described in one row. Suppose a search on the
database is to be performed to create a statistic on how many men possess a sport car or a motorbike.
Such a query would imply looking for all the men and then excluding the ones that do not own the
specified vehicles. If the database is big this operation would require a long response time. Bitmap
indexing was introduced to solve this issue. Bitmap indexing transforms each column of a table in as
many indexes as the number of distinct key-values that particular column can have.

A bitmap index is a bit array in which the i-th bit is set to 1 if the value in the i-th row of the
column is equal to the value represented by the index, otherwise it is set to 0 (Figure 1A). Thus, bitmap
indexing allows to fragment search queries in simple logic bitwise operations (Figure 1B). This way it is
not necessary to analyze the whole database discarding unwanted data, but only to operate on selected
indexes. Bitmap indexing can provide great results in response time and in storage requirements since it
can be compressed. Bitmap indexing is suited for entries with a number of possible values smaller than
the depth of the whole table. This technique is mostly functional for queries regarding the identification
of the position of specific features, for this reason to answer an “how many” query it is necessary to
insert a component that counts the hits obtained. Summing up, a query can be decomposed in simple
logic operations which are performed between indexes, processing bits belonging to the same position
in the array (Figure 1C).

Clearly, Bitmap indexing results compatible with the Processing-in-Memory paradigm, since
it is characterized by simple logic bitwise operations and its data format make it easy to embed in
memory. However, bitmap indexing involves operations between columns of a table. If we consider
memory organization and imagine to maintain the column-row distribution of the table in memory,
this would imply to access multiple rows and then discard all the data that do not belong to the desired
indexes. This approach would be too costly. For this reason for our implementation a column-oriented
was preferred, which means that the entire table is stored transposed, so that now, applying bitmap
indexing, indexes lie on rows (Figure 2).

Thanks to this method, to access an index it is only necessary to access a row and consequently
operations between indexes result in operations between memory rows. In this implementation we
thus consider the indexes distributed on rows in a memory array. We also take into account two types
of query, simple and composed. A simple query is composed of only one operation (e.g., “Who is female
and married?”) whilst a composed one is characterized by intertwined operations (e.g., Figure 1B).
Considering the composed query depicted in Figure 1B the operations to perform would be:

1. Access the first operand;
2. Access the second operand;
3. Execute bitwise operation between the two operands;
4. Read result;

Sensors 2020, 20, 1681 6 of 14

5. Execute bitwise operation between computed result and third index;
6. Count the hits obtained;
7. Read final result;

While to answer a simple query only steps 1–4 are needed. The goal is then to implement the just
introduced algorithm directly inside a memory array.

C)

B)

NAME

Jane

Harry

Alan

GENDER

F

M

M

STATUS

MARRIED

SINGLE

MARRIED

CAR

SPORT

SPORT

MVP

M

0

1

1

F

1

0

0

MVP

0

0

1

SPORT

1

1

0

BIKE

0

0

0

SPORT

1

1

0

BIKE

0

0

0

M

0

1

1

ANSWER

0

1

0

AND OR =

0

1

0

0

0

1

1

1

0

0

1

0

BIKE

SPORT

M

ANSWER

A)

Figure 1. (A) Given a table, bitmap indexing transforms each column in as many bitmap as the number
of possible key-values for that column (B) In order to answer a query logic bitwise operations are to be
performed (C) Practical scheme of the execution of the query.

NAME

GENDER

STATUS

CAR

MARRIED SINGLE MARRIED

Jane Harry Alan

F M M

SPORT SPORT MPV

F

M

1

0

0

1

0

1

Figure 2. Column-oriented memory organization.

4. The Architecture

The architecture proposed in this paper present a possible solution for the Von Neumann bottleneck
implementing a proper in-memory architecture, where logic functions are implemented directly inside each

Sensors 2020, 20, 1681 7 of 14

memory cell, in contrast with the near-memory approach seen in some state-of-the-art implementations,
where logic operations are performed with logic circuits located on the border of the memory array.
Moreover, this architecture was intended to overcome the limits provided by specific technologies
by keeping the development of the architecture technology-independent, in order to implement a
configurable architecture with the highest degree of parallelism achievable.

A memory array is composed of many storage units, each of which is made of multiple memory
cells. Cells are the basic element of the memory itself. Therefore, in order to implement an entire
memory array aimed at executing the Bitmap indexing algorithm, firstly it is necessary to define the
structure of the memory cell.

According to the specifications required by the Bitmap indexing, the cell has to be able to perform
simple logic operations interacting with other cells in the array. This means that our cell should have
both storage and logic properties. Indeed, the basic cell of the PIM array is provided with an element
that store information and a configurable logic element which performs AND, OR, XOR operations
with all the combinations of input (e.g., A, A), between the stored information and the one coming
from another cell (Figure 3). The system has indeed the granularity of a single bit, meaning that every
memory cell executes a logic operation.

DATA...

BANK

BANK

1s COUNTER

ROQ

CONTROL...

BREAKER

LIM ARRAY

A
D

D
R

. R
F

IN
S

T
R

. M
E

M
.

O
P.

 D
IS

P
A

T
C

H
E

R

0...

0...

QUERIES

DATA_IN

Result of Query

DELAY

A)

OPERATION DECODER

GHOST ROW

LIM ROW

A
D

D
R

E
S

S
 D

E
C

.

LIM CELL

BANK

BREAKER

CELL

MEM CONFIG...

data_in

data_out

from_mem

from_ext
logic_result

C)

B)

Figure 3. (A) Overview of the complete architecture. (B) Structure of the duo Bank-Breaker. (C) Insight
of the Processing-In-Memory (PIM) cell.

Sensors 2020, 20, 1681 8 of 14

Other than standard memory features the PIM cell can interact with other cells, according to its
control input. As every single cell in the array has the ability to perform computation, it is necessary to
choose which cell will be executing the operation and which will be read. In order to implement it, the
designated passive cell is read and the stored data travels to the operative cell. To avoid interference
between inactive cells, the output lines of cells that are not used are interrupted. To implement the
bitwise feature each cell of a row has its input and output line common to any other cell belonging to
the same column of different rows.

In Figure 3, the whole structure is depicted. Noticeably, other than the array, the architecture
is composed of a control unit and some additional components, such as the counter (for counting
ones) and register files. Focusing on the array, like any standard memory, it was divided into multiple
banks. Each bank is associated with a breaker that manages data flow from and to the bank. A bank
represents the smallest degree of parallelism of the architecture. This means that in a bank it is possible
to execute one operation at a time. The system has also a second level of granularity because thanks
to the breakers every bank can work independently. This solution provides at the same time a high
level of granularity and flexibility. Banks can execute operations between its rows or can work with
other banks, making interact rows belonging to different banks, while other banks work on different
operations in parallel. As a consequence, supposing each bank in the array works on a different
operation by itself, the maximum degree of parallelism achievable is equal to the number of banks in
the array. The Bidirectional Breaker is in charge of managing relations between its bank and the rest of
the array. According to the control input, the breaker can be passive, that is, letting data pass through
without disturbing its bank so that the bank can work on its own or be silent. The breaker can also be
active and diverting data to or from its bank.

A bank is composed of multiple PIM rows and one Ghost row which is provided only with
memory properties used to store temporary operation results. The Ghost row has the input line
connected to the logic result output line of the PIM rows, whilst its output line is common with the
PIM rows. This way it is possible to read the Ghost row or use its content for further computation.
As in standard memories, each row is fragmented in multiple words. This means that operations are
actually performed between words belonging to different rows. The result is then temporary saved in
the Ghost word corresponding to the same word address of the word which executed the operation.
This was implemented to avoid the need to manage a third address. To handle all the configuration
signals needed to manage the correct execution, two decoders were needed inside each bank. One
that sets the configuration for the logic operation to execute, sending it to the right row. The second
was implemented to control addresses, data flow inside the bank and to distinguish between standard
memory mode and PIM operation mode. Since a simple AND operation can be performed in one bank
in a single clock cycle, imaging of having multiple banks definitely increase the number of operations
that can be executed in one clock cycle in parallel. The same reasoning goes for a composed operation
which takes two clock cycles. The throughput is directly proportional to the number of banks in the
memory block. So, the larger the number of banks, the larger the memory block and also the larger
the throughput.

In Figure 3, it is highlighted that, other than the array, there are some additional components
which are used to guarantee the correct functioning of the entire structure.

The Instruction Memory is used to collect the queries to execute. It consists in a register file, having
as many registers as the number of banks, with an input parallelism equal to the length of a complete
query (i.e., two complete addresses and a logic operation configuration string). A composed query is
treated as the combination of two distinct queries, which means that a composed query will occupy
two consecutive registers of the Instruction Memory. Clearly, even if the architecture was configured
to exploit its maximum potential by implementing the bitmap indexing algorithm, it can be configured
to perform additional algorithms. For reconfigurability purposes the instruction memory had to be
implemented as wide as possible, but most likely it will not be updated fully each time. In order
to avoid conflicts the Operation Dispatcher is in charge of blocking any old query. Since a query can

Sensors 2020, 20, 1681 9 of 14

take place between any couple of addresses in the array, it is necessary to sent the addresses to their
respective bank. The Operation Dispatcher thus reorders addresses and sends them to their own
bank. After the correct reordering, to ensure synchronization the addresses are sampled by the Address
Register File which loads the addresses and sends them to the array.

As illustrated previously, results of bitwise logic operations answer to queries in where clause.
To count the number of ones (“1”) in the “how many” clause it was inserted a ones counter of logic “1”
connected with the output of a delay register. The register was added to ensure timing constraints
given by the counter. A simple counter that processes the data input bit-by-bit and increments by one
for each “1” found was too slow. Therefore, a tree-structured counter was implemented. Firstly, the
data array is fragmented into D segments, each of N

D -bits. All segments are then analyzed at the same
time and the ones contained in each segment are counted. Finally, all the factors are added together
to obtain the final sum. Also, all the adders that form the tree-structure are of the same dimension
computed to avoid overflow.

The architecture was conceived to incorporate as many features as possible and at the same time
trying to keep the control circuits as simple as possible. The implemented structure is versatile and
can work in 8 different operation modes, discerned among traditional memory operations and PIM
operations based on the position of the two operands and the desired parallelism: (1) Write; (2) Read;
(3) Save result; (4) PIM simple single bank; (5) PIM simple different banks; (6) PIM multiple banks;
(7) PIM composed; (8) PIM multiple composed. Each operation mode is the starting point of a query,
which is composed as shown in Figure 4A. The FSM chart of all operation modes are reported in
Figure 4B.

A)

B)

Figure 4. (A) Composition of a complete query. (B) Preliminary stages.

The developed architecture is a modular configurable parallel architecture that implements the
concept of Processing-in-Memory to perform bitwise logic operations directly inside the memory,
making it suitable for other applications other than Bitmap indexing, as long as they are based on bitwise.

Sensors 2020, 20, 1681 10 of 14

5. Results and Conclusions

The architecture was fully developed in VHDL (VHSIC Hardware Description Language). In order
to evaluate its performance a 8.704 KB square memory array was analysed. The array distribution
consisted in 16 banks with 16 bit data size. All the internal structures have been kept para- metric to
give the possibility to implement the architecture composed of how many banks, rows and words
needed according to the target database. From a MATLAB script (or from an external source in the
case of the bitmap) were extracted both the bitmap and the queries to execute. The files were then set
as input for the VHDL Testbench and finally it was run a simulation of the queries to feed the PIM
architecture. When started, the script enters a loop that terminates only when the user decides not
to create any more queries and a file generated as output. The completion of the query is assisted by
two pop-up windows: one shows the internal composition of the memory and the other shows the
available logic operations and their correspondent code.

All eight operation modes were tested with Modelsim to ensure the correct functioning. Two
examples of operation mode are reported in Figure 5, it shows two examples of logic behavior (expected
and simulated) of the proposed architecture.

A)

B)

C)

D)

Figure 5. (A) Expected waveform of a LIM single same bank AND operation. (B) Waveform of a LIM
single same bank AND operation. (C) Expected waveform of a PIM multiple operations. (D) Simulated
waveform of a PIM multiple-bank operation.

Sensors 2020, 20, 1681 11 of 14

The architecture was later synthesized with Synopsys Design Compiler using 45 nm BULK and
28 nm FDSOI CMOS technologies (Table 1). By using Synopsys Design Compiler latches and logic
gates are used to implement the memory cell, so the results are not optimized as they will be if a
custom transistor layout was created for the memory cell.

As the fundamental element of the whole structure, the Cell was analyzed and optimized.
The obtained results are reported in Tables 1 and 2.

From, Table 1 it is possible to evince the the area overhead is 55%. The overhead in terms of power
dissipation is similar.

Table 1. Synthesis of the fundamental element.

Memory Logic Cell

Non-Combinational Area [mm2] 9.31 2.12 11.43
Combinational Area [mm2] 5.32 15.43 20.75

Total Area [mm2] 32.18
Delay [ns] 0.45

Table 2. Synthesis results for 45 nm and 28 nm CMOS technologies.

Parameter Value (45 nm) Value (28 nm)

Total area [mm2] 2.33 1.058
fCLK [MHz] 153.4 574.7

Total Power [mW] 49.7 14.07

An interesting point is the relation between the number of the segments and the resulting delay.
An analysis was carried out with 8 bit and 16 bit input data size (Figure 6). As it shows the delay
reduces considerably with a bigger amount of segments. Indeed, the architecture under consideration
was synthesized with a value D of 8 to achieve best speed.

2 3 4 5 6 7 8

D

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
e
la

y
 [
n
s
]

N = 8 bit

N = 16 bit

Figure 6. Relation between number of segments in the counter and resulting delay.

One of the main goal this paper aimed to fulfill is the high level of concurrency. This was accomplished
thanks to the internal structure of the array, distributed on banks which are capable of working both
independently and with each other, providing flexibility in the position of the operands that are called
to act in the query. To execute a simple query only one cycle is required. Thanks to the modular
structure of the array, the maximum throughput achievable working in parallel in PIM multiple banks
mode is:

Sensors 2020, 20, 1681 12 of 14

throughputmaxsimple = fCLK · Nops.

As for composed query two cycles are required to complete the operations. The resulting maximum
throughput operating in PIM multiple composed mode is:

throughputmaxcomposed = fCLK
2 · Nops.

So, assuming to execute a different query in each of the 16 available banks, we will reach a
maximum throughput of 2.45 Gop/s and 9.2 Gop/s for 45 nm and 28 nm respectively. The performance
of the proposed PIM architecture was compared with results of other in-memory proposals found in
Reference [29] (Table 3).

Table 3. Clock cycles comparison for a single query execution.

f = A · B f = A · (B · C)

Pinatubo [21] 5 9
RIMPA [28] 3 5
PIMA-Logic [29] 1 3
PIM 1 2

Noticeably, operations in the proposed PIM array take less clock time compared to other solutions.
Moreover, it should be taken into consideration that executing multiple parallel operations would
not change the number of clock cycles required. This shows how the throughput mentioned above
is obtained. Thus, the maximum degree of parallelism achievable is correspondent to the number of
the available banks. Moreover, it is possible to scale the architecture to bigger dimensions as it was
conceived as modular, meaning it can be composed with as many banks as wanted. Another possibility
is to develop a 3D structure in order to enhance performance. Nonetheless, it would be easy to modify
the architecture to make it fit for other types of operations. These results, coupled with the flexibility
of the architecture, highlight the potential of the proposed architecture.

Author Contributions: Conceptualization, G.T., G.S., M.G., M.V., M.Z., M.R.R.; methodology, G.T., M.V.; software,
M.A.; validation, M.A., G.T.; investigation, M.A., G.T., M.G., M.V., M.Z., M.R.R.; resources, X.X.; data curation,
X.X.; writing–original draft preparation, M.A., G.T.; writing–review and editing, M.A., G.T., M.V., A.M., F.O.;
supervision, M.G., M.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Santoro, G.; Turvani, G.; Graziano, M. New Logic-In-Memory Paradigms: An Architectural and Technological
Perspective. Micromachines 2019, 10, 368. [CrossRef]

2. Andrighetti, M.; Turvani, G.; Santoro, G.; Vacca, M.; Ruo Roch, M.; Graziano, M.; Zamboni, M. Bitmap Index:
A Processing-in-Memory reconfigurable implementation. In Proceedings of the Applications in Electronics
Pervading Industry, Environment and Society (ApplePies), Pisa, Italy, 12–13 September 2019.

3. Matsunaga, S.; Hayakawa, J.; Ikeda, S.; Miura, K.; Endoh, T.; Ohno, H.; Hanyu, T. MTJ-based nonvolatile
logic-in-memory circuit, future prospects and issues. In Proceedings of the 2009 Design, Automation Test in
Europe Conference Exhibition, Nice, France, 20–24 April 2009; pp. 433–435. [CrossRef]

4. Hanyu, T. Challenge of MTJ-Based Nonvolatile Logic-in-Memory Architecture for Dark-Silicon Logic LSI.
SPIN 2013, 3, 1340014. [CrossRef]

5. Turvani, G.; Bollo, M.; Vacca, M.; Cairo, F.; Zamboni, M.; Graziano, M. Design of MRAM-Based Magnetic
Logic Circuits. IEEE Trans. Nanotechnol. 2017, 16, 851–859. [CrossRef]

6. Chang, L.; Wang, Z.; Zhang, Y.; Zhao, W. Reconfigurable processing in memory architecture based on spin
orbit torque. In Proceedings of the 2017 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), Newport, RI, USA, 25–26 July 2017; pp. 95–96. [CrossRef]

http://dx.doi.org/10.3390/mi10060368
http://dx.doi.org/10.1109/DATE.2009.5090704
http://dx.doi.org/10.1142/S2010324713400146
http://dx.doi.org/10.1109/TNANO.2016.2641444
http://dx.doi.org/10.1109/NANOARCH.2017.8053713

Sensors 2020, 20, 1681 13 of 14

7. Jiang, L.; Kim, M.; Wen, W.; Wang, D. XNOR-POP: A processing-in-memory architecture for binary Convolutional
Neural Networks in Wide-IO2 DRAMs. In Proceedings of the 2017 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26 July 2017; pp. 1–6. [CrossRef]

8. Zhu, Q.; Akin, B.; Sumbul, H.E.; Sadi, F.; Hoe, J.C.; Pileggi, L.; Franchetti, F. A 3D-stacked logic-in-memory
accelerator for application-specific data intensive computing. In Proceedings of the 2013 IEEE International
3D Systems Integration Conference (3DIC), San Francisco, CA, USA, 2–4 October 2013; pp. 1–7. [CrossRef]

9. Kim, D.H.; Athikulwongse, K.; Healy, M.B.; Hossain, M.M.; Jung, M.; Khorosh, I.; Kumar, G.; Lee, Y.J.;
Lewis, D.L.; Lin, T.W.; et al. Design and Analysis of 3D-MAPS (3D Massively Parallel Processor with Stacked
Memory). IEEE Trans. Comput. 2015, 64, 112–125. [CrossRef]

10. Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A Novel Processing-in-Memory
Architecture for Neural Network Computation in ReRAM-Based Main Memory. In Proceedings of the 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22
June 2016; pp. 27–39. [CrossRef]

11. Huangfu, W.; Li, S.; Hu, X.; Xie, Y. RADAR: A 3D-ReRAM based DNA Alignment Accelerator Architecture.
In Proceedings of the 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco,
CA, USA, 24–28 June 2018; pp. 1–6. [CrossRef]

12. Su, F.; Chen, W.H.; Xia, L.; Lo, C.P.; Tang, T.; Wang, Z.; Hsu, K.H.; Cheng, M.; Li, J.Y.; Xie, Y.; et al. A 462GOPs/J
RRAM-based nonvolatile intelligent processor for energy harvesting IoE system featuring nonvolatile logics
and processing-in-memory. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8
June 2017; pp. T260–T261. [CrossRef]

13. Han, L.; Shen, Z.; Shao, Z.; Huang, H.H.; Li, T. A novel ReRAM-based processing-in-memory architecture
for graph computing. In Proceedings of the 2017 IEEE 6th Non-Volatile Memory Systems and Applications
Symposium (NVMSA), Hsinchu, Taiwan, 16–18 August 2017; pp. 1–6. [CrossRef]

14. Gaillardon, P.E.; Amarú, L.; Siemon, A.; Linn, E.; Waser, R.; Chattopadhyay, A.; Micheli, G.D. The Programmable
Logic-in-Memory (PLiM) computer. In Proceedings of the 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), Dresden, Germany, 14–18 March 2016; pp. 427–432.

15. Bhattacharjee, D.; Devadoss, R.; Chattopadhyay, A. ReVAMP: ReRAM based VLIW architecture for
in-memory computing. In Proceedings of the Design, Automation Test in Europe Conference Exhibition
(DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 782–787. [CrossRef]

16. Zhang, D.; Jayasena, N.; Lyashevsky, A.; Greathouse, J.L.; Xu, L.; Ignatowski, M. TOP-PIM: Throughput-
oriented Programmable Processing in Memory. In Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing, Vancouver, BC, Canada, 23–27 June 2014; pp. 85–98.
[CrossRef]

17. Draper, J.; Chame, J.; Hall, M.; Steele, C.; Barrett, T.; LaCoss, J.; Granacki, J.; Shin, J.; Chen, C.; Kang, C.W.;
et al. The Architecture of the DIVA Processing-in-memory Chip. In Proceedings of the 16th International
Conference on Supercomputing, ICS ’02, New York, NY, USA, 22–26 June 2002; pp. 14–25. [CrossRef]

18. Gokhale, M.; Holmes, B.; Iobst, K. Processing in memory: The Terasys massively parallel PIM array. Computer
1995, 28, 23–31. [CrossRef]

19. Ahn, J.; Hong, S.; Yoo, S.; Mutlu, O.; Choi, K. A scalable processing-in-memory accelerator for parallel graph
processing. In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), Portland, OR, USA, 13–17 June 2015; pp. 105–117. [CrossRef]

20. Xiao, Y.; Nazarian, S.; Bogdan, P. Prometheus: Processing-in-memory heterogeneous architecture design
from a multi-layer network theoretic strategy. In Proceedings of the 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1387–1392. [CrossRef]

21. Li, S.; Xu, C.; Zou, Q.; Zhao, J.; Lu, Y.; Xie, Y. Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016; pp. 1–6. [CrossRef]

22. Seshadri, V.; Lee, D.; Mullins, T.; Hassan, H.; Boroumand, A.; Kim, J.; Kozuch, M.A.; Mutlu, O.; Gibbons, P.B.;
Mowry, T.C. Ambit: In-memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technology. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-50 ’17, Boston, MA, USA, 14–18 October 2017; pp. 273–287. [CrossRef]

http://dx.doi.org/10.1109/ISLPED.2017.8009163
http://dx.doi.org/10.1109/3DIC.2013.6702348
http://dx.doi.org/10.1109/TC.2013.192
http://dx.doi.org/10.1109/ISCA.2016.13
http://dx.doi.org/10.1109/DAC.2018.8465882
http://dx.doi.org/10.23919/VLSIT.2017.7998149
http://dx.doi.org/10.1109/NVMSA.2017.8064464
http://dx.doi.org/10.23919/DATE.2017.7927095
http://dx.doi.org/10.1145/2600212.2600213
http://dx.doi.org/10.1145/514191.514197
http://dx.doi.org/10.1109/2.375174
http://dx.doi.org/10.1145/2749469.2750386
http://dx.doi.org/10.23919/DATE.2018.8342229
http://dx.doi.org/10.1145/2897937.2898064
http://dx.doi.org/10.1145/3123939.3124544

Sensors 2020, 20, 1681 14 of 14

23. Imani, M.; Gupta, S.; Rosing, T. Ultra-Efficient Processing In-Memory for Data Intensive Applications. In
Proceedings of the 54th Annual Design Automation Conference 2017, DAC ’17, Austin, TX, USA, 14–22 June
2017; pp. 6:1–6:6. [CrossRef]

24. Tang, Y.; Wang, Y.; Li, H.; Li, X. ApproxPIM: Exploiting realistic 3D-stacked DRAM for energy-efficient
processing in-memory. In Proceedings of the 2017 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC), Chiba, Japan, 16–19 January 2017; pp. 396–401. [CrossRef]

25. Yang, K.; Karam, R.; Bhunia, S. Interleaved logic-in-memory architecture for energy-efficient fine-grained
data processing. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 409–412. [CrossRef]

26. Sterling, T.L.; Zima, H.P. Gilgamesh: A Multithreaded Processor-In-Memory Architecture for Petaflops
Computing. In Proceedings of the Supercomputing, ACM/IEEE 2002 Conference, Baltimore, MD, USA,
16–22 November 2002; p. 48. [CrossRef]

27. Azarkhish, E.; Rossi, D.; Loi, I.; Benini, L. Design and Evaluation of a Processing-in-Memory Architecture for
the Smart Memory Cube. In Proceedings of the 29th International Conference on Architecture of Computing
Systems–ARCS 2016, Nuremberg, Germany, 4–7 April 2016; Volume 9637, pp. 19–31. [CrossRef]

28. Angizi, S.; He, Z.; Parveen, F.; Fan, D. RIMPA: A New Reconfigurable Dual-Mode In-Memory Processing
Architecture with Spin Hall Effect-Driven Domain Wall Motion Device. In Proceedings of the 2017 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 3–5 July 2017; pp. 45–50.
[CrossRef]

29. Angizi, S.; He, Z.; Fan, D. PIMA-Logic: A Novel Processing-in-Memory Architecture for Highly Flexible and
Energy-Efficient Logic Computation. In Proceedings of the 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, 24–28 June 2018; pp. 1–6. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3061639.3062337
http://dx.doi.org/10.1109/ASPDAC.2017.7858355
http://dx.doi.org/10.1109/MWSCAS.2017.8052947
http://dx.doi.org/10.1109/SC.2002.10061
http://dx.doi.org/10.1007/978-3-319-30695-7_2
http://dx.doi.org/10.1109/ISVLSI.2017.18
http://dx.doi.org/10.1109/DAC.2018.8465706
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Magnet-Based
	3D-Stacking
	ReRAM-Based
	PIM

	The Algorithm
	The Architecture
	Results and Conclusions
	References

