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Imitation dynamics in population games on
community networks

Giacomo Como, Member, IEEE, Fabio Fagnani, and Lorenzo Zino

Abstract—We study the asymptotic behavior of deterministic,
continuous-time imitation dynamics for population games over
networks. The basic assumption of this learning mechanism —
encompassing the replicator dynamics— is that players belonging
to a single population exchange information through pairwise
interactions, whereby they get aware of the actions played by
the other players and the corresponding rewards. Using this
information, they can revise their current action, imitating the
one of the players they interact with. The pattern of interactions
regulating the learning process is determined by a community
structure. First, the set of equilibrium points of such network
imitation dynamics is characterized. Second, for the class of
potential games and for undirected and connected community
networks, global asymptotic convergence is proved. In particular,
our results guarantee convergence to a Nash equilibrium from
every fully supported initial population state in the special case
when the Nash equilibria are isolated and fully supported.
Examples and numerical simulations are offered to validate
the theoretical results and counterexamples are discussed for
scenarios when the assumptions on the community structure are
not verified.

Index Terms—Evolutionary Game Theory; Imitation Dynam-
ics; Distributed Learning; Network Systems; Population Games.

I. INTRODUCTION

IN the last decades, evolutionary game theory has emerged
as a valuable mathematical paradigm to study the evolution

of behaviors in social, economic, and biological network
systems [2]–[6]. Evolutionary game theory models these pro-
cesses as the effect of a learning mechanism regulating the
dynamics through which players in a population game revise
their actions over time to improve their rewards.

In this paper, we focus on a class of learning mechanisms
known as imitation dynamics [3], [4]. Differently from other
learning mechanisms, such as best-response dynamics or logit
choice [7], [8], imitation dynamics only require the players to
have limited, local information on the structure of the game.
Specifically, players are assumed to measure their current
reward and to interact in a pairwise fashion, as they exchange
information regarding their currently played action and the
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corresponding reward. On the basis of this communication
they possibly revise their strategy by imitating the action
played by the other player. Imitation mechanisms in learning
and decision-making processes have been extensively studied
in biology, sociology, economics, and marketing [9], [10].
They have also found engineering applications, e.g., in traffic
control problems [11]. Evidence supporting the ubiquity of
such mechanisms can be found in empirical studies in human
groups [12], in the predictive success of imitation-based mod-
els on vaccination decisions [13], and on the recent emergence
of the role of influencers in social networks, whereby many
users rely on their opinion to decide, for instance, which
product to buy or which political party to support.

There is a substantial literature providing theoretical analy-
sis of imitation dynamics [14]–[17]. In particular, the book [5]
offers an extensive study and review of results of stability
and instability for the different kinds of equilibrium points
of imitation dynamics. Most of these results are primarily
concerned with local stability and rely on more stringent
assumptions on the imitation mechanism than the ones consid-
ered in this work. It is only for some specific forms of imitation
dynamics and for some classes of games that global stability
has been studied. Specifically, the replicator equation has
been exhaustively analyzed. While the first results deal with
local stability [18], [19], conditions for global stability have
been established for strict stable games [20], [5, Chapter 7.2],
potential games [5, Chapter 7.1], and matrix games [21]–[23].
In [24], global stability for the replicator equation for stable
games is studied by means of a passivity argument. In [25],
the replicator dynamics is proposed as a distributed virus
mitigation mechanism and asymptotic convergence results are
derived for general networks of interactions. Other specific
forms of imitation dynamics such as pairwise proportional
imitation have been considered, e.g., in [20], [26]. For more
general classes of imitation dynamics, global stability results
are limited to specific class of games, such as games with
strategic substitutes and strategic complements —e.g., the
best-shot game and the coordination game in [27], and some
public good games [28].

Importantly, most of the studies reviewed above build on
the assumption that players of a population interact on a fully
mixed structure, where each player interacts with all the other
players with the same intensity. However, this assumption is
not often realistic, since real-world networks of interactions
often have a complex architecture, with clustered populations
and different levels of interactions within the same cluster
and between different clusters [29], [30]. The results that
highlight the role played by the network structure for different
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evolutionary game dynamics [31]–[33] are key to motivate
further analysis of imitation dynamics beyond the fully mixed
scenario. In [34], the authors extend some convergence results
of learning protocols (including a class of imitation dynamics)
to populations in which the interaction pattern is determined
by the actions of the players but no a-priori constraints on the
possible interactions between players are considered. Other
approaches deal with multi-population games [20] [5, Chapter
2], which considers a society made by fully mixed populations.
Each population has a different reward structure, and the
reward is determined by state of the entire society. However,
the players that belong to a population do not interact with
players from other populations, so their learning mechanism
is fully determined by the local interactions and, thus, by the
state of the population they belong.

In this paper, we introduce a novel model of network imi-
tation dynamics assuming that the interaction pattern between
the players of a single population is governed by a community
structure. This framework —whereby the players belong to the
same population and share the same reward structure, but the
learning mechanism is dictated by the community structure—
captures many real-world scenarios. For instance, communities
can model different age, gender, or social groups, whereby
empirical evidence shows that people tend to establish more
interaction within their social group and be more influenced
by people of similar age and same gender [29], [35].

Mathematically, the model consists of a system of ordinary
differential equations (ODEs) coupled by a community net-
work structure and our first main result consists in a general
characterization of its equilibrium points. The result illustrates
in general the role of the underlying population game and of
the community structure in determining the set of equilibria.
As we shall see, unlike the scenario with a fully mixed
population (i.e., single community) in which the equilibrium
points are always directly related to the Nash equilibria of
the underlying population game, the community network may
lead to the emergence of other equilibrium points or enforce
some further constraints on the feasible equilibrium points.

The second part of the paper is devoted to the important
class of potential population games [36], [5, Chapter 3.1].
Some preliminary results in this direction can be found in [1].
Therein, global stability of Nash equilibria has been proved
for the fully mixed community-free scenario. In this paper,
we extend that preliminary analysis to a general undirected
network of interactions driven by a community structure.
The presence of a non-fully mixed network poses several
new technical challenges. Our asymptotic analysis relies on
coupling a local stability result that only depends on the
assumption that the network is undirected and connected,
with a global Lyapunov-LaSalle argument that instead also
relies on the assumption that the population game is potential.
Our second main result establishes the convergence of the
imitation dynamics to a limit set, characterized in terms of
the Nash equilibria of the game and of sub-games obtained
by restricting the original game to a subset of actions. When
the Nash equilibria of the population game are isolated and
fully supported, our result implies convergence to a Nash
equilibrium from every fully supported initial population state.

Examples and numerical simulations are offered along with the
theoretical results to explain their practical use, offer a better
understanding of their implications, and clarify the role of the
assumptions made.

In summary, the main contributions of this paper are
fourfold: (i) a rigorous formalization of imitation dynamics
in population games on community networks; (ii) a charac-
terization of the equilibrium points of these dynamics; (iii)
for potential population games over undirected connected
networks, a complete analysis of the asymptotic behavior; and
(iv) the presentation of several examples to help elucidate the
effect of the community network structure.

The rest of the paper is organized as follows. Section II
introduces population games, community network, and imita-
tion dynamics. In Section III, we characterize the equilibrium
points of these systems. In Section IV-A, we refine our results
for undirected networks, while in Section IV-B, we carry
on a complete convergence analysis for potential population
games. Section V outlines some future research directions. The
Appendix collects the proofs of some technical results.

We end this section by gathering some notational conven-
tions adopted throughout the paper. We denote by R and R+

the sets of real and nonnegative real numbers, respectively. For
finite sets A and B, let RA (respectively, RA×B) denote the
set of real vectors (matrices) whose entries are indexed by the
elements of A (A × B). The transpose of a vector or matrix
x is denoted as x>. The all-1 vector is denoted by 1 and sgn
denotes the sign function. A directed graph G = (V, E) is the
pair of a set of nodes V and a set of directed links E ⊆ V×V:
it is said to be connected if for every two nodes i, j in V there
exists a directed path from i to j.

II. DESCRIPTION OF THE MODEL

We consider a continuous of individuals engaged in a single
population game. Each individual chooses their strategy from
the same set A and gets a reward that depends exclusively
on the chosen strategy and the distribution of strategies within
the population. The population is assumed to be structured into
communities whose reciprocal interaction is determined by a
community network. Individuals update their strategy on the
basis of a simple pairwise imitation mechanism confronting
their own reward with that of another individual and possibly
copying the strategy played by them. The rate at which they
establish such pairwise interactions with other individuals is
determined by the community network structure (specifically
on the communities where the two individuals belong to).
Below we present a formal definition of the various concepts.

A. The basic ingredients

Population game. Given a finite set of strategies A, we
denote by

Y :=
{
y ∈ RA+ : 1>y = 1

}
the unitary simplex over A. The population state is a vector
y in Y whose entries yi denote the fraction of individuals
playing action i in A (also referred to as i-players). The reward
functions

ri : Y → R , i ∈ A ,
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return the the reward ri(y) of any i-player as a function of the
population state y. We refer to a pair (A, r) with the above
properties as a (continuous) population game.

Community network. Individuals are structured into a
finite set H of interacting communities. Given an action i
in A and a community h in H, xih denotes the fraction of
population residing in h that is playing action i. Assembling
all these values in a matrix, we obtain x in RA×H+ that is
called the system state. Notice that the population state y
corresponding to a system state x can be obtained as

y = x1 . (1)

Communities have fixed relative sizes (possibly not uniform)
described by a constant vector η in RH whose entries ηh > 0
represent the fraction of population belonging to the different
communities h inH. Notice that, as a consequence, the system
state x always verifies the condition

1>x = η> . (2)

We introduce the set

X :=
{
x ∈ RA×H+ : (2)

}
of all admissible system states.

The strength of the interactions among individuals in the
different communities is described by a constant nonnegative
matrix W in RH×H+ with strictly positive diagonal entries.
Specifically, when the system is in state x in X , for every
two communities h and k in H and actions i and j in A, the
product

xihWhkxjk

describes the rate at which i-players in community h meet j-
players in community k. The triple G = (H,η,W ) is called a
community network. To it we canonically associate a directed
graph (H, E) with link set E = {(h, k) ∈ H×H : Whk > 0}.
From now on any graph-theoretic property of G will always
be meant as holding true for (H, E). In particular, we will say
that G is connected if W is irreducible and that G is undirected
if the matrix W is symmetric, i.e., if W = W>.

Imitation mechanism. When an individual playing action
i meets another individual playing strategy j, the former gets
informed of the reward rj that the latter is getting, compares it
with their own reward ri, and decides whether to modify their
action from i to j, thus imitating the other individual. We shall
assume that, conditioned on the meeting of the i-player with
the j-player, the former imitates the latter at a rate fij(ri, rj)
that depends exclusively on the two current rewards. Since
the rewards are functions of the current population state y,
from now on we will think such rates as functions fij : Y →
R+ and, with a slight abuse of notation, write fij(y). The
functions fij are then assembled in a matrix-valued function

f : Y → RA×A+ ,

called the imitation mechanism that we assume to be Lipschitz-
continuous on its domain Y . We want to stress that a i-player
in order to compute the imitation rate fij(y) does not need to
know the whole population state y but just its own reward
ri(y) and the reward rj(y) of a j-player that is the only
information obtained through their pairwise interaction.

B. Network imitation dynamics

Given a population game (A, r), a community network
G = (H,η,W ), and an imitation mechanism f , we consider
a dynamical system evolving in continuous time on the space
of admissible system states X . This is formally defined as

ẋih =
∑
j∈A

∑
k∈H

(
xjhWhkxikfji(x1)− xihWhkxjkfij(x1)

)
,

(3)
for every action i in A and community h in H. We shall refer
to the dynamical system (3) as a (network) imitation dynamics.
The interpretation is the following. The nonnegative term

xjhWhkxikfji(x)

represents the rate at which j-players in community h change
their strategy to action i by imitating i-players in community
k. Therefore, summing up over all communities k and actions
j we get the total instantaneous increase of the fraction of
new i-players in community h. Similarly, the negative term
represents the total instantaneous decrease of the fraction of
i-players in community h that modify their strategy as a result
of the imitation mechanism.

The solutions of the imitation dynamics (3) satisfy two basic
properties. First, the Lipschitz continuity of f and the fact that
X is compact yield global existence and uniqueness of the
solution for every initial condition. Second, the support of the
solution, that is the subset of actions effectively played, does
not change over time. This is formally stated in the following
proposition, proved in Appendix A. We first define the support
of a population state y in Y and of a system state x in X as

Sy := {i ∈ A : yi > 0} and Sx := Sx1 ,

respectively.

Proposition 1. Consider the dynamical system (3). Then, for
every initial system state x(0) in X ,

(i) the system (3) admits a unique solution (x(t))t≥0 in X ;
(ii) Sx(0) = Sx(t) for every t ≥ 0 .

For more restrictive conditions on the imitation mechanisms
and single community fully mixed networks these results were
already presented and discussed in [Chapter 5.4] [5] and [1].

In many applications, the imitation rate fij is nondecreasing
function of the difference of rewards rj − ri. Three examples,
which will be used to discuss the theoretical results established
in the paper, are presented below. The corresponding imitation
rates are plotted in Figure 1.

Example 1 (Replicator equation). In the special case where
imitation rates are affine functions of the reward, that is,

fij(y) = c+ rj(y) (4)

for some constant c > −min{ri(y) : y ∈ Y, i ∈ A}, the
imitation dynamics (3) reads

ẋih = ηhzihri(x1)− xih
∑
j∈A

zjhrj(x1) (5)

where zih =
∑

k∈H xikWhk. This dynamics is known as the
replicator equation on graphs [37], and it is extensively used
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rj

fij

(a)

rj − ri

fij

(b)

rj − ri

fij

(c)

Fig. 1: Imitation rates of (a) replicator (Example 2), (b)
pairwise proportional imitation (Example 2), and (c) sigmoid
imitation (Example 3).

in theoretical biology to model evolutionary dynamics. For a
single fully mixed population, i.e., when |H| = 1, and W = 1,
(5) simplifies to

ẋi = xi

ri(x)−
∑
j∈A

xjrj(x)

 , (6)

that is the well known replicator equation, see, e.g., [3], [18],
[19], [38].

Example 2 (Pairwise proportional imitation). Consider the
imitation mechanism

fij(y) = max{rj(y)− ri(y), 0} , (7)

proposed in [5, Example 4.3.1]. For a single fully mixed
population, (7) again simplifies to the replicator equation (6).

Example 3 (Sigmoid imitation). Let

fij(y) =
1

1 + exp
{
−Kij

(
rj(y)− ri(y)

)} , (8)

where Kij > 0 are constants possibly different for each
pair of actions (i, j) in A × A. This is the logistic function
often used in the literature to model learning curves and
adoption of innovation [39]. Other sigmoid functions (such
as the hyperbolic tangent or the arctangent) also fit in this
framework.

The theory developed in this paper encompasses the cases
in which the imitation rates are functions of the rewards (as
in the replicator equation) and of rewards’ difference as in the
last two examples. The somewhat minimal assumption needed
for our results is reported below. It states that, if an action j
gives a greater reward than another action i, then the imitation
rate from i to j is greater than the one from j to i.

Assumption 1. For every two actions i, j in A and population
state y in Y

sgn
(
fij(y)− fji(y)

)
= sgn

(
rj(y)− ri(y)

)
. (9)

Remark 1. The class of imitation mechanisms satisfying
Assumption 1 includes and is broader than the ones typically
considered in the literature [5, Chapter 5.4], which satisfy the
stricter assumption

ri(y) ≥ rj(y) ⇐⇒ f`i(y)−fi`(y) ≥ f`j(y)−fj`(y) , (10)

for every two actions i, j, ` in A and y in Y . We notice that
while Examples 1 and 2 satisfy (10), in general Example 3
does not.

For some —but not all— of the results presented in this
paper, we will need an additional assumption on the imitation
mechanism ensuring that, when many actions give the same
reward, then the imitation rates between these actions are
always nonzero and individuals have no clear preference for
one of them. We formalize these ideas in the following.

Assumption 2. For every three distinct actions i, j, ` in A and
population state y in Y

ri(y) = rj(y) = r`(y) ⇒ fij(y) = fi`(y) > 0.

While all the examples verifies Assumption 1, Assumption 2
holds true in Examples 1 and 3, but not in Example 2.

III. EQUILIBRIUM POINTS OF THE IMITATION DYNAMICS

This section is entirely devoted to the study of the set Z ⊆
X of equilibrium points of the network imitation dynamics (3).
Such equilibrium points may be intuitively expected to relate
to the Nash equilibria of the underlying population game. The
set of such Nash equilibria will be denoted as

Y∗ :=

{
y ∈ Y : yi > 0⇒ ri(y) = max

j∈A
rj(y)

}
.

In a Nash equilibrium y in Y∗, all actions played by a nonzero
fraction of players give the same reward, i.e., ri(y) = rj(y),
for every i, j in Sy , and such reward is not smaller than the
reward of all remaining actions, i.e., ri(y) ≥ rj(y), for every
i in Sy and j in A \ Sy . Since point (ii) of Proposition 1
ensures that actions that are not played at a certain time will
remain not played at any future time and thus will never play
any role in the dynamics, another natural set of population
states to consider is the set of restricted Nash equilibria

Y• := {y ∈ Y : yi > 0, yj > 0⇒ ri(y) = rj(y)} .

In a restricted Nash equilibrium y in Y•, all actions played by
a nonzero fraction of players give the same reward, however,
unless y is also a Nash equilibrium, there exist some actions
not played by anyone that give a strictly higher reward.
Notice that every restricted Nash equilibrium y in Y• can be
interpreted as a Nash equilibrium of the sub-game obtained
by restricting the action set to Sy . We also introduce the sets
of system states

X ∗ := {x ∈ X : x1 ∈ Y∗}, X • := {x ∈ X : x1 ∈ Y•} ,

associated to Nash and restricted Nash equilibria, respectively.
For the single community, fully mixed population case, it

was proven in [1] that the set of equilibrium points of the
imitation dynamics coincides with the set of restricted Nash
equilibria, i.e., in this case Z = X • = Y•. As we will
see, in general this result cannot be extended as such to the
case of a nontrivial community network, since two types of
issues arise. Perhaps not surprisingly, a first issue is related to
connectivity and the lack thereof: if the community network
is not connected, equilibrium points can exhibit actions with
different rewards played in different connected components.
A second issue is perhaps less obvious: in certain cases, the
community network structure imposes extra constraints on the
equilibrium points, namely that the action’s distribution is the
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same on every single community. This is captured by the
following definition. We say that a system state x in X is
balanced if, with y = x1, we have that

xih = yiηh , ∀ i ∈ A , ∀h ∈ H . (11)

This is equivalent to write that x = x1η>. We denote by X ∗η
and X •η the subsets of the balanced system states contained,
respectively, in X ∗ and in X •.

The following states the main results of this section.

Theorem 1. Consider a population game (A, r), a connected
community network G = (H,η,W ), and an imitation mecha-
nism f satisfying Assumption 1. Then,

X •η ⊆ Z ⊆ X • . (12)

Moreover,

(i) if fij(y) > 0 for every y in Y and i, j in A, then

Z = X •η ;

(ii) if fij(y) = 0 for everyy in Y and i, j in A such that
ri(y) = rj(y), then

Z = X • .

Proof: We first show that X •η ⊆ Z . Let x in X •η and put
y = x1. If i does not belong to Sx, then xih = 0 for every
h in H and this implies that, for such i, the right-hand side
of (3) is 0. Suppose now that i in Sx and h in H. For any
j in Sx, the fact that ri(y) = rj(y) and Assumption 1 yield
that fij(y) = fji(y). Using this and (11), we obtain from (3)
that

ẋih =
∑
k∈H

Whk

∑
j∈Sx

[yjηhfij(x)yiηk − yiηhfij(x)yjηk] = 0,

which yields the claim.
We now show that Z ⊆ X •. For x in Z and y = x1, define

S∗x := argmin
j∈Sx

rj(y) , S∗∗x := argmax
j∈Sx

rj(y)

We will show that S∗x ⊆ S∗∗x (indeed this implies that ri(y)
is constant over Sx and thus x in X •). We define

H∗∗ := {h ∈ H : ∃ i ∈ S∗∗x , xih > 0} .

First, we show that H∗∗ = H, that is, in the system state x, in
all communities there are players that play an action achieving
the maximum reward. Indeed, if by contradiction H∗∗ were a
proper subset of H, since G is connected, we would find h in
H \H∗∗ and h′ in H∗∗ such that Whh′ > 0. Let i in S∗∗x be
such that xih′ > 0 and i′ in Sx be such that xi′h > 0. Note
that xih = 0 by the way h has been chosen and fi′i(y) > 0
because of Assumption 1. From (3), we then obtain

ẋih =
∑
k∈H

Whk

∑
j∈A

fji(y)xjhxik, ≥Whh′fi′i(y)xi′hxih′ > 0.

which contradicts the fact that x is an equilibrium point.
Second, we fix any i in S∗x and we assume, by contradiction,

that i 6∈ S∗∗x . Since x is an equilibrium point, then, for every

community h in H, the right-hand side of (3) equals 0, so that

0 =
∑
k∈H

Whk

∑
j∈A

[fji(y)xjhxik − fij(y)xihxjk]

=
∑
k∈H

Whk

∑
j∈A

[fji(y)− fij(y)]xjhxik

+
∑
k∈H

Whk

∑
j∈A

fij(y)[xjhxik − xihxjk] .

(13)

Focusing on the first term of the final expression in (13), notice
that, since i is in S∗x, then ri(y) ≤ rj(y) for all j in Sx. Hence,
Assumption 1 implies that fji(y)− fij(y) ≤ 0, yielding∑

k∈H

Whk

∑
j∈A

[fji(y)− fij(y)]xjhxik ≤ 0 . (14)

Now, rewrite the second term of the final expression in (13)
as ∑

k∈H

Whk

∑
j∈A

fij(y)[xjhxik − xihxjk]

= zh
∑
k∈H

Whkxik − xih
∑
k∈H

Whkzk ,
(15)

where
zh =

∑
j∈A

fij(y)xjh . (16)

From (13), (14), and (15), we obtain that

zh
∑
k∈H

Whkxik − xih
∑
k∈H

Whkzk ≥ 0 . (17)

Since H∗∗ = H and since we have assumed that i 6∈ S∗∗x , we
have that zh > 0 for every h in H. Moving the second term
of (17) to the right-hand side and dividing both sides by the
strictly positive quantity zh

∑
k∈HWhkzk, we then obtain the

inequality ∑
k∈H

Qhkαk ≥ αh , (18)

where

Qhk =
Whkzk∑
`∈HWh`z`

, and αk =
xik
zk

. (19)

Since Q is an irreducible stochastic matrix, standard matrix
theory allows to deduce that α is a constant vector and that,
consequently, (18) is satisfied with equality for every h in H.
This implies that also (17) is satisfied with equality. Since the
sum of the two terms on the right-hand side of (13) is equal to
0 and the second one is 0, it follows that also (14) is satisfied
with equality. Since fji(y) − fij(y) ≤ 0 for all j in A, we
obtain that

[fji(y)− fij(y)]
∑
k∈H

Whkxjhxik = 0. (20)

for every h in H and j in A. For every h in H such that
xih > 0, let j in S∗∗x be such that xjh > 0 (there exists
one since H∗∗ = H). From (20), we have fji(y) = fij(y),
so that ri(y) = rj(y) and then i belongs to S∗∗x . This is a
contradiction. Therefore, S∗x = S∗∗x , equivalently, x in X •.

(i) By (12), we only need to prove the inclusion Z ⊆ X •η .
Fix x in Z and put y = x1. Since, by (12), x in X •, ri(y) is
constant for all i in Sx. We fix any i in Sx and any h in H and
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Fig. 2: Community networks G = (H,η,W ) analyzed in the
examples.

we use some of the algebraic computation developed in the
above. From (13) and the fact that, in this case, (14) trivially
holds true as an equality, we obtain that also (17) holds true
as an equality. Notice that, since fij(y) > 0 for every y in Y
and j in A, it follows that zk > 0 (see (16)) for every k in H.
We can thus consider (18) that, consequently, also holds true
as an equality. Since the vector α with entries as in (19) must
be constant, there exist constants ci, for i in Sx, such that

xih = ci
∑
j∈Sx

fij(y)xjh , (21)

for i in Sx and h in H. Summing both sides of (21) over all
h in H, we obtain the following equality, for every i in Sx,

yi = ci
∑
j∈Sx

fij(y)yj . (22)

Equations (21) and (22) yield

y−1i xih =
∑
j∈Sx

Fijy
−1
j xjh,

where
Fij =

fij(y)yj∑
j′∈Sx fij′(y)yj′

.

Since the matrix F is stochastic and with positive entries, it
follows that, for h in H, there exists a constant ρh such that
y−1i xih = ρh, for all i in Sx. Multiplying by yi and summing
over i in Sx we obtain that ρh = ηh. This proves that x
belongs to Zη .

(ii) By (12), we only need to prove the inclusion X • ⊆ Z .
Fix x in X •. If i does not belong to Sx, then xih = 0 for
every h in H and this implies that, for such value of i, the
right-hand side of (3) is 0. If i in Sx, we compute the right
hand side as follows:∑
j∈A

∑
k∈H

(
xjhWhkxikfji(x1)− xihWhkxjkfij(x1)

)
=
∑

j∈Sx

∑
k∈H

(
xjhWhkxikfji(x1)− xihWhkxjkfij(x1)

)
= 0

where the last equality, which completes the proof, follows
from the fact that when i, j ∈ Sx, we have that ri(x1) =
rj(x1), hence fij(x1) = fji(x1) = 0.

Notice that, in the proof of the first inclusion in (12), i.e.,
X •η ⊆ Z , we have not made any use of the connectivity
assumption. Hence, this inclusion holds true for every com-
munity graph. Instead the proof of the inclusion Z ⊆ X •
relies on the connectivity assumption. In the following, we
present two examples illustrating how, in the absence of
connectivity, equilibrium points not corresponding to restricted
Nash equilibria can indeed show up.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0
0

x1a

x
1
b

Fig. 3: Orbits of the system state for the imitation dynamics
presented in Example 4 with different initial conditions (col-
ored circles). Parameters: η = (0.7, 0.3), Waa = Wbb = 1,
Wba = 0.2 and Wab = 0. Black circles are states in X • and
crosses are equilibrium points not in Z .

Example 4. Consider a population game (A, r) with binary
action set A = {0, 1} and constant reward functions r0(y) =
0 and r1(y) = 1. The set X • consists of two point: the Nash
equilibrium in which the entire population plays action 1 and
the restricted Nash equilibria in which the entire population
plays 0. Let the imitation rates be constant and given by
f01(y) = 2 and f10(y) = 1. Consider two possible community
networks Gi = (H,η,W i) for i = 1, 2, both consisting of two
communities H = {a, b}, any η, and weight matrix W (i) such
that

W
(1)
ab = W

(1)
ba = 0, and W

(2)
ab = 0, W

(2)
ba > 0 .

For the community network G1, that is displayed in Figure
2a, the two communities a and b are isolated: as a conse-
quence, the system state x in X such that x0a = ηa and
x1b = ηb is an equilibrium point of the network imitation
dynamics (3), but it is not in X •.

On the other hand, for the community network G2, that is
displayed in Figure 2b, since x0h + x1h = ηh, for h = a, b,
the imitation dynamics (3) reduce to the planar system

ẋ1a = W (2)
aa x1a(ηa − x1a)

ẋ1b = W
(2)
bb x1b(ηb − x1b) + 2W

(2)
ba (ηb − x1b)x1a

−W (2)
ba x1b(ηa − x1a).

(23)
One can verify that, if W (2)

ba ηa < ηbW
(2)
bb , then the system

state

x =

(
ηa W

(2)
ba ηa/W

(2)
bb

0 ηb −W (2)
ba ηa/W

(2)
bb

)
is an equilibrium point of the network imitation dynamics (23).
Even in this case, this system state does not belong to X • and
we notice that not even at the level of a single community the
action distribution is necessarily a Nash equilibrium. Observe
that trajectories with initial condition x1a = 0 converge to
this equilibrium point, as shown in Figure 3.

IV. IMITATION DYNAMICS ON UNDIRECTED COMMUNITY
NETWORKS AND FOR POTENTIAL POPULATION GAMES

Here, we study more in detail the imitation dynamics (3)
in the special case when the community network is undi-
rected and connected and the population game is potential,
establishing a global convergence result. Specifically, in this
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scenario, when both Assumptions 1 and 2 hold true and under
some assumptions on the set of Nash equilibria of the game,
the solution x(t) of (3) converges to an equilibrium point
in X ∗η , namely a balanced system state whose corresponding
population state is a Nash equilibrium.

First, we present some additional properties of the imitation
dynamics when the community network is undirected and
connected; then, we introduce potential population games,
focusing our analysis on this class of games.

A. Imitation dynamics on undirected community networks

If the community network is undirected and connected, the
imitation dynamics in (3) satisfies some additional properties.
The first one has an interest of its own and asserts that the
set of system states X • is always invariant for the imitation
dynamics, even when not all the states in X • are equilibrium
points of (3) (see Theorem 1). Precisely, we show that if the
imitation dynamics starts with an initial system state x(0)
in X •, then (3) redistributes the actions among the various
communities without modifying the population state, namely
y(t) = x(t)1 remains constant. The second property is instead
a preliminary convergence result that will play a crucial role in
the next subsection. It says that, if Assumption 2 is satisfied,
then whenever the population state trajectory y(t) = x(t)1
converges to some value ȳ, the system state trajectory x(t)
converges to the balanced equilibrium point y•η>. In the
following, we prove these two facts.

First, we introduce some notation. For two actions i, j in A
and a state vector x in X , let

Λij(x) :=
∑

h,k∈H

xihWhkxjk .

Also, we indicate with ẏ the vector field obtained by summing
the right-hand side of (3) with respect to h, namely

ẏi =
∑
h∈H

ẋih =
∑
j∈A

Λji(x)fji(x1)− Λij(x)fij(x1) . (24)

If we plug in the right hand side of (24) the system state trajec-
tory x(t), we obtain the time derivative of the corresponding
population state trajectory y(t) = x(t)1. If the community
network G is undirected, then

Λji(x) =
∑

h,k∈H

xjhWhkxik =
∑

h,k∈H

xihWhkxjk = Λij(x) .

Consequently, we can rewrite (24) as

ẏi =
∑
j∈A

Λij(x)
(
fji(x1)− fij(x1)

)
. (25)

We have the following result.

Proposition 2. Consider a population game (A, r), an undi-
rected connected community network G = (H,η,W ), and an
imitation mechanism f satisfying Assumption 1. Let x(t) be
the solution of the imitation dynamics (3) with initial condition
x(0) in X •, and put y(t) = x(t)1. Then,

(i) y(t) = y(0), for all t ≥ 0;
(ii) x(t) ∈ X •, for all t ≥ 0.

Proof: (i) Consider x in X • and put y = x1. If yi, yj > 0
we have that ri(y) = rj(y). This fact implies that for such x
the right hand side of (25) is 0 for every i, namely ẏ = 0. This
says that given an initial condition x(0) in X •, if we consider
the affine subset X (x(0)) := {x ∈ X : x1 = x(0)1} ⊆ X •,
we have that the vector field in (3) is along X (x(0) and thus,
by standard results on ODE’s, the solution x(t) in X (x(0))
for every t. This proves (i).

(ii) It follows from item (i) and the definition of X •.
Next example shows that, if the community network is

not undirected, the set X • is not in general invariant for the
imitation dynamics.

Example 5. Consider a population game (A, r) with binary
action set A = {0, 1} and reward functions r0(y) = y1 and
r1(y) = 1 − y1. Let the community network G = (H,η,W )
consist of two communities H = {a, b}, with η = (1/2, 1/2),
Waa = Wbb = Wba = 1 and Wab = 2 (see Figure 2c). Let
the imitation mechanism be such that f01(y) = 1 − y1 and
f10(y) = y1, thus satisfying Assumption 1.

The set X • consists of two points corresponding to the two
restricted Nash equilibria when there is only one action played
in the population and a segment corresponding to the Nash
equilibrium y = (1/2, 1/2):

X • =

{(
0 0

1/2 1/2

)
,

(
1/2 1/2
0 0

)}
⋃ {( q 1/2− q

1/2− q q

)}
0≤q≤ 1

2

.

For the initial state

x(0) =

(
0 1/2

1/2 0

)
,

an explicit computation shows that

ẏ1(0) = ẋ1a(0) + ẋ1b(0) = −1/8 .

Thus, for sufficiently small t > 0, we have that 0 < y1(t) <
1/2 so that x(t) does not belong X •.

Our next result shows the preliminary convergence result
presented above.

Proposition 3. Consider a population game (A, r), an undi-
rected connected community network G = (H,η,W ), and an
imitation mechanism f satisfying Assumptions 1 and 2. Let
x(t) be the solution of the imitation dynamics (3). If

lim
t→+∞

x1(t) = y• ,

then y• is a restricted Nash equilibrium and

lim
t→+∞

x(t) = y•η>. (26)

Proof: The fact that y• is a restricted Nash equilibrium
follows from (25) and connectivity of the community network
with analogous arguments as in the proof of Theorem 1.

We now prove (26). For action i in A is such that y•i = 0,
we necessarily have that xih(t)→ 0 as t→ +∞ and the limit
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relation is verified. Assume now that y•i > 0 and define, for
every community h in H,

uih =
∑
j∈A

∑
k∈H

(
xjhWhkxikfji(y)− xihWhkxjkfij(y)

)
−
∑
j∈A

∑
k∈H

(
xjhWhkxikfji(ȳ)− xihWhkxjkfij(ȳ)

)
.

Let µ = fij(ȳ) such that j for which y•j > 0 (they are all
equal and strictly positive because of Assumptions 1 and 2).
We rewrite (3) as

ẋih = µ

(
ηh
∑
k∈H

Whkxik − xih
∑
k∈H

Whkηk

)
+uih(t). (27)

Defining

ζih =
xih
ηh

, ρih(t) =
uih(t)

ηh
, Qhk =

Whkηk∑
k′∈H

Whk′ηk′
,

we rewrite (27) as

ζ̇i = µ(Q− I)ζi + ρi(t) ,

where ζi and ρi(t) are the vectors whose components are,
respectively, ζih and ρih(t). Define now ζav = (I − 1η>)ζ
and notice that, since η>Q = η>, the following relations hold

ζ̇avi = µ(Q− I)(I − 1η>)ζavi + (I − 1η>)ρi(t) .

Since the matrix (Q−I)(I−1η>) is asymptotically stable and
(I − 1η>)ρi(t) is infinitesimal for t → +∞, it follows that
also ζav(t) is infinitesimal. This implies that xih(t)→ y•i ηh,
for t→ +∞, yielding the claim.

A simple consequence of this result concerns the dynamics
inside the invariant set X •.

Corollary 1. Consider a population game (A, r), an undi-
rected connected community network G = (H,η,W ), and an
imitation mechanism f satisfying Assumptions 1 and 2. Let
x(t) be the solution of the imitation dynamics (3) with initial
condition x(0) in X •. Then, limt→+∞ x(t) = x(0)1η>.

Proof: It follows from item (i) of Proposition 2 and from
Proposition 3.

We conclude this subsection with the following technical
result, whose utility will become apparent in the following
subsection and whose proof is reported in Appendix B.

Lemma 1. Consider a population game (A, r), an undirected
connected community network G = (H,η,W ), and an imita-
tion mechanism f satisfying Assumption 1 . Let x• in X •\X ∗
be a system state associated to a restricted Nash equilibrium
y• = x•1 that is not a Nash equilibrium. Then, there exists
ε > 0 such that for the imitation dynamics (3) it holds true
that (indicated as usual y = x1) ẏi > 0, for every action i
in A such that ri(y•) > rj(y

•) for j in Sy• and every system
state x in X such that ||x− x•|| < ε and yi > 0.

B. Network imitation dynamics for potential population games

We now further specialize our analysis to the important
special case where the population game is potential. Under this
assumption, and for community networks that are undirected
and connected, we will prove global asymptotic convergence
of network imitation dynamics to the set of Nash equilibria.

We first recall the notion of potential [36] in the context of
continuous population games.

Definition 1 (Potential games). A population game (A, r) is
a potential population game if there exists a differentiable
potential function Φ : Y → R such that

rj(y)− ri(y) =
∂

∂yj
Φ(y)− ∂

∂yi
Φ(y) , (28)

for every actions i, j in A and population state y in Y .

Potential games are a class of population games that in-
clude coordination and congestion games [36], [40], which
have been extensively studied and used to model real-world
phenomena such as the emergence of collective behaviors in
social groups and traffic problems in infrastructure systems.

It is known that for a potential population game all local
maximum points of the potential functio Φ(y) on Y are Nash
equilibria and so are all internal stationary points of Φ(y).

We now present a technical results that is key to our global
convergence analysis. It shows that the potential function is
a Lyapunov function for the imitation dynamics (3), as it is
always nondecreasing along the trajectories and stationary only
on the set X •. Its proof is reported in Appendix C.

Lemma 2. Consider a potential population game (A, r), an
undirected connected community network G = (H,η,W ),
and an imitation mechanism f satisfying Assumption 1. The
derivative of the potential function Φ(y) along the vector field
of the imitation dynamics in (3) satisfies, for every x in X
(indicated as usual y = x1),

Φ̇(y) =
∑
i∈A

∂Φ(y)

∂yi
ẏi ≥ 0. (29)

Moreover, we have equality in (29) if and only if x belongs
to X •.

A consequence of Lemma 2 is that every imitation dynamics
in a potential population game with undirected community
network has ω-limit set1 contained in the set X •. In fact,
combining this result with Lemma 1 allows one to refine the
characterization of such ω-limit set. Let

Y•i = {y ∈ Y• : yi = 0} , i ∈ A ,

and let
Y◦ = Y∗ ∪

⋃
i∈A :Y•i ∩Y∗ 6=∅

Y•i

be the set containing all Nash equilibria and those restricted
Nash equilibria lying on a face of the boundary of the simplex

1The ω-limit set of a solution x(t) of (3) is the union of all the points
x̄ such that there exists an increasing sequence of time instants (tk)k=1,...

such that limk→+∞ tk = +∞ and limk→∞ x(tk) = x̄.
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Y that contains a Nash equilibrium. We can now prove the
following result.

Theorem 2. Consider a potential population game (A, r), an
undirected connected community network G = (H,η,W ), and
an imitation mechanism f satisfying Assumption 1. Then, for
every initial state x(0) in X such that Sx(0) = A, the solution
x(t) of the imitation dynamics in (3) satisfies 2

lim
t→+∞

dist(x(t)1,Y◦) = 0 .

Proof: Put y(t) = x(t)1. Since Φ(y) is continuous on
the compact set Y , it is necessarily bounded. This and the
fact that Φ̇(y(t)) ≥ 0 by Lemma 2 imply that Φ̇(y(t)) → 0
as t→ +∞. Then, a continuity argument and the second part
of Lemma 2 imply that limt→+∞ dist(y(t),Y•) = 0. This
implies that the ω-limit set of y(t) is contained in a connected
component C of the set of restricted Nash equilibria Y•. For
every action i in A, let Ci = C ∩ Y•i be its intersection with
the i-th face of the boundary of the simplex Y . Now, recall
that for every non-Nash point y• in Y• \ Y∗, there exists an
action i in A such that y•i = 0 and ri(y•) > rj(y

•), for j in
Sy• . It then follows from Lemma 1 that, if Ci ∩Y∗ = ∅, then
ẏi > 0 in an internal neighborhood of Ci, so that no point in
Ci is contained in the ω-limit set of y(t). It then follows that
the ω-limit set of y(t) is contained in Y◦.

Theorem 2 yields the following corollary guaranteeing
global convergence of the imitation dynamics when the Nash
equilibria of the population game are isolated internal points.

Corollary 2. Consider a potential population game (A, r)
with set of Nash equilibria Y∗ such that Sy∗ = A for every
y∗ in Y∗. Let G = (H,η,W ) be an undirected connected
community network, and f be an imitation mechanism satis-
fying Assumption 1. Then, for every initial system state x(0)
in X such that Sx(0) = A,

lim
t→+∞

dist(x(t)1,Y∗) = 0 . (30)

Moreover, if Y∗ is finite, then there exists a Nash equilibrium
y∗ in Y∗ such that

lim
t→+∞

x(t)1 = y∗ , (31)

and if Assumption 2 is also satisfied, then

lim
t→+∞

x(t) = y∗η> . (32)

Proof: Since all Nash equilibria are in the interior of Y ,
we have Y∗ = Y◦, so that (30) follows from Theorem 2.
When Y∗ is finite, the Nash equilibria are isolated and (30)
implies (31). Finally, Proposition 3 and (31) imply (32) when
Assumption 2 is satisfied.

Remark 2. The assumption on the initial condition that
Sx(0) = A, i.e., yi(0) > 0, for all i in A is not restrictive.
Indeed, in the general case when some actions are not played
at the beginning, by virtue of item (ii) of Proposition 1, we
can restrict the game and the dynamics to those actions that
are in the support of the initial condition Sx(0).

2The point to set distance is equal to dist(x,X ∗) := minx′∈X ||x−x′||.

We conclude this section by presenting two numerical
examples: the first one validates the analytical predictions of
Corollary 2, while the second one shows that the result does
not hold true in general when the game is not potential.

Example 6. Consider a population game (A, r) with three
actions A = {0, 1, 2} and reward functions given by

r0(y) = −2y0, r1(y) = −4y1, and r2(y) = −6y2.

This is a simple archetype of a congestion game [40] and is
a potential game with potential function

Φ(y) = −y20 − 2y21 − 3y22 .

Its unique Nash equilibrium is given by ȳ =
(

6
11 ,

3
11 ,

2
11

)
, and

coincides with the unique global maximum of Φ.
Consider an undirected connected community network G =

(H,η,W ) consisting of two communities H = {a, b}, as
in Figure 2c, with Wab = Wba. We study the behavior of
two different imitation mechanisms: the pairwise proportional
imitation in Example 2 and the sigmoid imitation rates in
Example 3. Only the latter satisfies Assumption 2. Numerical
simulations reported in Figure 4 validate the analytical pre-
dictions of Corollary 2. For both the dynamics, trajectories
in the space of population states Y converge to the Nash
equilibrium, as shown in Figures 4a and 4c. On the other
hand, the behavior of the trajectories in the space of system
states X is quite different in the two cases: for the pairwise
proportional imitation, the system state trajectory converges
to a system state that is not balanced (see Figure 4b); for the
sigmoid imitation dynamics, instead, consistently with item (ii)
of Corollary 2, the system state trajectory converges to the
balanced system state (see Figure 4d).

Example 7. Consider the population game (A, r) with action
set A = {0, 1, 2} and reward functions given by

r0(y) = y1 − y2, r1(y) = y2 − y0, r2(y) = y0 − y1 .

This game is the population version of the classical rock–
paper–scissor game and is not potential (see details in [5,
Chapter 3.3]). The only Nash equilibrium is the population
state (1/3, 1/3, 1/3). We consider, as in previous example, an
undirected connected community network G = (H,η,W ) con-
sisting of two communities H = {a, b} with Wab = Wba > 0.
Figure 5 shows how, in this case, the trajectories of the sigmoid
imitation dynamics (Example 3) exhibit an oscillating behavior
and do not converge. Particularly, in (a) we plot different orbits
of the population state, for diverse initial conditions, which
show lack of convergence to the unique Nash equilibrium. The
oscillatory behavior is even more visible in (b), when looking
at the time-evolution of the single entries of the system state
corresponding.

V. CONCLUSION

We have studied a novel deterministic model of imitation
dynamics in population games over networks with community
patterns. The considered model allows one to account for, e.g.,
the presence of homophily in age, gender, and social groups.
Imitation dynamics are distributed learning mechanisms that
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Fig. 4: Behavior of the imitation dynamics of Example 6 for the pairwise proportional imitation ((a) and (b)) and the sigmoid
imitation ((c) and (d)). In (a) and (c), different orbits of the population state with initial conditions plotted as colored circles. The
imitation dynamics converges to the unique Nash equilibrium of the game (black circle). In (b) and (d), the time-evolution of the
system state for the magenta orbit from (a) and (c), respectively, is compared with the balanced system state corresponding to
the Nash equilibrium (the three horizontal dashed lines). The differently shaded red (green and blue) curves are the proportion
of 0-(1- and 2-)players in the two communities. Parameters: Waa = Wbb = 1, Wab = Wba = 0.2, η = (0.7, 0.3), and Kij = 1
for i, j ∈ A.
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Fig. 5: Behavior of the imitation dynamics of Example 7.
In (a), different orbits of the population state; in (b), time-
evolution of the single entries of the system state correspond-
ing to the red orbit in (a). Parameters: Waa = Wbb = 1,
Wab = Wba = 0.2, η = (0.7, 0.3), and Kij = 1, for i, j ∈ A.

rely on minimal information on the underlying game. Specifi-
cally, we have modeled the learning process through a system
of nonlinear ordinary differential equations describing the
evolution of the fraction of adopters of the different actions in
each of the communities.

Our main theoretical results are twofold. First, we have
characterized the equilibrium points of the imitation dynam-
ics, showing that the network connectivity plays a nontrivial
role. On the one hand, differently from the scenario with-
out communities, where equilibria can be characterized in
terms of Nash equilibria of the game, the lack of network
connectivity may determine the presence of other equilibrium
points. On the other hand, for connected community networks,
we demonstrate that the network structure may impose extra
constraints on the feasible equilibrium points. Second, we have
focused our analysis on potential games. For this class of
games, and when the community network is undirected and
connected, we have proved global asymptotic convergence
and, under some further assumption on their structure, we
have guaranteed that the of the imitation dynamics converges
to the set of Nash equilibria. A number of examples have
been discussed to validate our theoretical findings and show
the role of the various assumptions in our statements. Our
results contribute to expanding the state of the art in several

directions: i) they provide a framework for studying imitation
dynamics in networks with community patterns as opposed to
fully mixed populations which are the case studied in much
of the literature; ii) they ensure global stability of the Nash
equilibria, whereas most of the literature is concerned with
local stability; iii) they generalize the analysis to a broad class
of learning dynamics that encompasses the replicator equation
and other particular imitation dynamics considered in previous
works. In summary, when learning processes are determined
by local interactions, the network of interactions plays a key
role in shaping the behavior of the system. However, under
suitable assumptions, convergence to a Nash equilibrium can
be guaranteed, even in the absence of global information.

Our results suggest various directions for future research.
First, our analysis leaves some open problems concerning
the characterization of the equilibrium points of the imitation
dynamics and their stability when the network is directed and
not connected, which should be addressed by future theoretical
research. Second, the extension of our theoretical results to the
multi-population setting described in [5] is an important av-
enue of future research. Third, the case of dynamic and adap-
tive topologies and communities should be explored. Fourth,
toward a practical implementation of the proposed learning
protocol in real-world scenarios, asynchronous communication
protocols for imitation dynamics should be analyzed. Some
preliminary results in this direction have been presented in [41]
in a stochastic framework, where communication between
players is temporized by random Poisson clock. However,
a general theory for asynchronous imitation dynamics is
still missing. Finally, a case study should be proposed and
analyzed, toward the application of our theoretical findings in
real-world applications, such as traffic control [11], [42] or
planning of vaccination campaigns [13].

APPENDIX

A. Proof of Proposition 1

(i) Define the vector fields F,G,H : RA×H → RA×H by



11

putting, for every action i in A and community h in H,

Fih(x) =
∑
j∈A

∑
k∈H

xjhWhkxikfji(x1),

Gih(x) = xih
∑
j∈A

∑
k∈H

Whkxjkfij(x1),

Hih(x) =

{
[Fih(x)]+ −Gih(x) if xih ≥ 0,

[Fih(x)]+ if xih < 0 ,

for every x in RA×H, where [a]+ = max{a, 0} stands for the
positive part of a scalar a. Observe that∑

i∈A
Fih(x) =

∑
i∈A

∑
j∈A

∑
k∈H

xjhWhkxikfji(x1)

=
∑
j∈A

∑
i∈A

∑
k∈H

xjhWhkxikfji(x1) =
∑
j∈A

Gjh(x) .

(33)
Since F (x) and G(x) are Lipschitz-continuous on RA×H and
Gih(x) = 0 whenever xih = 0, we get that H(x) is Lipschitz-
continuous on RA×H. Hence, the dynamical system

ẋ = H(x) (34)

admits a unique solution (x(t))t≥0 for every initial condition
x(0) in RA×H. Now, notice that Hih(x) ≥ 0 for xih ≤ 0,
so that whenever the initial condition has nonnegative entry
xih(0) ≥ 0, the corresponding entry xih(t) of the solution of
(34) remains nonnegative for all t ≥ 0. I.e., the nonnegative
orthant RA×H+ is invariant for (34). On the other hand, for
every x in RA×H+ , we have that Fih(x) ≥ 0, so that

Hih(x) = [Fih(x)]+ −Gih(x) = Fih(x)−Gih(x) , (35)

which, together with (33), implies that∑
i∈A

Hih(x) =
∑
i∈A

(Fih(x)−Gih(x)) = 0 .

This proves that the set X is invariant for the system (34).
Finally, notice that it follows from (35) that the system (34)
coincides with (3) on X thus proving that the latter admits a
unique solution for every initial condition x(0) in X .

(ii) Observe from (3) that, if xih = 0 for all h in H, then
ẋih = 0. Together with uniqueness of the solution, this implies
that every solution of (3) with xih(0) = 0 for every h in H is
such that xih(t) = 0 for every h in H and t ≥ 0. On the other
hand, for every initial condition x(0) in X , the corresponding
solution of (3) satisfies the inequality ẋih(t) ≥ −Cixih(t),
where Ci = max{fij(y) : y ∈ Y, j ∈ A} . Then, Gronwall’s
inequality implies that xih(t) ≥ xih(0)e−Cit > 0, for all t ≥
0, which implies the claim.

B. Proof of Lemma 1

For x• in X • \ X ∗, and y• = x•1, let i in A be an action
such that y•i = 0, and ri(y•) > rj(y

•) for every action j such
that y•j > 0. Then, on the one hand, by Assumption 1,

fji(y
•)− fij(y•) > 0 , ∀ j ∈ Sy•

and on the other hand, there exist two positive constants 0 <
K1 < K2 <∞ such that

K1yi ≤
∑

j∈Sy•

Λij(x) ≤ K2yi, as x→ x• .

In contrast, for every ` that does not belong to Sy• , we have
that there exists a positive constant 0 < K3 <∞ such that

Λi`(x) = Λ`i(x) ≤ K3yiy` as x→ x• .

Then, it follows from (25) that

ẏi =
∑

j∈Sy•

Λij(x)
(
fji(x1)− fij(x1)

)
+
∑

k/∈Sy•

Λik(x)
(
fki(x1)− fik(x1)

)
≥ K4yi ,

for some K4 > 0, as x → x•. This implies that there exists
ε > 0 such that ẏi > 0 for every system state x in X such
that ||x− x•|| < ε and yi > 0, thus proving the claim.

C. Proof of Lemma 2

Using (25) and (28), we get

Φ̇(y) =
∑
i,j∈A

Λij(x)
(
fji(y)− fij(y)

)∂Φ(y)

∂yi

=
1

2

∑
i,j∈A

Λij(x)
(
fji(y)− fij(y)

)(∂Φ(y)

∂yi
− ∂Φ(y)

∂yj

)
=

1

2

∑
i,j∈A

Λij(x)
(
fji(y)− fij(y)

)(
ri(y)− rj(y)

)
≥ 0,

(36)
where the last inequality follows from Assumption 1 and the
non-negativity of the term Λij(x). This proves (29).

On the other hand, (36) and Assumption 1 imply that we
have equality in (29) if and only if

Λij(x)(ri(y)− rj(y)) = 0, ∀ i, j ∈ A .

This implies that ri(y) = rj(y) whenever Λij(x) > 0, namely
whenever the two actions i, j in Sx are played in the same
community or in two communities connected by a link. Now,
for every actions i, j in Sx, there exist communities h, k in H
such that xih > 0 and xjk > 0. Since the community network
G is connected, it contains a path h = h0, h1, . . . , h` = k
from h to k. Pick arbitrarily actions j1, . . . , j`−1 in A such
that xjshs

> 0, for every s = 1, . . . , `− 1. Notice now that

Λij1(x) > 0, Λj1j2(x) > 0, . . . ,Λj`−1j(x) > 0 .

This implies that ri(x1) = rj1(x1) = · · · = rj(x1), which
yields the claim.
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