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Deep Graph-Convolutional Image Denoising
Diego Valsesia, Member, IEEE, Giulia Fracastoro, Member, IEEE, Enrico Magli, Fellow, IEEE

Abstract—Non-local self-similarity is well-known to be an
effective prior for the image denoising problem. However, little
work has been done to incorporate it in convolutional neural
networks, which surpass non-local model-based methods despite
only exploiting local information. In this paper, we propose a
novel end-to-end trainable neural network architecture employing
layers based on graph convolution operations, thereby creating
neurons with non-local receptive fields. The graph convolution
operation generalizes the classic convolution to arbitrary graphs.
In this work, the graph is dynamically computed from similarities
among the hidden features of the network, so that the powerful
representation learning capabilities of the network are exploited
to uncover self-similar patterns. We introduce a lightweight Edge-
Conditioned Convolution which addresses vanishing gradient and
over-parameterization issues of this particular graph convolution.
Extensive experiments show state-of-the-art performance with
improved qualitative and quantitative results on both synthetic
Gaussian noise and real noise.

Keywords—Graph neural networks, image denoising, graph con-
volution

I. INTRODUCTION

Denoising is a staple among image processing problems
and its importance cannot be overstated. Despite decades of
work and countless methods, it still remains an active research
topic because its purpose goes far beyond generating visually
pleasing pictures. Denoising is fundamental to enhance the
performance of higher-level computer vision tasks such as
classification, segmentation or object recognition, and is a
building block in the solution to various problems [1]–[4]. The
recent successes achieved by convolutional neural networks
(CNNs) extended to this problem as well and have brought a
new generation of learning-based methods that is redefining
the state of the art. However, it is important to learn the
lessons of past research on the topic and integrate them
with the new deep learning techniques. In particular, classic
denoising methods, such as BM3D [5] and non-local means
[6], showed the importance of exploiting non-local self-similar
patterns. However, the convolution operation underpinning all
CNNs architectures [7]–[10] is unable to capture such patterns
because of the locality of the convolution kernels. Only very
recently, some works started addressing the integration of non-
local information into CNNs [11]–[14].

This paper presents a denoising neural network, called
GCDN, where the convolution operation is generalized by
means of graph convolution, which is used to create layers with
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hidden neurons having non-local receptive fields that success-
fully capture self-similar information. Graph convolution is a
generalization of the traditional convolution operation when
the data are represented as sitting over the vertices of a graph.
In this work, every pixel is a vertex and the edges in the
graph are dynamically computed from the similarities in the
feature space of the hidden layers of the network. This allows
us to exploit the powerful representational features of neural
networks to discover and use latent self-similarities. With
respect to other CNNs integrating non-local information for the
denoising task, the proposed approach has several advantages:
i) it creates an adaptive receptive field for the pixels in the
hidden layers by dynamically computing a nearest-neighbor
graph from the latent features; ii) it creates dynamic non-local
filters where feature vectors that may be spatially distant but
close in a latent vector space are aggregated with weights that
depend on the features themselves; iii) the aggregation weights
are estimated by a fully-learned operation, implemented as
a subnetwork, instead of a predefined parameterized opera-
tion, allowing more generality and adaptability. Starting from
the Edge-Conditioned Convolution (ECC) definition of graph
convolution, we propose several improvements to address
stability, over-parameterization and vanishing gradient issues.
Finally, we also propose a novel neural network architecture
which draws from an analogy with an unrolled regularized
optimization method.

A preliminary version of this work appeared in [15]. There
are several differences with the work in this paper. The
architecture of the network is improved by drawing an analogy
with proximal gradient descent methods, and it is significantly
deeper. Moreover, we propose several solutions to address the
ECC overparameterization and computational issues. Finally,
we also present an in-depth analysis of the network behavior
and greatly extended experimental results.

Notation and paper outline

We denote vectors and matrices by lowercase and upper case
boldface characters, respectively. Unless otherwise specified
we use column vectors. The i-th column of matrix H is
denoted as Hi. The i, j entry of matrix H is denoted as Hi,j .
Sets are represented with calligraphic letters.

This paper is structured as follows. Sec. II provides some
background material on graph-convolutional neural networks
and state-of-the-art denoising approaches. Sec. III describes the
proposed method. Sec. IV analyzes the characteristics of the
proposed method and experimentally compares it with state-
of-the-art approaches. Finally, Sec. V draws some conclusions.
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II. RELATED WORK

A. Graph neural networks
Inspired by the overwhelming success of deep neural net-

works in computer vision, a significant research effort has
recently been made in order to develop deep learning methods
for data that naturally lie on irregular domains. One case is
when the data domain can be structured as a graph and the data
are defined as vectors on the nodes of this graph. Extending
CNNs from signals with a regular structure, such as images
and video, to graph-structured signals is not straightforward,
since even simple operations such as shifts are undefined over
graphs.

One of the major challenges in this field is defining a
convolution-like operation for this kind of data. Convolution
has a key role in classical CNNs, thanks to its properties
of locality, stationarity, compositionality, which well match
prior knowledge on many kinds of data and thus allow ef-
fective weight reuse. For this reason, defining an operation
with similar characteristics for graph-structured data is of
primary importance in order to obtain effective graph neural
networks. The literature has identified two main classes of
approaches to tackle this problem, namely spectral or spatial.
In the former case [16]–[18], the convolution is defined in the
spectral domain through the graph Fourier transform [19]. Fast
polynomial approximations [17] have been proposed in order
to obtain an efficient implementation of this operation. Graph-
convolutional neural networks (GCNN) with this convolution
operator have been successfully applied in problems of semi-
supervised node classification and link prediction [18], [20].
The main drawback of these methods is that the graph is
supposed to be fixed and it is not clear how to handle the
cases where the structure varies. The latter class of approaches
overcomes this issue by defining the convolution operator in
the spatial domain [21]–[26]. In this case, the convolution is
performed by local aggregations, i.e. a weighted combination
of the signal values over neighboring nodes. Since in this case
the operation is defined at a neighborhood level, the convolu-
tion remains well-defined even when the graph structure varies.
Many of the spatial approaches present in the literature [23]–
[25] perform local aggregations with scalar weights. Instead,
[21] proposes to weight the contributions of the neighbors
using edge-dependent matrices. This makes the convolution
a more general function, increasing its descriptive power. For
this reason, in this paper we employ the convolution operator
proposed in [21]. However, in order to obtain an efficient
operation, we introduce several approximations that reduce
its computation complexity, memory occupation, and mitigate
vanishing gradient issues that arise when trying to build very
deep architectures.

B. Image denoising
The literature on image denoising is vast, as it is one of most

classic problems in image processing. Focusing on the recent
developments, we can broadly define two categories of meth-
ods: model-based approaches and learning-based approaches.

Model-based approaches traditionally focused on defining
hand-crafted priors to carefully capture the salient features

of natural images. Early works in this category include total
variation minimization [27], and bilateral filtering [28]. Non-
local means [6] introduced the idea of non-local averaging
according to the similarity of local neighborhood. Similar
approaches have been proposed in [29], [30], where an it-
erative non-local means procedure has been proposed. The
popular BM3D [5] expanded on the idea by collaborative
filtering of the matched patches. WNNM [31] used nuclear
norm minimization to enforce a low-rank prior. Finally, some
works recently introduced graph-based regularizers [32] to
enforce a measure of smoothness of the signal across the
edges of a graph of patch or pixel similiarities. Many of the
most successful model-based approaches are non-local, i.e.,
they exploit the concept of self-similarity among structures
in the image beyond the local neighborhood. This shows the
importance of exploiting non-locality in image denoising.

Learning-based approaches use training data to learn a
model for natural images. The popular K-SVD algorithm
[33] learns a dictionary in which natural patches have a
sparse representation, and therefore casts image denoising as a
sparse coding problem on this learned dictionary. The TNRD
method [34] uses a nonlinear reaction diffusion model with
trainable filters. An early work with neural networks [35] used
a multilayer perceptron discriminatively trained on synthetic
Gaussian noise and showed significant improvements over
model-based methods. More recently, CNNs have achieved
remarkable performance. Zhang et al. [7] showed that the
residual structure and the use of batch normalization [36] in
their DnCNN greatly helps the denoising task. Following the
DnCNN, many other architectures have been proposed, such
as RED [8], MemNet [9] and a CNN working on wavelet
coefficients [10]. While the convolutional layers of a CNN
constitute an excellent prior for images [37], they are limited
by the local nature of the convolution operation, which is
unable to increase the receptive field of a neuron-pixel to model
non-local image features. This means that CNNs are unable to
exploit the self-similar patterns that were proven to be highly
successful in model-based methods. Very recently, a few works
started addressing this issue by trying to incorporate non-
local information in a CNN. NN3D [11] uses a global post-
processing stage based on a non-local filter after the output
of a denoising CNN. This stage performs block matching and
filtering over the whole image denoised by the CNN. This
is clearly suboptimal as the non-local information does not
contribute to the training of the CNN. UNLNet [12] introduces
a trainable non-local layer which collaboratively filters image
blocks. However, performance is limited by the selection of
matching blocks from the noisy input image instead of the
feature space, and ultimately UNLNet does not improve over
the performance of the simpler DnCNN. N3Net [13] introduces
a continuous nearest-neighbor relaxation to create a non-local
layer. Finally, NLRN [14] proposes a non-local module that
uses the distances among hidden feature vectors of a search
window around the pixel of interest to aggregate such vectors
and return the output features of the pixel. However, there
are significant differences with respect to the work in this
paper. First, they use all the pixels in the search window
instead of only a number of nearest neighbors, which means
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Figure 1. GCDN architecture.

that their receptive field cannot dynamically adapt to the
content of the image. Then, while in both works the fea-
ture aggregation weights are dynamically computed from the
features themselves, NLRN uses an explicitly-parameterized
function with learnable parameters, in contrast to this work
where the function is fully learned as a dedicated sub-network.
These choices increase the adaptivity of the proposed non-local
operations, which result in better performance around edges.

III. PROPOSED DENOISER

A. Overview
An overview of the proposed graph-convolutional denoiser

network (GCDN) can be seen in Fig. 1. The structure will
be explained more in detail in Sec. III-D where an analogy
is drawn between unrolled proximal gradient descent with
a graph total variation regularizer and the proposed network
architecture. At a first glance, the network has a global input-
output residual connection whereby the network learns to
estimate the noise rather than successively clean the image.
This has been shown [7] to improve training convergence for
the denoising problem.

The main feature of the proposed network is the use of
graph-convolutional layers where the graphs are dynamically
computed from the feature space. The graph-convolutional
layer, described in Sec. III-B, creates a non-local receptive
field for each pixel-neuron, so that pixels that are spatially
distant but similar in the feature space created by the network
can be merged.

An important block of the proposed network is the pre-
processing stage at the input. It can be noticed that the first
layers of the network are classic 2D convolutions rather than
graph convolutions. This is done to create an embedding over a
receptive field larger than a single pixel and stabilize the graph
construction operation, which would otherwise be affected by
the input noise. The preprocessing stage has three parallel
branches that operate on multiple scales, in a fashion similar
to the architectures in [38] and [39]. The multiscale features
are extracted by a sequence of three convolutional layers with
filters of size 3 × 3, 5 × 5, and 7 × 7, depending on the
branch. After a final graph-convolutional layer, the features
are concatenated.

The remaining network layers are grouped into an HPF
block and multiple LPF blocks, named after the analogy with
highpass and lowpass graph filters described in Sec. III-D.
These blocks have an initial 3×3 convolutional layer followed
by three graph-convolutional layers sharing the same graph

GCONV

Figure 2. Graph-convolutional layer. The operation has a receptive field with
a local component (3× 3 2D convolution) and a non-local component (pixels
selected as nearest neighbors in the feature space).

constructed from the output of the convolutional layer. All
layers are interleaved by Batch Normalization operations [36]
and leaky ReLU nonlinearities. Notice that the LPF blocks
have themselves a residual connection to help backpropagation,
as in ResNet architectures [40]. The final layer is a graph-
convolutional layer mapping from feature space to the image
space.

B. Graph-convolutional layer
The operation performed by the graph-convolutional layer

is summarized in Fig. 2. The two inputs to the graph-
convolutional layer are the feature vectors Hl ∈ RF l×N

associated to the N image pixels at layer l and the adjacency
matrix of a graph connecting image pixels. In this work,
we use a directed graph without self-loops. The graph is
constructed as a K-nearest neighbor graph in the feature space.
For each pixel, the Euclidean distances between its feature
vector and the feature vectors of pixels inside a search window
are computed and an edge is drawn between the pixel and
the K pixels with smallest distance. Using this method, we
obtain a K-regular graph Gl(V, E l), where V is the set of
vertices with |V| = N and E l ⊆ V × V is the set of
edges. We also assume that the edges of Gl are labeled,
i.e. there exists a function L : E l → RF l

that assigns a
label to each edge. In this work, we define the edge labeling
function as the difference between the two feature vectors,
i.e. L(i, j) = Hl

j − Hl
i = dl,j→i. A classic 3 × 3 local

convolution processes the local neighborhood to provide its
estimate of the output feature vector for the current pixel,
while the feature vectors of the non-local pixels connected
by the graph are aggregated by means of the edge-conditioned
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convolution (ECC) [21]. Notice that the 8 local neighbors of
the pixel are excluded from the search of non-local neighbors
as they are already used by the local convolution. The non-
local aggregation is computed as:

Hl+1,NL
i =

∑
j∈Sl

i

γl,j→i
F lwl

(
dl,j→i

)
Hl
j

|Sli |

=
∑
j∈Sl

i

γl,j→i
Θl,j→iHl

j

|Sli |
, (1)

where F lwl : RF l → RF l+1×F l

is a fully-connected network
that takes as input the edge labels and outputs the correspond-
ing weight matrix Θl,j→i = F lwl (L(i, j)) ∈ RF l+1×F l

, wl

are the weights parameterizing network F l, and Sli is the set
of neighbors of node i in the graph Gl. The scalar γj→i is an
edge-attention term computed as:

γl,j→i = exp
(
−‖dl,j→i‖22/δ

)
(2)

where δ is a cross-validated hyper-parameter. This term is
reminiscent of the edge attention mechanism from the graph
neural network literature [41] and it serves the purpose of
stabilizing training by underweighting the edges that connect
nodes with distant feature vectors. Note that this term could,
in principle, be learned by the F network but we found that
decoupling it and making it explicitly dependent on feature
distances in an exponential way, accelerated and stabilized
training. Also notice that in Sec. IV we show that this term
alone, i.e. without weight matrices Θ, is not powerful enough
to reach good performance. Moreover, it is worth mentioning
that the edge weights Θ and the edge-attention term γ depend
only on the edge labels. This means that two pairs of nodes
with the same edge labels will have the same weights, resulting
in a behaviour similar to weight sharing in classical CNNs.

Finally, we combine the feature vector estimated by the
non-local aggregation with the one produced by the local
convolution to provide the output features as follows

Hl+1
i =

Hl+1,NL
i + Hl+1,L

i

2
+ bl,

where Hl+1,L
i is the output of the 3× 3 local convolution for

the node i and bl ∈ RF l

is the bias.
The advantages of the ECC with respect to other definitions

of graph convolution are trifold: i) the edge weights depend on
the edge label, ii) it allows to compute an affine transformation
along every edge, and iii) the edge weight function is highly
general since it does not have a predefined structure. By
making the edge weights depend on the input features, the ECC
implements an adaptive filter which can be more complex than
the non-adaptive local filters. Moreover, the second advantage
is due to the fact that Θl,j→i is an edge-dependent matrix,
making the convolution operation more general than other non-
local aggregation methods using scalar edge weights. Among
such methods we can find GCN [18], GIN [23], MoNet
[24], and FeastNet [25]. Finally, the F function is a general
function which can be learned to be the optimal one for the

Figure 3. Circulant approximation of a fully-connected layer.

denoising task by the function approximation capability of the
subnetwork implementing it. This is in contrast with other
methods where the function predicting the edge weights is
fixed with some learnable parameters. For example, FeastNet
[25] employs scalar edge weights computed using the follow-
ing function

f(Hl
i,H

l
j) ∝ exp

(
uᵀHl

i + vᵀHl
j + c

)
,

where u,v ∈ RF l

and c ∈ R are learnable parameters. Instead,
MoNet [24] employs a Gaussian kernel as follows

f(Hl
i,H

l
j) = exp

(
−1

2
(dl,j→i − µ)ᵀΣ−1(dl,j→i − µ)

)
,

where Σ ∈ RF l×F l

and µ ∈ RF l

are learnable parameters.
Also NLRN [14] uses a Gaussian kernel to perform non-
local aggregations. We can consider this operation as a graph
convolution where each pixel is connected to all the other
pixels in its search window and the edge weights are defined
as follows

f(Hl
i,H

l
j) =

exp
(
HlT
i Wᵀ

θWφH
l
j

)∑
j∈Si exp

(
HlT
i Wᵀ

θWφHl
j

)Wg,

where Wθ,Wφ ∈ Rt×F l

and Wg ∈ RF l+1×F l

are learnable
parameters.

C. Lightweight Edge-Conditioned Convolution
As seen in the previous section, the function F has a key role

in the ECC because it defines the weights for the neighborhood
aggregation. In the original definition of ECC [21], the function
F is implemented as a two-layer fully connected network. This
definition raises some relevant issues. In the following, we
will describe in detail these issues and present two possible
solutions.

1) Circulant approximation of dense layer: The first issue
is related to the risk of over-parameterization. The dimension
of the input of the F network is F l, while the dimension
of its output is F l+1 × F l. This means that the number of
weights of the network depends cubically on the number
of features. Therefore, the number of parameters quickly
becomes excessively large, resulting in vanishing gradients or
overfitting.

To address the over-parameterization problem we propose to
use a partially-structured matrix for the last layer, instead of an
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j➝ i,L

θ j➝ i,R

κ j➝ i

F  
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Figure 4. F network. FC0 is a fully-connected layer followed by a leaky
ReLU non-linearity. The FCR, FCL, FCκ do not have any output non-
linearities.

unstructured one. We impose that this matrix is composed of
multiple stacked partial circulant matrices, i.e., matrices where
only a few shifted versions of the first row are used instead of
all the possible ones of the full square matrix. Fig. 3 shows the
structure of the approximated matrix. Using this approxima-
tion, the only free parameters are in the first row of each partial
circulant matrix. If only m shifts per partial circulant matrix
are allowed, we reduce the number of parameters by a factor
m. Thus, if the unstructured dense matrix has F lF l+1 × F l
parameters, with the proposed approximation the number of
parameters drops to F lF l+1

m × F l. Similar approaches to ap-
proximate fully connected layers have already been studied in
the literature [42], [43]. In particular, [42] shows that imposing
a partial circulant structure does not significantly impact the
final performance in a classification problem. Indeed, there are
connections with results stating that random partial circulant
matrices implement stable embeddings almost as well as fully
random matrices [44], [45].

2) Low-rank node aggregation: The second issue related
to the F network regards memory occupation and compu-
tations. In order to perform the ECC operation, we have to
compute a weight matrix Θl,j→i for each edge j of every
neighborhood Ni of every image in the batch. If we consider
a K-regular graph and a batch of B images with N pixels
each, the memory occupation needed to store all the matrices
Θl,j→i as single-precision floating point tensors is equal to
B × N × K × F l+1 × F l × 4 bytes and this quantity can
easily become unmanageable. To give an idea of the required
amount of memory, let us consider an example with B = 16,
N = 1024, K = 8, F l = F l+1 = 66, then the memory
required to store all the matrices Θl,j→i for only one graph-
convolutional layer is around 2 GB.

In order to solve this issue, we propose to impose a low-
rank approximation for Θl,j→i. Let us consider the singular
value decomposition of a matrix

A = ΦΛΨᵀ =
∑
s

λsφsψ
ᵀ
s ,

where φs and ψs are the left and right singular vectors and λs
the singular values. We can obtain a low-rank approximation of
rank r by keeping only the r largest singular values and setting
the others to zero. Therefore, the approximation is reduced to
a sum of r outer products. Inspired by this fact, we define

Θl,j→i as follows

Θl,j→i =

r∑
s=1

κj→is θj→i,Ls θj→i,R
ᵀ

s , (3)

where θj→i,Ls ∈ RF l

, θj→i,Rs ∈ RF l+1

, κj→is ∈ R and
1 ≤ r ≤ F l. Notice that the approximation in (3) ensures
that the rank is at most r rather than exactly enforcing a
rank-r structure, because we do not impose orthogonality
between θj→i,Ls and θj→i,Rs , even though random initialization
makes them quasi-orthogonal. Using this approximation, we
can redefine the F network in such a way that it outputs
θj→i,Ls ,θj→i,Rs , κj→is for s = 1, 2, . . . , r. In particular, we
redefine the second layer of the F network: instead of having
a single fully connected layer that outputs the entire matrix
Θl,j→i, we have three parallel fully connected layers that
separately output θj→i,Ls , θj→i,Rs and κj→is , as shown in
Fig. 4. The advantage of this approximation is that we only
need to store θj→i,Ls , θj→i,Rs and κj→is instead of the entire
matrix Θl,j→i, drastically reducing the memory occupation to
B × N × K × r(F l + F l+1 + 1) × 4 bytes. If we consider
the example presented above and set r = 10, the memory
requirement drops from 2 GB to 700 MB. Another advantage
of this approximation is that it also leads to a significant
reduction of the computation burden, because we never have
to actually compute all the matrices Θl,j→i. In fact, the
neighborhood aggregation can be reduced as follows

Hl+1,NL
i =

∑
j∈Sl

i

γl,j→i
Θl,j→iHl

j

|Sli |

=
∑
j∈Sl

i

γl,j→i
∑r
s=1 κ

j→i
s θj→i,Ls θj→i,R

ᵀ

s Hl
j

|Sli |
, (4)

where the computational cost of the full operation on the
first line is O(F lF l+1), instead the cost of the decoupled
operation on the second line is O(r(F l+F l+1)). Finally, this
approximation also helps to reduce the number of parameters
of the last layer of the F network since the output has size
r(F l + F l+1 + 1) instead of F l+1F l.

When we employ the new structure of the F network,
we need to pay special attention to the weight initialization.
In particular, we have to carefully define the variance of
the random weight initialization of the three parallel layers
to avoid scaling problems. We define W0 as the weight
matrix of the first layer of the F network, and WL, WR

and Wκ as the weight matrices of the three parallel fully
connected layers. Let us suppose that W0 has been initialized
using Glorot initialization [46], i.e., W0

u,v ∼ N
(
0, 1

F l

)
with

u, v = 1, . . . , F l. Let us also assume that WL
u,v ∼ N (0, σ2

L),
WR

u,v ∼ N (0, σ2
R), and Wκ

u ∼ N (0, σ2
κ). We first normalize

the input of the F network, i.e., ‖dl,j→i‖22 = F l. Then, we
obtain

E[θj→i,Ls,u ] = 0, Var[θj→i,Ls,u ] = F lσ2
L;

E[θj→i,Rs,u ] = 0, Var[θj→i,Rs,u ] = F lσ2
R;

E[κj→is ] = 0, Var[κj→is ] = F lσ2
κ;
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Figure 5. Single iteration. LPF is graph lowpass filter, HPF is a graph
highpass filter.

where s = 1, . . . , r. Finally, the aggregation formula in Eq.
(4) leads to the following result:

E
[
Hl+1,NL
i,u

]
= 0, Var

[
Hl+1,NL
i,u

]
=

1

2
rF l

4

σ2
Lσ

2
Rσ

2
κ, (5)

with u = 1, . . . , F l+1. In Eq. (5), we can observe that the
variance of Hl+1,NL

i,u depends on the fourth power of the
number of features. This term can easily become extremely
large, therefore it is important to set σ2

L, σ2
R and σ2

κ in
such a way that they can balance it. In this work, we set
σ2
L = σ2

R = 1
F l2

and σ2
κ = 2

r . This allows us to obtain

Var
[
Hl+1,NL
i,u

]
= 1 with u = 1, . . . , F l+1.

D. Analogy with unrolled graph smoothness optimization

The neural network architecture presented in Sec. III-A
can be seen as a generalization of few iterations of an un-
rolled proximal gradient descent optimization method, which
is widely used to solve linear inverse problems in the form of

y = Ax + n (6)

being x the clean image, A a forward model (e.g., a degra-
dation such as blurring, downsampling, compressed sensing,
etc.) and n a noise term. A well-known technique to recover x
from y is to cast the problem as a least-squares minimization
problem with a regularization term that models some prior
knowledge about the image. One such regularizer is graph
smoothness. Considering a graph with Laplacian matrix L
where edges connect pixels that are deemed correlated ac-
cording to some criterion, the graph smoothness xᵀLx is the
graph equivalent of the total variation measure, indicating how
much x varies across the edges of the graph. Natural images
where the graph connects the local neighborhood typically
have lowpass behavior, resulting in a low graph smoothness
value. Reconstruction is therefore cast as:

x̂ = argmin
x

[
1

2
‖y −Ax‖22 +

β

2
xᵀLx

]
(7)

The functional in Eq. (7) is in the form of a sum of two terms
(f(x) + g(x)) and can be minimized by means of proximal
gradient descent [47] which alternates a gradient descent step

over f and a proximal mapping over g:

x(t+1) = proxg
(
x(t) − α∇νf

)
= proxg

(
(I− αAᵀA)x(t) + αAᵀy

)
proxg (µ) = argmin

z

[
‖z− µ‖22 +

β

2
zᵀLz

]
.

Solving for the proximal mapping operator results in the
following update equation:

x(t+1) = (I + βL)
−1
[
(I− αAᵀA)x(t) + αAᵀy

]
. (8)

In order to match the framework of residual networks, let us
define the least-squares solution xn = A+y = (AᵀA)

−1
Aᵀy

and perform a change of variable whereby the optimization
estimates the residual of the least squares solution, i.e., ν(t) =
xn − x(t). Hence, we can rewrite Eq. (8) as:

xn − ν(t+1) =

(I + βL)
−1
[
(I− αAᵀA)

(
xn − ν(t)

)
+ αAᵀy

]
.

Finally, the following update equation can be derived:

ν(t+1) = (I + βL)
−1
[
(I− αAᵀA)ν(t) + βLxn

]
. (9)

This update can be visualized as in Fig. 5a and is composed
of two major operations involving the signal prior:

1) Lxn: the graph Laplacian can be seen as a graph
highpass filter applied to xn;

2) (I + βL)
−1: this term can be seen as a graph

lowpass filter. In order to see this, let us use
the matrix inversion lemma as (I + βL)

−1
=(

I + βUΛUH
)−1

= I − U
(
β−1Λ−1 + I

)−1
UH =

U
[
I−

(
β−1Λ−1 + I

)−1]
UH , where U is the graph

Fourier transform. The term I−
(
β−1Λ−1 + I

)−1
is a

diagonal matrix whose entries are equal to 1
βλi+1 where

λi are the eigenvalues of the graph Laplacian, and the
lowpass behavior is due to decreasing value of such
entries for increasing λ.

For the denoising problem, we can set A = I and obtain the
update shown in Fig.5b. The network architecture proposed
in Sec. III-A draws from this derivation by unrolling a finite
number of Eq. (9) iterations and generalizing the lowpass
and highpass filters with learned graph filters interleaved by
nonlinearities.

We remark that this is not the only possible analogy
between unrolled iterative model-based methods and neural
network architectures. For instance, alternative analogies could
be drawn from iterative non-local means approaches [48].
However, all analogies are limited by the fact that the non-
linearities between network layers and the training process
can in principle make the network learn any arbitrary function
without bearing similarity to the original algorithm inspiring
the architecture. Nevertheless, it is interesting to notice that
in Sec. IV we experimentally show that the learned filters
actually show an approximate highpass and lowpass behavior,
following the predictions of our analogy.
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IV. EXPERIMENTAL RESULTS

A. Training details
The training protocol follows the one used in [7]. The

network is trained with patches of size 42 × 42 randomly
extracted from 400 images from the train and test partitions
of the Berkeley Segmentation Dataset (BSD) [49], withholding
the 68 images in the validation set for testing purposes (BSD68
dataset). The loss function is the mean squared error (MSE)
between the denoised patch output by the network and the
ground truth. Each model is trained for approximately 800000
iterations with a batch size of 8. The Adam optimizer [50]
has been used with an exponentially decaying learning rate be-
tween 10−4 and 10−5. The behavior of the graph-convolutional
layer is slightly different between training and testing for
efficiency reasons. During training all pairwise distances are
computed among the feature vectors corresponding to the
pixels in the patch. On the other hand, testing is “fully
convolutional”, as every pixel has a search window centered
around it and neighbors are identified as the closest pixels
in such search window. The search window size is 43 × 43,
roughly comparable to the patch size used in training. This
procedure is slightly suboptimal as some pixels might suffer
from border effects during training (their search windows are
not centered around them) but it is advantageous in terms
of speed and memory requirements. Reflection padding is
used for all 2D convolutions to avoid border effects. The δ
parameter in the edge attention term in Eq. (2) is set to a value
equal to 10, after a few experiments showing no significant
differences among tested values on the validation data. The
number of features used in all convolutional layers is 132,
except for the three parallel branches of the preprocessing
stage which have 44 features. The number of circulant rows in
the circulant approximation of dense layers in the F network
is m = 3. The low-rank approximation uses r = 11 terms.
During training, we noticed that the proposed lightweight ECC
presented in Sec. III-C is extremely useful. In fact, without it,
the network suffered from vanishing gradient problems even
with a significantly lower number of layers.

B. Feature analysis
In this section we study the properties of the features in the

hidden layers of the network.
1) Adaptive receptive field: We first analyze the character-

istics of the receptive field of a single pixel. The receptive
field of a pixel at the output of a graph-convolutional layer
with respect to its input is defined as the set of pixels used
in the computation of its output feature vector. Observing
Fig. 2 we can see it includes the pixel itself and the 8 local
neighbors due to the local 3 × 3 convolution as well as the
K non-local neighbors identified by the graph construction.
In Fig. 6 we show two examples of the receptive field of a
single pixel at the output of each graph-convolutional layer in
an LPF block with respect to the input of the block. Since
the proposed network employs multiple graph-convolutional
layers, the receptive field does not only expand radially as in
classical CNNs, but its shape depends on the structure of the
graph. Instead, in Fig. 7 we show the receptive field of a single

Figure 6. Receptive field (green) of a single pixel (red) at the output of the
three graph-convolutional layers in the LPF1 block with respect to the input
of the first graph-convolutional layer in the block. Top row: gray pixel on an
edge. Bottom row: white pixel in a uniform area.

pixel at the output of each of the layers in the HPF block
and in the first LPF block with respect to the output of the
preprocessing block. We can clearly see that the receptive field
is adapted to the characteristics of the image: if we consider a
pixel in a uniform area, its receptive field will mostly contain
pixels that belong to similar regions; instead if we consider a
pixel on an edge, its receptive field will be mainly composed
of other edge pixels. This is beneficial to the denoising task
as it allows to exploit self-similarity and it descends from
the use of a nearest neighbor graph, connecting each pixel to
other pixels with similar features. Notice that differently from
algorithms performing block matching in the pixel space, we
compute distances between feature vectors which can capture
more complex image characteristics. This can be seen in Fig. 8
where we compute the Euclidean distances between the feature
vector of the central pixel and the feature vectors of the other
pixels in the search window. We notice that the distances reflect
the type of edge that includes the central pixel, e.g., a pixel
sitting on a horizontal edge will detect as closest other pixels
sitting on horizontal edges. This is due to the visual features
learned by the network and would not happen in pixel-space
matching. Thanks to the adaptability of the receptive field,
graph convolution can be interpreted as a generalization of
the block matching operation performed in other non-local
denoising methods, such as BM3D [5].

2) Filter analysis: We also study the behavior of the LPF
and HPF operators. In particular, we are interested in validating
the analogy made in Sec. III-D. We compute the discrete
Fourier transform (DFT) of the feature maps at the output
of these operators. As an example, Fig. 9 shows the log-
magnitude of the coefficients of three feature maps at the
output of the HPF block and of the first LPF block. The energy
of the DFT coefficients of the LPF feature maps is concentrated
in the low frequencies, thus showing a lowpass behavior.
Instead, the coefficients of the HPF feature maps show a
typical highpass behavior, having the energy concentrated
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Figure 7. Receptive field (green) of a single pixel (red) at the output of each layer (convolutional or graph-convolutional) in the HPF and LPF1 blocks (left
to right, in the same order as a forward pass), with respect to the output of the preprocessing block.

Figure 8. Euclidean distances between feature vectors of the central pixel
and all the pixels in the search window (input of first graph-convolutional
layer of LPF1). Left to right: pixel on a horizontal edge, pixel on a vertical
edge, pixel on a diagonal edge. Blue represents lower distance.

Figure 9. Log-magnitude of discrete Fourier transform of three feature maps
at the output of the LPF1 block (top) and HPF block (bottom). Blue is lower
magnitude.

along few directions. This substantiates our claim that the
learned convolutional layers actually approximate nonlinear
highpass and lowpass operators.

3) Edge prediction: Lastly, we measure how much the true
graph constructed by pixel or patch similarities on the noiseless
image is successfully predicted by the graph constructed from
the feature vectors in the hidden layers when a noisy input
is used. In order to construct the true graph of the image,
we first compute the average pixel value of a 5×5 window
centered at the considered pixel, for every pixel in the image,
and then we use the obtained values to compute a nearest
neighbor graph with Euclidean distances. We then compare
the true graph with the graph computed in the hidden layers of
the network for a noisy input. Fig. 10 shows the percentage of
edges of the feature-space graph also found in the true graph,
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Figure 10. Accuracy of edge prediction from hidden layers (σ = 25).

as a function of the number of neighbors considered for the
true graph. We can notice that the accuracy of the prediction
decreases in layers closer to the output. This is due to the fact
that we use a residual network that estimates the noise instead
of approximating the clean image. In fact, the network learns
to successively remove the latent correlations in the feature
space, and as a consequence, the graph becomes more random
in the later layers.

C. Ablation studies

We study the impact of various design parameters on
denoising performance. First, Table I shows the PSNR on
the Set12 testing set as function of the number of neighbors
used by the graph convolution operation for several values
of the noise standard deviation σ. Each model has been
independently trained for the specified number of neighbors.
It can be noticed that increasing the number of neighbors
improves the denoising performance up to a saturation point,
and then the performance slightly decreases. This shows that
there an optimal neighborhood size and that it is important to
employ only a small number of neighbors, in order to select
only pixels with similar characteristics. This is in contrast with
the NLRN method which uses all the pixels in the search
window.

Then, we study the relative impact on performance of the
edge aggregation matrices Θ in Eq. (1) with respect to using
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Table I. PSNR (DB) V. NON-LOCAL NEIGHBORHOOD SIZE (SET12)

σ 0-NN 4-NN 8-NN 12-NN 16-NN 20-NN
15 32.91 33.09 33.11 33.13 33.14 33.13
25 30.50 30.70 30.74 30.75 30.78 30.78
50 27.28 27.52 27.58 27.58 27.60 27.59

Table II. EDGE ATTENTION V. ECC + EDGE ATTENTION (8-NN).
PSNR (DB).

σ Edge attention only Proposed
25 30.53 30.74

only the edge attention scalar γ. Table II reports the PSNR
achieved on Set12 by the proposed method with the non-local
aggregation performed as in Eq. (1) and a variant where the
aggregation is computed as:

Hl+1,NL
i =

∑
j∈Sl

i

γj→iHl
j .

Both methods use a non-local graph with 8 nearest neighbors.
We can notice that the edge attention term alone achieves
a worse PSNR with respect to GCDN by approximately 0.2
dB, even though it improves over a model without non-local
neighbors (see Table I for the corresponding 0-NN value). This
shows the advantage of using a trainable affine transformation,
such as Θ in Eq. (1), instead of a scalar weight function with
a predefined structure.

Finally, we remark that we do not compare with respect to
the full ECC without the approximations introduced in Sec.
III-C because it suffers from vanishing gradient problems,
rendering training unstable even for a much smaller number
of layers, and it would be computationally prohibitive.

D. Comparison with state of the art
In this section we compare the proposed network with state-

of-the-art models for the Gaussian denoising task of grayscale
images. We train an independent model for each noise standard
deviation, which is assumed to be known a priori for all
methods. We fix the number of neighbors for the proposed
method to 16. The reference methods can be classified into
model-based algorithms such as BM3D [5], WNNM [31],
TNRD [34] and recent deep-learning methods such as DnCNN
[7], N3Net [13] and NLRN [14]. In particular, among the
deep-learning methods, N3Net and NLRN propose non-local
approaches. All results have been obtained running the pre-
trained models provided by the authors, except for N3Net at
σ = 15 which is unavailable. Table III reports the PSNR and
SSIM values obtained for the Set12, BSD68 and Urban100
standard test sets. It can be seen that the proposed method
achieves state-of-the art performance and works especially well
at low to medium levels of noise. This can be explained by
a higher difficulty in constructing a meaningful graph from
the noisy image at higher noise levels. We also notice that
the proposed method achieves strong results on the Urban
dataset. This dataset contains higher resolution images with
respect to the other two and is mainly composed of photos
of buildings and other regular structures where exploiting
self-similarity is very important. In addition, it is also worth

mentioning that the proposed method provides a better visual
quality. In many cases, the proposed method has a higher
SSIM score, even if NRLN has better performance in terms
of PSNR. This can also be noticed in Fig. 11, which shows
a visual comparison on an image from the Urban100 dataset.
In general, the images produced by the proposed algorithm
present sharper edges and smoother content in uniform areas.
We can notice that many areas in the photos from Urban100
have approximately piecewise smooth characteristics. It is well
known that image processing algorithms based on graphs are
well suited for piecewise smooth content (see, e.g., [51], [52]
in the context of compression and [32] for denoising). To
further show this point, we study the performance of the
proposed method for denoising of depth maps, e.g., generated
by time-of-flight cameras. The OGLR algorithm [32] based on
a graph smoothness regularizer achieved state-of-the-art results
among model-based algorithms for this specific task where it
is essential to preserve edge sharpness while simultaneously
smoothing the flat areas. Table IV reports the PSNR and SSIM
results achieved on a standard set of depth maps1. It can be
seen that the proposed method outperforms both NLRN and
OGLR, even at high levels of noise. Also, we can notice that
OGLR displays competitive performance at low noise levels,
but its visual quality significantly degrades when in presence
of stronger noise. Fig. 12 shows a visual comparison where
it can be seen that GCDN produces sharper edges while also
providing a very smooth background.

E. Real image denoising

Real image noise is generally more challenging than syn-
thetic Gaussian noise. There are multiple contributions such
as quantization noise, shot noise, fixed-pattern noise [1], [53],
dark current, etc. that make it overall signal-dependent. It has
been observed [54]–[56] that deep learning methods trained
on synthetic Gaussian noise perform poorly in presence of real
noise. However, suitable retraining with real data generally im-
proves their performance. Zeng et al. [56] propose to introduce
a regularizer based on the graph Laplacian in the deep learning
framework in order to achieve robust real image denoising. In
this section, we study the behavior of the proposed network
in a blind denoising setting with real noisy images acquired
by smartphones. We retrain the proposed method, NLRN and
DnCNN on the SIDD dataset [55] composed of 30000 high-
resolution images acquired by smartphone cameras at varying
illumination and ISO levels. The authors provide clean and
carefully registered ground truths for all the available scenes,
so that it is possible to perform a supervised training. We create
training and testing subsets from the sRGB images in the SIDD
dataset by selecting a range of noise levels. Our training set
is composed of 3500 crops of size 512 × 512 whose RMSE
with respect to the ground truth is below 15. The testing set is
composed of 25 random crops of size 512×512 with noise in
the same range as the training set. Table V reports the results
for CBM3D [57], DnCNN, NLRN and the proposed GCDN.
Notice that CBM3D is not a blind method, so we provide

1http://vision.middlebury.edu/stereo/data/.
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Table III. NATURAL IMAGE DENOISING RESULTS. METRICS ARE PNSR (DB) AND SSIM.

Dataset Noise σ BM3D [5] WNNM [31] TNRD [34] DnCNN [7] N3Net [13] NLRN [14] GCDN

Set12
15 32.37 / 0.8952 32.70 / 0.8982 32.50 / 0.8958 32.86 / 0.9031 - / - 33.16 / 0.9070 ± 1.06/0.0222 33.14 / 0.9072 ± 1.05/0.0214
25 29.97 / 0.8504 30.28 / 0.8557 30.06 / 0.8512 30.44 / 0.8622 30.55 / - 30.80 / 0.8689 ± 1.19/0.0305 30.78 / 0.8687 ± 1.20/0.0295
50 26.72 / 0.7676 27.05 / 0.7775 26.81 / 0.7680 27.18 / 0.7829 27.43 / - 27.64 / 0.7980 ± 1.31/0.0430 27.60 / 0.7957 ± 1.33/0.0443

BSD68
15 31.07 / 0.8717 31.37 / 0.8766 31.42 / 0.8769 31.73 / 0.8907 - / - 31.88 / 0.8932 ± 2.48/0.0380 31.83 / 0.8933 ± 2.47/0.0383
25 28.57 / 0.8013 28.83 / 0.8087 28.92 / 0.8093 29.23 / 0.8278 29.30 / - 29.41 / 0.8331 ± 2.63/0.0564 29.35 / 0.8332 ± 2.66/0.0570
50 25.62 / 0.6864 25.87 / 0.6982 25.97 / 0.6994 26.23 / 0.7189 26.39 / - 26.47 / 0.7298 ± 2.78/0.0882 26.38 / 0.7389 ± 2.70/0.0877

Urban100
15 32.35 / 0.9220 32.97 / 0.9271 31.86 / 0.9031 32.68 / 0.9255 - / - 33.42 / 0.9348 ± 2.56/0.0324 33.47 / 0.9358 ± 2.58/0.0326
25 29.70 / 0.8777 30.39 / 0.8885 29.25 / 0.8473 29.97 / 0.8797 30.19 / - 30.88 / 0.9003 ± 2.63/0.0460 30.95 / 0.9020 ± 2.65/0.0476
50 25.95 / 0.7791 26.83 / 0.8047 25.88 / 0.7563 26.28 / 0.7874 26.82 / - 27.40 / 0.8244 ± 2.52/0.0711 27.41 / 0.8160 ± 2.53/0.0758

Table IV. DEPTH MAP DENOISING RESULTS. METRICS ARE PNSR (DB) AND SSIM.

σ Method aloe art baby cones dolls laundry moebius reindeer Average

15
GCDN 40.74 / 0.9873 40.66 / 0.9886 41.64 / 0.9917 39.29 / 0.9832 40.70 / 0.9830 41.97 / 0.9842 42.07 / 0.9877 42.62 / 0.9915 41.21 / 0.9872 ± 1.06/0.0035
NLRN 40.50 / 0.9844 40.48 / 0.9858 41.76 / 0.9899 39.50 / 0.9814 40.69 / 0.9800 41.96 / 0.9814 42.01 / 0.9848 42.44 / 0.9880 41.17 / 0.9845 ± 1.02/0.0034
OGLR 40.82 / 0.9801 40.77 / 0.9821 40.90 / 0.9806 39.65 / 0.9774 40.41 / 0.9756 41.32 / 0.9764 41.48 / 0.9793 41.72 / 0.9823 40.88 / 0.9792 ± 0.66/0.0025

25
GCDN 37.12 / 0.9771 37.15 / 0.9788 37.50 / 0.9814 35.88 / 0.9697 37.05 / 0.9705 38.62 / 0.9730 38.39 / 0.9786 38.80 / 0.9836 37.56 / 0.9766 ± 0.98/0.0051
NLRN 37.08 / 0.9720 37.01 / 0.9734 37.37 / 0.9797 36.09 / 0.9661 37.01 / 0.9646 38.42 / 0.9679 38.33 / 0.9723 38.65 / 0.9786 37.50 / 0.9718 ± 0.89/0.0055
OGLR 36.67 / 0.9592 36.68 / 0.9649 36.29 / 0.9594 35.51 / 0.9545 36.41 / 0.9541 37.44 / 0.9541 37.17 / 0.9575 37.86 / 0.9655 36.75 / 0.9587 ± 0.73/0.0046

50
GCDN 33.37 / 0.9522 33.18 / 0.9536 32.23 / 0.9468 31.61 / 0.9379 32.37 / 0.9417 34.07 / 0.9526 33.73 / 0.9567 34.35 / 0.9672 33.11 / 0.9511 ± 0.96/0.0101
NLRN 33.23 / 0.9444 32.86 / 0.9448 32.42 / 0.9534 31.53 / 0.9304 32.40 / 0.9347 34.15 / 0.9459 33.58 / 0.9475 34.37 / 0.9603 33.07 / 0.9452 ± 0.96/0.0095
OGLR 32.24 / 0.9121 31.92 / 0.9129 31.23 / 0.9027 30.21 / 0.8926 31.44 / 0.8999 32.85 / 0.9051 32.46 / 0.9093 32.99 / 0.9191 31.92 / 0.9067 ± 0.93/0.0084

Figure 11. Extract from Urban100 scene 13, σ = 25. Left to right: ground truth, noisy (20.16 dB), BM3D (30.40 dB), DnCNN (30.71 dB), NLRN (31.41
dB), GCDN (31.53 dB).

Table V. REAL IMAGE DENOISING (SIDD DATASET)

CBM3D DnCNN NLRN GCDN
PSNR 38.73 ± 2.95 dB 39.98 ± 3.17 dB 41.24 ± 2.64 dB 41.48 ± 2.15 dB
SSIM 0.9587 ± 0.0138 0.9605 ± 0.0158 0.9652 ± 0.0144 0.9697 ± 0.0132

an estimate of the noise standard deviation, as computed by
a noise estimation algorithm [58]. We can notice that the
proposed method achieves better results and this is confirmed
by the visual comparison in Fig. 13.

V. CONCLUSIONS

In this paper, we presented a graph-convolutional neural
network targeted for image denoising. The proposed graph-
convolutional layer allows to exploit both local and non-
local similarities, resulting in an adaptive receptive field. We
showed that the proposed architecture can outperform state-
of-the-art denoising methods, achieving very strong results on
piecewise smooth images. Finally, we have also considered
a real image denoising setting, showing that the proposed
method can provide a significant performance gain. Future

work will focus on extending the proposed architecture to other
inverse problems, such as super-resolution [59], [60].
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