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Aggregation of incomplete preference rankings: robustness 
analysis of the ZMII-technique 

Fiorenzo Franceschini1 and Domenico Maisano2  
1 fiorenzo.franceschini@polito.it      2 domenico.maisano@polito.it    

Politecnico di Torino, DIGEP (Department of Management and Production Engineering), 
Corso Duca degli Abruzzi 24, 10129, Torino (Italy) 

ABSTRACT 

A common group decision-making problem is that in which: (i) several judges express their subjective 

preference rankings regarding some objects of interest and (ii) these rankings should then be aggregated into 

a collective judgment. The authors recently developed an aggregation technique – denominated “ZMII” – 

aggregating these rankings into a ratio scaling of the objects, which represents the solution to the decision-

making problem of interest. This technique also includes a flexible response mode, which tolerates 

incomplete rankings and can therefore be adapted to various practical contexts, such as quality improvement 

activities, field surveys, product-comparison surveys, etc.. 

The aim of this article is proposing an original approach to verify the robustness of the ZMII-technique under 

the influence of various factors, especially those concerned with the degree of “completeness” of preference 

rankings (e.g., number of objects identified by judges, whether these objects are ordered or not, etc.). The 

methodology in use relies on the simulation of several thousand decision-making problems, in order to 

organically study the effect of the factors of interest. Results show a certain robustness of the ZMII-technique, 

even under relatively “unfavourable” practical conditions, characterized by very incomplete preference 

rankings. Description is supported by instructive examples. 

Keywords: Quality improvement, Thurstone’s Law of Comparative Judgment, Incomplete preference 
ranking, Generalized least squares, ZMII-technique, Robustness analysis, Factorial analysis, 
Degree of agreement, Degree of completeness.  

INTRODUCTION 

A general group-decision problem – which is transversal to many scientific disciplines, such as 

Design/Manufacturing Decision Making, Quality Improvement, Quality Management, etc. – is 

structured as follows (Keeney and Raiffa, 1993; Das and Mukherjee, 2007; Wang et al., 2017; 

Franceschini and Maisano, 2019a):  

 some objects (o1, o2, …) should be evaluated and compared on the basis of a certain attribute; 

 some judges (j1, j2, …) make their subjective judgements on these objects. In addition, judges 

may refrain from evaluating a subset of the objects because of practical impediment or lack of 

adequate knowledge; 

 The ultimate goal is to aggregate the judges’ judgements into a single collective judgment. 
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Numerous aggregation techniques have been developed so far, which differ in: (i) the response 

mode through which subjective judgments are expressed (e.g., ratings, rankings, paired-comparison 

relationships, etc.), (ii) the type of aggregation model (e.g., heuristic, statistical, fuzzy models, etc.), 

and (iii) the nature of the collective judgment (e.g., object rankings, ordinal/interval/ratio scale 

values, etc.). For an exhaustive discussion of the existing techniques, we refer the reader to (Arrow, 

1963; Nurmi, 1983; Fishburn, 1989; De Vellis, 2016; Franceschini et al., 2017). 

A key element for the success of a generic aggregation technique is the simplicity of the response 

mode (Harzing et al., 2009; Paruolo et al., 2013; Franceschini et al., 2019), for example, some 

authors showed that comparative judgments of objects (e.g., “oi is more/less preferred than oj”) are 

generally simpler and more reliable than judgments in absolute terms (e.g., “the degree of the 

attribute of oi is low/intermediate/high”) (Harzing et al., 2009; Edwards, 1957).  

The authors have recently developed an aggregation technique – denominated “ZMII” – which relies 

on the postulates and simplifying assumptions of the Thurstone’s Law of Comparative Judgment 

(LCJ) (Thurstone, 1927; Edwards, 1957; Franceschini and Maisano, 2018; Franceschini and 

Maisano, 2020a) and embodies the Generalized Least Squares (GLS) method (Kariya and Kurata, 

2004; Ross, 2014). This technique includes a relatively versatile response mode that tolerates 

“incomplete” rankings, i.e., rankings only including the objects at the top/bottom (Franceschini and 

Maisano, 2019a). For the sake of simplicity, a decision-making problem characterised by this type 

of rankings will be hereafter referred to as “incomplete ranking problem” or, even more simply, as 

“incomplete problem”. On the other hand, a decision-making problem characterized by “complete” 

rankings will be hereafter referred to as “complete ranking problem” or, even more simply, as 

“complete problem”.  

The flexible response mode of the ZMII-technique makes it adaptable to a variety of practical 

contexts, where judges do not have the concentration to formulate complete rankings; e.g., 

problems with a relatively large number of objects, field surveys, product-comparison surveys, 

customer-satisfaction survey, etc. (Harzing et al., 2009; Chen and Cheng, 2010; Lagerspetz, 2016). 

Additionally, the ZMII-technique allows (1) to construct a ratio scaling of the objects, which 

represents the output solution of the decision-making problem of interest, and (2) to estimate the 

uncertainty of this resulting scaling, by “propagating” the uncertainty of input data (Roberts, 1979; 

Zhang et al., 2016; Franceschini and Maisano, 2019a). 

An important requirement of the ZMII-technique is that, apart from the objects to be evaluated – i.e., 

o1, o2, …, on, which will be hereafter classified as “regular” objects – preference rankings also 

include two fictitious “dummy” objects, i.e., oZ and oM, which will be described in the next section1.  

                                                      
1 It is because of these two dummy objects that the technique is called “ZMII” (Franceschini and Maisano, 2019a). 
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This paper aims at proposing an original approach to organically verify the robustness of the ZMII-

technique, depending on the “degree of completeness”2 and other characteristic factors of the 

(incomplete) decision-making problems. By the term “robustness”, it is meant the ability of the 

ZMII-technique to provide a collective judgment comparable to that which would be obtained if the 

judges formulated complete rankings. This investigation is an essential step to substantiate the 

practical convenience and effectiveness of the ZMII-technique in real-world practical contexts. 

For the purpose of example, let us consider the two decisional problems in Table 1, both 

characterized by four judges (j1 to j4) formulating their individual rankings of four objects (o1 to o4). 

Objects are in this case alternative design concepts of some pocket projectors, which have to be 

ranked in terms of ease of use (i.e., attribute of interest). 

Table 1. Example of two decisional problems (one complete and one incomplete). 

 (1) Complete problem (2) Incomplete problem 
 Rankings Rankings Comment 

j1: o1 ≻ (o2 ~ o3) ≻ o4 o1 ≻ … ≻ o4 Only the object at the top and the one at the bottom of the ranking are identified.

j2: o1 ≻ o2 ≻ (o3 ~ o4) o1 ≻ o2 ≻ … Only the first two objects at the top of the ranking are identified. 

j3: o2 ≻ (o1 ~ o3 ~ o4) o2 ≻ … Only the first object at the top of the ranking is identified. 

j4: o1 ~ o2 ~ o3 ~ o4 o1 ~ o2 ~ o3  Object o4 is not assessed by the judge since it is not well-known. 

 

In the first case, rankings are complete while in the second case they are incomplete, reflecting an 

“unfavourable” practical context, in which judges do not have the possibility to formulate complete 

rankings. It can be seen that the information content of incomplete rankings represents a subset of 

the information content of complete rankings. For example, o1 is in the top and o4 is in the bottom 

of the incomplete ranking by j1, but nothing is know about the mutual relationships between the 

intermediate objects; on the other hand, in the corresponding complete ranking, this information is 

given: o2 ~ o3. 

Considering that the ZMII aggregation technique can be applied to both the decision-making 

problems, a question may arise: “To what extent will the solution of an incomplete problem be 

distorted (due to the lower information content), compared to that of a corresponding complete 

problem?” Or, reversing the question: “To what extent does the ZMII-technique tolerate incomplete 

problems, with no significant distortion of the solution compared to corresponding complete 

problems?”. 

From a methodological point of view, a large number of decision-making problems with different 

“structural” factors (e.g., number of objects, number of judges, etc.) will be simulated; then, the 

solution of complete problems will be compared with the solutions of a number of corresponding 

incomplete ones (e.g., problems characterized by rankings with the more/less preferred objects only 

and/or without the dummy objects, etc.). The solution of a generic complete problem will be used as 

                                                      
2 This concept will be formalised and clarified below. 
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a “gold standard” to check the goodness of the solutions of the corresponding incomplete problems. 

Reversing the perspective, the present study will tell us how far we can go in making preference 

rankings more and more incomplete – without deteriorating the solution excessively. 

The rest of the paper is organized into five sections. The section “Background information” briefly 

recalls the response mode and the basic principles of the ZMII-technique. The section 

“Methodology” illustrates the methodology to examine the robustness of the solution of an 

incomplete problem, with respect to that of a “source” complete problem; special attention will be 

devoted to the description of a set of (simulated) factorial experiments. The section “Results” 

presents and discusses the results of these experiments in detail, highlighting their practical 

consequences; the description is supported by an extensive use of explanatory graphs. The section 

“Concluding remarks” summarizes the original contributions of this paper and its practical 

implications, limitations and suggestions for future research. Further details on the results of this 

research are contained in the section “Appendix”. 

BACKGROUND INFORMATION 

This section briefly recalls the ZMII-technique and provides preparatory information to understand 

the rest of the paper. The presentation is organized into three subsections concerning: (1) the 

response mode, (2) the artificial deterioration of complete rankings (into incomplete ones), and (3) 

the rationale of the aggregation technique in use. 

Response mode 

A prerequisite of the ZMII-technique is that each judge involved in the problem formulates a 

preference ranking of the objects – i.e., a sequence of objects in order of preference, with the more 

preferred ones in the top positions and the less preferred ones in the bottom ones.  

Apart from regular objects (o1, o2, …), judges may also include two (fictitious) dummy objects in 

their rankings: i.e., one (oZ) corresponding to the absence of the attribute of interest, and one (oM) 

corresponding to the maximum-imaginable degree of the attribute (Franceschini and Maisano, 

2020a). When dealing with these dummy objects, two important requirements should be considered: 

1. oZ should be positioned at the bottom of a preference ranking, i.e., there should not be any other 

object with preference lower than oZ. In the case the attribute of another object is judged to be 

absent, that object will be considered indifferent to oZ and positioned at the same hierarchical 

level. 

2. oM should be positioned at the top of a preference ranking, i.e., there should not be any other 

object with preference higher than oM. In the case the attribute of another object is judged to be 
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the maximum-imaginable, that object will be considered indifferent to oM and positioned at the 

same hierarchical level. 

In the best cases, judges formulate complete preference rankings. Borrowing the language from 

Order Theory, any ranking including all (regular and dummy) objects, according to a hierarchical 

sequence with relationships of strict preference and/or indifference only, can be classified as linear 

(Gierz et al., 2003). Unfortunately, the formulation of complete preference rankings may sometimes 

be problematic (Harzing et al., 2009). To overcome this obstacle, a flexible response mode that 

tolerates incomplete preference rankings can be adopted. Below is a list of some possible types of 

incomplete preference rankings. 

 Preference rankings including only the more preferred objects (or “t-objects”, where “t” stands 

for “top”) and the less preferred ones (or “b-objects”, where “b” stands for “bottom”); these 

rankings will be hereafter denominated “Type-t&b”. The t parameter is conventionally defined 

as the number of regular objects (i.e., excluding the two dummy objects) within the t-objects, 

while the b parameter is conventionally defined as the number of regular objects within b-

objects. In the example in Figure 1(a), the judge merely specifies the two objects at the top and 

the two objects at the bottom of the ranking, therefore t = b = 2. 

 Preference rankings including only the more preferred objects (i.e., t-objects) among those 

available; see the example in Figure 1(b), in which t = 2. From now on, these rankings will be 

denominated “Type-t”. 

 Preference rankings not including the two dummy objects (oZ and oM), e.g., in the case judges 

find it difficult to envisage them. These preference rankings will be classified as “quasi-

complete” if they include all regular objects; see the example in Figure 1(c).  

 Combining the previous three types of incomplete preference rankings, one can obtain Type-t&b 

or Type-t preference rankings that do not include the dummy objects.   

 To contemplate the fact that judges may not be able to evaluate certain objects – e.g., since they 

are not familiar with them – preference rankings excluding some objects will also be tolerated 

(see Figure 1(d)). 

The upper part of Figure 1 exemplifies some judges’ verbal descriptions from which the previous 

types of incomplete rankings can be deduced. Figure 1 also shows that a generic incomplete ranking 

can be transformed into a “reconstructed” ranking, which includes all the (dummy and regular) 

objects, with the addition of appropriate incomparability relationships. Borrowing the language 

from Order Theory, these other rankings can be classified as partial, i.e., apart from strict 

preference (e.g., “oi ≻ oj”) and indifference (e.g., “oi ~ oj”) relationships, they may also contain 

incomparability relationships (e.g., “oi || oj”) among the objects (Gierz et al., 2003). E.g., 
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considering Type-t&b rankings, the objects that are not considered by judges can be allocated at an 

intermediate hierarchical level with respect to the t- and b-objects, with mutual incomparability 

relationships. As for Type-t rankings, the objects that are not considered by judges can be allocated 

at a lower hierarchical level with respect to the t-objects. As for the rankings that do not include 

oZ and oM, they can be reconstructed in compliance with the following constraints:  

oM

oZ

o1, o6

o3

o4, o7

o2, o5

{oM||o3}≻(o1~o6)≻(o2~o5)≻{oZ||(o4~o7)} {[oM ≻o1≻o2≻ (o3~o7~oZ)] ||o4||o5||o6}

oM ≻ o1 ≻ o2 ≻ (o3~o7~oZ) 

o4, o5 and o6 

o1

oM

o3, o7, oZ

o2

o1 

oM 

o3, o7, oZ 

o2 

o3 ≻ (o1~o6) ≻ (o2~o5) ≻ (o4~o7) 

oZ and oM 

o1, o6

o3

o4, o7

o2, o5

(oM~o1) ≻ o2 ≻ […] ≻ (o3~o4~oZ)  

oM, o1 

o2 

o6 o5 o7 

o5, o6 and o7 

oM, o1 

o2 

o3, o4, oZ 

[…] 

t-objects 

b-objects 

o3, o4, oZ 

(oM~o1) ≻ o2 ≻ {o5||o6||o7} ≻ (o3~o4~oZ)  

t-
ob

je
ct

s 
b-

ob
je

ct
s 

graphic form: 

Incomplete  
rankings 

analytic form: 

graphic form: 

Reconstructed 
(partial) rankings 

analytic form: 

missing objects: 

oM, o1

o2

t-
ob

je
ct

s 

o4o3 o5 o6 oZo7

(oM~o1) ≻ o2 ≻ {o3||o4||o5||o6||o7||oZ} 

(oM~o1) ≻ o2 ≻ […] 

o3, o4, o5, o6, o7 and oZ 

o4 o6o5

oM, o1

o2

[…] 

t-objects 

Verbal descript. 
by the judge 

“The top objects are o1 and o2, which are 
sorted in descending order; furthermore, I 
believe that o1 meets the maximum-
imaginable degree of the attribute. 

The bottom objects are o3 and o4, which 
are indifferent with each other; in addition, 
both these objects are characterized by the 
complete absence of the attribute of 
interest.” 

“The top objects are o1 and o2, which are 
sorted in descending order; furthermore, I 
believe that o1 meets the maximum-
imaginable degree of the attribute.” 

“The ranking is:  
 o3 ≻ (o1~o6) ≻ (o2~o5) ≻ (o4~o7). 
I can't tell whether or not the top object 
(o3) meets the maximum-imaginable 
degree of the attribute or whether or not 
the bottom objects (o4 and o7) are 
characterized by the absence of the 
attribute.” 

“The ranking is: o1 ≻ o2 ≻ (o3 ~ o7). 
While o1 does not meet the maximum-
imaginable degree of the attribute, o3

and o7 are both characterized by the
absence of the attribute of interest. 
I do not know the remaining objects
(o4, o5 and o6) well enough, so I 
refrain from evaluating them.” 
 

(a) Type-t&b ranking (t=b=2) (d) Ranking excluding some 
(regular) objects 

(b) Type-t ranking (t=2)      (c) Quasi-complete ranking 
     (without oZ and oM) 

 
Figure 1. Example of four different types of incomplete rankings, including seven regular objects (o1 to o7) and two 
dummy objects (oZ and oM). These rankings can be turned into reconstructed (partial) rankings, which include all the 
(regular and dummy) objects; for ease of understanding, the reconstructed parts are marked in red. 

 

1. the dummy object oM should – by definition – be positioned at the same hierarchical level of the 

top object(s) or above. To take this hesitation into account, a relationship of incomparability 

between oM and the top object(s) can be introduced. E.g., when reconstructing the ranking in 

Figure 2(b), oM is inserted at the top of the ranking, with a relationship of incomparability with 

respect to the top object o1; 

2. the dummy object oZ should  – by definition – be positioned at the same hierarchical level of the 

bottom object(s) or below. To take this other hesitation into account, a relationship of 

incomparability between oz and the bottom object(s) can be introduced. E.g., when 

reconstructing the ranking in Figure 2(b), oz is inserted at the bottom of the ranking, with a 

relationship of incomparability with respect to the bottom objects o5 and o6. 
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Let us now make a brief digression on the meaning of the term “incomparability”. In the Multiple 

Criteria Decision Analysis (MCDA) field, it generally depicts a comparison between two objects, in 

which a judge opts neither for a strict preference nor indifference relationship (Bana e Costa and 

Vansnick, 1999). This hesitation is generally due to lacking and/or contradictory information 

available, concerning the two objects. Table 2 summarizes a plurality of possible practical situations 

that lead to incomparability. 

Table 2. Possible situations occurring when comparing two generic objects (oi and oj), depending on the amount and the 
congruence of the information available. This scheme was constructed by reworking the content of (Tsoukiàs and Vinke 
1997, section 2). 

Practical situation Information available  Relation
1. oi is preferred to oj as the attribute of oi is judged definitely better than that 

of oj, from any point of view. 
Proper amount Congruent oi ≻ oj 

2. oi and oj are indifferent because their attributes are indifferent from any 
point of view. 

Proper amount Congruent oi ~ oj 

3. oi and oj are in a conflicting position due to the clearly contradictory 
information about them. 

Proper amount Contradictory oi || oj 

4. oi and oj could be either indifferent or conflicting, but the lack of relevant 
information in any of the two directions leads to hesitation. 

Lacking  ? idem 

5. oi and oj could be either indifferent or conflicting, but excessive and 
contradictory information in any of the two directions leads to hesitation. 

Excessive amount Contradictory idem 

6. oi could be preferred or equivalent to oj, but the lack of relevant 
information precludes determining the most appropriate relationship. 

Lacking Congruent idem 

7. oi could be preferred or equivalent to oj, but excessive and contradictory 
information precludes determining the most appropriate relationship. 

Excessive amount Contradictory idem 

8. oj cannot be preferred to oi, but the lack of relevant information precludes 
determining whether (i) oi is preferred to oj or (ii) they are conflicting. 

Lacking  ? idem 

9. oj cannot be preferred to oi, but excessive and contradictory information 
precludes determining whether (i) oi is preferred to oj or (ii) they are 
conflicting. 

Excessive amount Contradictory idem 

10. oi could be preferred to oj, but bad information leads to hesitation. Lacking Contradictory idem 

 

Firstly, we notice that there is no incomparability if-and-only-if the available information meets the 

following two requisites at the same time: it should be (i) in the appropriate amount and (ii) non 

contradictory (see the practical situations at points 1 and 2 of Table 2). Since the above requisites 

are not met in the remaining eight practical situations (at points 3 to 10), they all result in 

incomparability. 

For the sake of simplicity, the present study will be limited to situations of incomparability that can 

be ascribed to that at point 6: “oi could be preferred or equivalent to oj, but the lack of relevant 

information precludes determining the most appropriate relationship”. The incomparability of two 

objects will therefore be seen as a sort of hesitation between the relationships of strict preference 

and indifference, excluding conflicting situations. Of course, the authors are aware that this 

meaning of the term “incomparability” is narrower than that in other MCDA contexts. 



8 

Artificial deterioration of complete rankings 

Let us now make a brief digression to show a contrivance that will be used later in our analysis: i.e., 

the artificial “deterioration” of a complete ranking to generate a set of incomplete preference 

rankings that are compatible3 with it. Precisely, this contrivance will be used to generate incomplete 

rankings, artificially reproducing practical circumstances where the formulation of complete ones 

can be problematic. 

Let us focus on the example in Figure 2, in which an initial complete preference ranking is given; 

Figure 2(a) shows the decomposition of this ranking into paired-comparison relationships of strict 

preference and indifference. Next, the initial complete ranking can be gradually deteriorated and 

turned into several incomplete preference rankings; e.g., consider the quasi-complete ranking in 

Figure 2(b), the Type-t&b ranking in Figure 2(c), the Type-t&b ranking in Figure 2(d), etc.. It can 

be noticed that for these incomplete rankings, new paired-comparison relationships of 

incomparability gradually replace those of strict preference and indifference in the complete 

ranking.  

The compatibility between the initial complete ranking and the respective incomplete rankings is 

given by the fact that – excluding the paired-comparison relationships of incomparability – the 

remaining ones are identical. In general, a generic complete ranking can be deteriorated in different 

ways, generating a large set of incomplete rankings that are compatible with it. 

Returning to the artificially-generated incomplete rankings, the degree of completeness of a generic 

k-th ranking can be quantitatively described by the synthetic indicator: 











2

ranking preference in the relationscomparison paired  usable"" of No.
n

c , (1) 

which expresses the fraction of “usable” paired-comparison relationships – i.e. of strict preference 

or indifference – with respect to the total ones: 21
2

/)n(n
n









, where n is the total number of 

objects of the problem; the adjective “usable” indicates that these are the only relationships that 

contribute to the solution of the decision-making problem of interest. By way of example, we 

determined the c values related to the rankings exemplified in Figure 2 (below the tables containing 

the paired-comparison relationships). This indicator tends to increase while rankings become more 

and more complete; for complete preference rankings, c is obviously 1. 

Interestingly, even rankings that are apparently very incomplete may contain a relevant portion of 

usable paired-comparison relationships. E.g., consider the Type-t ranking in Figure 2(f), in which 

                                                      
3 The concept of compatibility will be clarified below. 
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only the two more preferred regular objects are selected but not ordered; despite the apparently high 

degree of incompleteness, half of the usable paired-comparison relationships are still preserved 

(c = 50%). 

(c) Type-t&b ranking (t=b=2) 
with ordered objects and oZ/oM 

(oM~o1)≻o2≻{o3||o4||o7}≻(o5~o6)≻oZ 

o4
o3

o7

oM, o1

o2

o5, o6

oZ

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM ≻ -        
o1 ≻ ~ -       
o2 ≻ ≺ ≺ -      
o3 ≻ ≺ ≺ ≺ -     
o4 ≻ ≺ ≺ ≺ || -    
o5 ≻ ≺ ≺ ≺ ≺ ≺ -   
o6 ≻ ≺ ≺ ≺ ≺ ≺ ~ -  
o7 ≻ ≺ ≺ ≺ || || ≻ ≻ -

(c = 33/36 = 91.7%) 

G
ra

ph
ic

 a
nd

 a
na

ly
ti

c 
fo

rm
 

P
ai

re
d-

co
m

p.
 r

el
at

io
ns

hi
ps

 
an

d 
c 

va
lu

e 
 

Possible paired-comp. relationships:

 “≻” and “≺” strict preference; 
 “~”   indifference; 
 “||”   incomparability. 

(a) Initial complete ranking 

(oM~o1)≻o2≻(o3~o7)≻o4≻(o5~o6)≻oZ 

oM, o1 

o2 

o4 

o5, o6 

oZ 

o3, o7 

 oZ oM o1 o2 o3 o4 o5 o6 o7 
oZ -         
oM ≻ -        
o1 ≻ ~ -       
o2 ≻ ≺ ≺ -      
o3 ≻ ≺ ≺ ≺ -     
o4 ≻ ≺ ≺ ≺ ≺ -    
o5 ≻ ≺ ≺ ≺ ≺ ≺ -   
o6 ≻ ≺ ≺ ≺ ≺ ≺ ~ -  
o7 ≻ ≺ ≺ ≺ ~ ≻ ≻ ≻ - 

(c = 36/36 = 100%) 

{oM||o1||o2}≻{o3||o4||o7}≻{o5||o6||oZ} 

o4 o3 o7 

o1 oM o2 

o5 oZ o6 

(e) Type-t&b ranking (t=b=2) with 
unordered objects and without oZ/oM 

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM ≻ -        
o1 ≻ || -       
o2 ≻ || || -      
o3 ≻ ≺ ≺ ≺ -     
o4 ≻ ≺ ≺ ≺ || -    
o5 || ≺ ≺ ≺ ≺ ≺ -   
o6 || ≺ ≺ ≺ ≺ ≺ || -  
o7 ≻ ≺ ≺ ≺ || || ≻ ≻ -

(c = 27/36 = 75%) 

{oM||o1||o2}≻{o3||o4||o5||o6||o7||oZ} 

(f) Type-t ranking (t=2) with  
 unordered objects and without oZ/oM 

o1
oM o2

o4 o3 o5 o6 oZo7

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM ≻ -        
o1 ≻ || -       
o2 ≻ || || -      
o3 || ≺ ≺ ≺ -     
o4 || ≺ ≺ ≺ || -    
o5 || ≺ ≺ ≺ || || -   
o6 || ≺ ≺ ≺ || || || -  
o7 || ≺ ≺ ≺ || || || || -

(c = 18/36 = 50%) 

(b) Quasi-complete ranking 
(without oZ and oM) 

{oM||o1}≻o2≻(o3~o7)≻o4≻{(o5~o6)||oZ} 

o2

o4

o3, o7

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM ≻ -        
o1 ≻ || -       
o2 ≻ ≺ ≺ -      
o3 ≻ ≺ ≺ ≺ -     
o4 ≻ ≺ ≺ ≺ ≺ -    
o5 || ≺ ≺ ≺ ≺ ≺ -   
o6 || ≺ ≺ ≺ ≺ ≺ ~ -  
o7 ≻ ≺ ≺ ≺ ~ ≻ ≻ ≻ -

(c = 33/36 = 91.7%) 

oZo5, o6 

oM o1

{oM||o1}≻o2≻{o3||o4||o7}≻{(o5~o6)||oZ}

(d) Type-t&b ranking (t=b=2) with 
ordered objects and without oZ/oM 

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM ≻ -        
o1 ≻ || -       
o2 ≻ ≺ ≺ -      
o3 ≻ ≺ ≺ ≺ -     
o4 ≻ ≺ ≺ ≺ || -    
o5 || ≺ ≺ ≺ ≺ ≺ -   
o6 || ≺ ≺ ≺ ≺ ≺ ~ -  
o7 ≻ ≺ ≺ ≺ || || ≻ ≻ -

(c = 30/36 = 83.3%) 

oM o1

oZo5, o6 

o2 

o4 o3 o7
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Figure 2. Example of gradual deterioration of a (complete) preference ranking (a), generating several incomplete 
rankings: (b), (c), (d), (e) and (f); for ease of understanding, the “reconstructed” parts are marked in red. 

 
The indicator c can be extended from a single preference ranking to sets of m preference rankings – 

such as those characterizing a decision-making problem with m judges. We thus define a new 

aggregated indicator ( c ), which depicts the overall degree of completeness: 
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, (2) 

ck being the degree of completeness of a generic k-th ranking. 

Eq. 2 also shows that c  can also be interpreted as the arithmetic mean of the c values related to the 

set of preference rankings under consideration. 

For more examples about the artificial deterioration of complete rankings into incomplete ones, we 

refer the reader to the section “Example of generation of incomplete rankings” (in the Appendix). 

Rationale of the aggregation technique 

The mathematical formalization of the problem relies on the postulates and simplifying assumptions 

of the LCJ by Thurstone (1927), who postulated the existence of a psychological/psychophysical 

continuum, in which objects are positioned depending on the degree of a certain attribute. The 

position of a generic i-th object (fi) is postulated to be distributed normally, in order to reflect the 

intrinsic judge-to-judge variability: fi ~ N(xi, 2

ix
 ), where xi and 2

ix
  are the unknown mean value and 

variance related to the degree of the attribute of that object. Additionally, the distributions of 

different objects are considered equally dispersed and equally correlated with each other 

(Thurstone, 1927; Edwards, 1957). Considering two generic objects, oi and oj, and having 

introduced further simplifying hypotheses (Thurstone, 1927; Edwards, 1957), it can be asserted 

that: 

pij = P[(fi – fj)V 0] = 1 – [-(xi – xj)],  (3) 

which expresses the probability (pij) that the position of fi is higher than that of fj,  being the 

cumulative distribution function of the standard normal distribution z ~ N(0, 1). Although pij is 

unknown, it can be estimated using the information contained in a set of judgments expressed by a 

number (m) of judges (Thurstone, 1927; Edwards, 1957). For more information on the estimation of 

the pij values, based on the positioning of the objects in the (reconstructed) rankings of judges, see 

(Franceschini and Maisano, 2019a). 

From Eq. 3 it can be inferred that: 

xi – xj = --1(1 – pij). (4) 
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Extending the reasoning to all possible pairs of objects, among which relationships of strict 

preference or indifference can be deduced (Franceschini and Maisano, 2019a), and introducing 

further simplifying assumptions, an over-determined system of (q) equations (like Eq. 4) can be 

then obtained. Since this system consists of linear equations with respect to the unknowns (i.e., xi 

values), it can be expressed in matrix form as: 

  0BXA 













],0[0
1

qhbxa h

n

k
khk





, (5) 

X = […, xi, …]T 1 nR  being the column vector containing the unknowns of the problem, ahk being 

a generic element of matrix A nqR  , and bh being a generic element of vector B 1 nR . For details 

on the construction of A and B, see (Gulliksen, 1956). 

Then, this system can be solved by applying the GLS method (Kariya and Kurata, 2004), which 

allows to obtain an estimate of the mean degree of the attribute of each object: 

  BWAAWAX 
 TT 1

, (6) 

where W is a (squared) matrix encapsulating the uncertainty related to the equations of the system; a 

practical way to define W is to apply the Multivariate Law of Propagation of Uncertainty (MLPU) 

to the system in Eq. 6, referring to the input variables affected by uncertainty (Kariya and Kurata, 

2004), i.e., the pij values; for details, see (Franceschini and Maisano, 2019a). 

The scale values in X are expressed on an arbitrary interval scale (Thurstone, 1927). The 

uncertainty of the solution can be estimated through a covariance matrix X, which can be obtained 

by propagating the uncertainty of input data (i.e., pij values), through the following relationship: 

  1
 AWAX

T . (7) 

Through the following transformation, the scale value of a generic i-th object (xi) is transformed 

into a new scale value (yi), which is defined in the conventional range [0, 10]: 

    
T

ZM

ZiT
i xx

xx
...y... 











 ..., 100,...,, XXYY ,  (8) 

where: xZ and xM are the scale values of oZ and oM in the initial interval scale; xi is the scale value of 

a generic i-th object in the initial interval scale; yi is the scale value of a generic i-th object in the 

new scale (Franceschini and Maisano, 2019a). Since scale y “inherits” the interval property from 

scale x and has a conventional zero point that corresponds to the absence of the attribute (i.e., 
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yZ = 0), it can be reasonably considered as a ratio scale, without any conceptually prohibited 

“promotion” (Franceschini et al., 2019). 

Next, the uncertainty related to the elements in  Tiy... ... ,,Y 1 nR  can be determined by applying 

a classic approach borrowed from Metrology to Eq. 8: the so-called Delta Method, also referred as 

Law of Propagation of Uncertainty  or Error Transmission Formula (JCGM100:2008 2008). It is 

thus obtained: 

   
T

XYXXYY JJ  ΣΣ , (9) 

where  XYJ nnR   is a Jacobian matrix containing the partial derivatives related to the equations of 

the system in Eq. 8, with respect to the elements of X ; for details, see (Franceschini and Maisano, 

2019a). 

Combining Eqs. 7 and 9, YΣ  can be expressed as:  

   
TT

XYXYY JAWAJ   ])[(Σ 1 . (10) 

Assuming that the pij and yi values are normally distributed, a 95% confidence interval related to 

each yi value can be computed as: 

iyUy iiii  2 , (11) 

iU  being the so-called expanded uncertainty of yi with a coverage factor k = 2 and )i,i(,i Y  

(JCGM 100:2008, 2008).  

METHODOLOGY 

General approach and response indicators 

With the aim of investigating the robustness of the solution provided by the ZMII-technique for 

incomplete problems, the methodological approach is articulated into several general points (see the 

flowchart in Figure 3): 

 Numerous complete problems are randomly generated, determining the relevant solutions.  

 These complete problems are then artificially deteriorated into incomplete ones, determining the 

new corresponding solutions (see the example in Figure 2). It is assumed that each complete 

problem has the same number of incomplete problems (i.e., nineteen, as explained in detail 

below). 
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3. Solution of the complete problem, which will be used as a “gold standard” 

2. Consider a complete problem at a time 

1.  Random generation of multiple complete problems 

4. Generation of several corresponding incomplete problems,  
  through the artificial deterioration of the complete one 

9.  Have all incomplete problems been considered? 
NO YES (next incompl. problem) 

11. End 

YES (next complete problem) 
10.  Have all complete problems been considered? 

5. Consider an incomplete problem at a time 

6.  Solution of the incomplete problem 

7. Compare the incomplete problem solution with the “gold standard” 

and determine the relevant   and   values (Eqs. 4 and 5) 

NO 

12.Data related to incomplete problems 

8. Add the data related to that 
incomplete problem in a data log 

 

Figure 3. Flowchart representing the proposed methodological approach.   and   are two response indicators that will 
be defined later on.  

 

 The solution of each incomplete problem is compared with the solution of the corresponding 

(source) complete problem, which can be interpreted as a sort of “gold standard”. In fact, it can 

be demonstrated that the ZMII’s solution to a complete problem coincides with that one provided 

by Thurstone’s LCJ (Thurstone, 1927; Gulliksen, 1956; Edwards, 1957; Arbuckle and Nugent, 

1973; Franceschini and Maisano, 2019a), which is a very consolidated aggregation technique, 

only applicable to complete problems. This is a sort of guarantee of plausibility of the ZMII’s 

results. 

The robustness analysis is performed using two appropriate response indicators. The first one 

( ) expresses the deviation of the solution of a certain incomplete problem from that of the 

corresponding (source) complete problem, and it is structured as a Root-Mean-Square Error 

(RMSE) of the deviations between the yi values resulting from these two problems (Ross, 2014): 

 
n

yy
n

i
ii




 1

2

(complete)

 , (12) 

iy  being the scale value of the i-th object, resulting from the solution of the incomplete problem 

(i.e.,  Tiy. ... ,, ..Y ); 

(complete)iy  being the scale value of the i-th object, resulting from the solution of the complete 

problem (i.e.,  Tiy. ... ,, .. (complete)(complete) Y ); 

n being the number of (dummy and regular) objects. 
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The closer the 
(complete)iy  values get to the iy  values, the more   will tend to decrease; in this 

sense, this indicator is a measure of (in)accuracy (JCGM 200:2012, 2012). The calculation of 

this response indicator for complete rankings will obviously “degenerate” into 0 . 

The second response indicator is: 

n

n

i
i

 1

2
 , (13) 

2
i  being the variance related to the scale value ( iŷ ) of the i-th object, i.e., one of the elements 

contained in the diagonal of the covariance matrix of Y (i.e., Y, defined in Eqs. 9 and 10). This 

response indicator – which can be calculated for both complete and incomplete problems – 

depicts the average dispersion of the solution. 

Factorial simulations 

This section describes the structured factorial (simulated) experiments that have been carried out. 

The scheme in Figure 4 summarizes the (sub-)factors considered, dividing them into three families: 

a. Structural factors, which characterize a complete problem and the corresponding incomplete 

problems derived from it; 

b. Deterioration sub-factors, which determine the way a complete problem is artificially 

“deteriorated”, originating several incomplete problems. 

c. Completeness factor, which quantifies the degree of completeness of each problem. 

 
(a) Structural factors:

 Number of regular objects (nreg); 
 Number of judges (m); 
 Qualitative degree of agreement among judges; 
 Kendall’s concordance coefficient (W). 

 
(b) Deterioration sub-factors: 

 Type of rankings (hereafter abbreviated as “Ranking type”); 
 Ability of the judge to manage oZ and oM (hereafter abbreviated as “Manage oZ/oM?”); 
 Value of t and/or b (hereafter abbreviated as “t/b value”);  
 Ability of the judge to order the t- and/or b-objects (hereafter abbreviated as “Order t/b-objects?”).

(c) Completeness factor: 

 Overall degree of completeness of the problem (c).  
Figure 4. Scheme of the (sub)factors characterizing the proposed factorial simulations. The dashed arrow indicates that 
the degree of completeness of a problem ( c ) is influenced by the four deterioration sub-factors. 

 

Several complete problems are initially generated, according to the logic illustrated in the following 

three points. 
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1. The number of regular objects (nreg, which does not take into account the two dummy objects4) 

is varied over nine levels: nreg = 4, 5, 6, 7, 8, 9, 10, 11 and 12. 

2. For each of the above nreg values, the number of judges (m) – which obviously coincides with the 

number of preference rankings – is varied over six levels: m = 5, 10, 15, 20, 25 and 30. 

3. For each combination of nreg and m values, four complete decision-making problems are 

randomly generated; these problems will be associated with one category expressing the 

qualitative degree of agreement of judges: very low, low, intermediate, high. Below is a detailed 

description of the procedure for the random generation of the complete problems and their 

classification into the above four categories. 

(a) A random scaling of the regular objects is generated, assigning a (random) scale value 

between 0 and 100 to each object.  

(b) The scale value of each object is randomly distorted by introducing a uniformly distributed 

error in the range ± the value of  is conventionally set to 10, 20, 30, and 40, respectively 

for a very low, low, intermediate, and high degree of inter-judge agreement. The resulting 

scale value is then rounded to the nearest ten (e.g., 20, 30, 40, etc.). Of course, this scale 

value can be outside the range [0, 100], with no effect on the subsequent steps. 

(c) The latter scaling is then translated into a new complete preference ranking.  

(d) Steps (b) and (c) are repeated m times, obtaining a complete problem with m randomly 

generated complete preference rankings.  

The inter-judge degree of agreement of a resulting complete problem can be better quantified 

through the so-called Kendall’s coefficient of concordance (Kendall, 1962; Legendre 2010; 

Franceschini and Maisano, 2019b): 

 

  












m

j
j

n

i
i

Tmnnm

nnmR
W

1

22

22

1

2

1

1312
, (14) 

where  

 n is the total number of (dummy and regular) objects;  

 Ri is the sum of the rank positions for the i-th object (oi), i.e.,  


m

i iji rR
1

, in which terms 

rij represent the rank of oi according to the j-th judge;  

 n is the total number of objects; 

 m is the total number of rankings; 

                                                      
4 nreg = n – 2, n being the total number of (regular and dummy) objects. 
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 Tj is a correction factor for ties5,  



jg

i
iij ttT

1

3 , in which tj is the number of tied ranks in the 

i-th group of tied ranks (where a group is a set of values having constant tied rank) and gj is 

the number of groups of ties in the set of ranks (ranging from 1 to n) for judge j. Thus, Tj is 

the correction factor required for the set of ranks for judge j. Note that if there are no tied 

ranks for judge j, Tj = 0.  

The range of W is between 0 (full disagreement) and 1 (full agreement). For more information on 

the construction of W, see (Kendall, 1962; Legendre, 2010; Franceschini and Maisano, 2019b). 

Obviously, the W value associated with a generic complete problem is likely to be correlated to the 

corresponding qualitative degree of inter-judge agreement; this will be empirically demonstrated in 

the next section. 

Thus, 9ꞏ6ꞏ4 = 216 (i.e., number of nreg levels times number of m levels times number of levels of 

the qualitative inter-judge degree of agreement) complete decision-making problems were 

generated. For each of them, nineteen incomplete problems are then generated by changing the 

deterioration sub-factors, according to the contrivance anticipated in the sub-section “Artificial 

deterioration of complete rankings”. Precisely: 

(a) A single (quasi-complete) problem with m quasi-complete rankings. These incomplete rankings 

realistically represent practical situations in which the judges, while patiently considering all 

the regular objects, do find it difficult to manage oZ and oM. 

(b) Three incomplete problems with m Type-t&b rankings including dummy objects, where t- and 

b-objects are ordered. For the first, second and third of these problems, t and b were set to 1, 2 

and 3 respectively; in other words, apart from the dummy objects, the incomplete rankings 

include only 1, 2 and 3 more and less preferred regular objects6. These rankings can be 

appropriate when judges are not required to include all the regular objects, e.g., due to lack of 

time, concentration, etc.. 

(c) Three incomplete problems characterized by m Type-t&b rankings without dummy objects, 

where t- and b-objects are ordered. For the first, second and third of these problems, t and b 

were set to 1, 2 and 3 respectively. These rankings may be appropriate when judges are not 

required to include all the regular objects and find it difficult to manage oZ and oM. 

                                                      
5 In this case, “ties” are represented by indifference relationships. 
6 Since these incomplete rankings have been obtained by deteriorating complete rankings, there may be practical cases 
in which it is not possible to identify t-and-only-t t-objects and/or b-and-only-b b-objects, due to indifference 

relationships (“~”) between some of them. For example, considering the complete ranking oM≻(o1~o2)≻o3≻o4≻… and 
having set t=1, it is not possible to identify one-and-only-one t-object, since o1 and o2 are tied. To overcome this 
ambiguity, we have conventionally opted to include all the (possibly) tied objects within the t-objects, resulting in the 

following incomplete ranking oM≻(o1~o2)≻{o3||o4||...}... and actually switching from t=1 to t=2. With simple 
adaptations, the same reasoning can be extended to b-objects. 
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(d) Three incomplete problems characterized by m Type-t&b rankings without dummy objects and 

with unordered t- and b-objects. For the first, second and third of these problems, t and b were 

set to 1, 2 and 3 respectively. The degree of completeness of these problems is significantly 

lower than that of the incomplete problems at point (c), since judges only select the t- and b-

objects, without ordering them. 

(e) Three incomplete problems with m Type-t rankings including dummy objects, where t- and b-

objects are ordered. For the first, second and third of these problems, t was set to 1, 2 and 3 

respectively. These rankings can be appropriate for decision-making problems aimed at ranking 

the more preferred objects only, neglecting the less preferred ones. 

(f) Three incomplete problems characterized by m Type-t rankings without dummy objects, where 

t-objects are ordered. For the first, second and third of these problems, t was set to 1, 2 and 3 

respectively. These rankings may be appropriate for decision-making problems aimed at 

ranking the more preferred objects only, in situations in which judges find it difficult to manage 

oZ and oM. 

(g) Three incomplete problems characterized by m Type-t rankings without dummy objects and 

with unordered t-objects. For the first, second and third of these problems, t was set to 1, 2 and 

3 respectively. 

The section “Example of generation of incomplete rankings” (in the Appendix) further exemplifies 

the generation of incomplete rankings. As described before, a number of incomplete problems with 

variable degrees of incompleteness can be generated; for example, the “least incomplete” ones are 

the quasi-complete problems, while the most severe incompleteness is the one related to type-t 

problems with t = 1. The degree of completeness of the resulting incomplete problems will be 

qualitatively estimated using the indicator c  (in Eq. 2). 

The solution of each of the above incomplete problems will be compared with that of the 

corresponding (source) complete problem, determining the two response indicators   and   (in 

Eqs. 12 and 13). The total number of (complete and incomplete) decision-making problems 

generated will therefore be: (9  6  4)  (1 + 19) = 4,320 (see also Figure 5). 

The overall degree of completeness of a specific incomplete problem will be evaluated through c  

(see Eq. 2). Regarding the inter-judge degree of agreement, Eq. 14 cannot be applied directly to 

incomplete problems; in fact, W is only applicable to complete problems. For simplicity, it was 

assumed that incomplete problems “inherit” the W values of the corresponding (source) complete 

problems. The same can be extended to the qualitative degree of agreement (very low, low, 

intermediate and high). We plan to overcome this approximation in the future by developing a 

revised version of W, which can also be applied to incomplete rankings (Franceschini and Maisano, 

2020b). 
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1. Change the number of regular objects (nreg) at nine levels (i.e., from 4 to 12). 

2. Change the number of judges (m) at six levels (i.e., 5, 10, 15, 20, 25 and 30). 

3. Change the degree of agreement of judges at four levels (very low, low, intermediate and high). 

4.1 Generate a complete problem with rankings matching the factors set at points 1, 2 and 3. 

 Solve the problem; the resulting solution will be considered as a “gold standard”. 

4.2 Deterioration of the afore-mentioned complete problem into the following (19) incomplete problems: 

4.2.1 Obtain a quasi-complete problem (i.e., with regular objects only). 

4.2.2 Change the t and b parameters at three levels (i.e., 1, 2 and 3). 

4.2.2.1 Obtain a problem consisting of type-t&b rankings with ordered t- and b-objects, and with oZ and oM. 

4.2.2.2 Obtain a problem consisting of type-t&b rankings, with ordered t- and b-objects, and without oZ and oM. 

4.2.2.3 Obtain a problem consisting of type-t&b rankings, with unordered t- and b-objects. 

4.2.2.4 Obtain a problem consisting of type-t rankings with ordered t-objects, and with oZ and oM. 

4.2.2.2 Obtain a problem consisting of type-t rankings, with ordered t-objects, and without oZ and oM. 

4.2.2.3 Obtain a problem consisting of type-t rankings, with unordered t-objects. 

4.2.3 Solve the problems at points 4.2.1 and 4.2.2, and compare the resulting solutions with the “gold standard”. 

(x9)

(x6)

(x4)

(1)

(1)

(1x3)

(1x3)

(1x3)

(1x3)

(1x3)

(1x3)

Total number of simulated problems: 96420 = 4,320  
Figure 5. Synthetic description of the factorial simulations.  

 

RESULTS 

A spreadsheet (which is available in the additional material) reports the detailed results of the 4,320 

simulated decision-making problems. The following three subsections illustrate respectively (1) a 

qualitative and (2) a quantitative analysis of the above results, and (3) a regressive model 

reproducing the effects of the predominant factors. 

Qualitative analysis 

Figure 6 and Figure 7 contain the main effects plots7, representing the effect of the major examined 

factors (nreg, m, c  and W) on the two responses, i.e.,   and   respectively. For practical reasons, 

W was used as a quantitative indicator of the degree of inter-judge agreement. The box-plot in 

Figure 8 shows the relatively strong link between the W value of a generic complete problem and 

the respective qualitative degree of inter-judge agreement. 

Additionally, the degree of completeness of a specific problem is assessed – at least in the first 

instance – using only c  and neglecting the relevant deterioration sub-factors (which are specified in 

Figure 4(b)). 

                                                      
7 The points in the plot are the means of a response variable at the various levels of each factor; for each level of the 
examined factor, the mean is calculated by averaging all the responses obtained changing the remaining factor. A 
reference line is drawn at the grand mean of the response data. This kind of plot is useful for comparing magnitudes of 
main effects (Box et al., 1978). 
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Figure 6. Minitab main effect plot of the major examined factors (nreg, m, c  and W) on the first response ( ). 

 

30

20

10

r (1) W (1)

121110987654

30

20

10

30252015105

n mnreg (no. of regular objects) m (no. of judges) 

c (degree of completeness) [%] W (degree of agreement) [%] 

28 34 40  46  52  58  64  70  76  82  88  94 100  65      71      77       83       89       95 

12.4 

12.4 

8.8 9.8 

11.7 14.2 

21.5 

14.5 13.7 13.2 12.5 

11.7 

11.9 

11.3 11.4 11.1 8.1 

4    5     6    7     8    9    10  12   13     5       10     15      20      25      30 

Main Effects Plot for     (solution dispersion) 
Data Means 



 
Figure 7. Minitab main effect plot of the major examined factors (nreg, m, c  and W) on the second response ( ).  
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indicators can be observed. 
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Here are some specific comments on the graphs in Figure 6 and Figure 7. 

 The factor with the predominant effect on both responses is c , corroborating the hypothesis that 

the incompleteness of preference rankings contributes to deteriorate the problem solution 

significantly, both in terms of accuracy ( ) and dispersion ( ). Nevertheless, the aggregation 

technique in use proved to be robust, since it allowed to determine solutions that were not 

exaggeratedly different from the “gold standard”, even for highly incomplete problems (e.g., 

with c  < 50%). 

 W seems to have a rather weak effect on both responses. Curiously, it seems that a certain 

disagreement among judges may contribute to reduce both   and  . In fact, problems with a 

relatively low W value result in a more homogeneous distribution of the non-usable relationships 

of incomparability (among the possible paired comparisons), with a consequent benefit for the 

solution accuracy and dispersion. 

 Factors nreg and m seem to have not-very-relevant effects on the response  . The slight effects in 

Figure 6 are due to the procedure of random generation of the incomplete problems. In fact, for 

Type-t&b or Type-t rankings, t and b were set to 1, 2 or 3, regardless of the total number of 

regular objects (nreg) of the problem. For a certain t/b value, the degree of completeness of 

rankings with relatively large nreg values will reasonably be lower than that of rankings with 

relatively low nreg values, with a consequent growth of  . In addition, as m grows (more judges) 

W will tend to decrease (more probability to obtain discordant rankings), with a consequent 

decrease in   (see previous point).   

Regarding the response  , the effect of nreg is irrelevant while that of m seems relevant. A 

plausible justification of the latter effect is that the variability of the input tends to decrease while 

increasing m and therefore the variability of the solution (depicted by  ) will tend to decrease 

too (Franceschini and Maisano, 2019a). 

Qualitative analysis 

In order to qualitatively judge the presence of interactions between c  and W, a plot8 of   as a 

function of these factors was constructed (see Figure 9). The curves represented in this graph – 

which can be approximately considered as “iso-W” – are not perfectly “parallel” to each other, 

denoting a slight correlation between c  and W. 

                                                      
8 Interaction between two factors is present when the response at a factor level depends upon the level(s) of the other 
factor. The greater the departure of the curves from the parallel state, the higher the degree of interaction (Box et al., 
1978). 
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Figure 9. Minitab plot for   as a function of the two most influential factors, c  and W. The “iso-W” curves refer to 
problems with W values “rounded” to those reported in the legend (i.e. 60%, 65%, 70%, etc.), considering a resolution 
of 5%.  

 
A further quantitative confirmation of the afore-illustrated results is given by Table 3, which 

contains the Pearson9 correlation coefficients () between all the possible pairs of variables under 

consideration (i.e., main factors, nreg, m, c  and W, and responses,   and  ). For each possible 

pair, the  value is associated with a corresponding p-value for the hypothesis test of the correlation 

coefficient being zero (i.e., absence of correlation). Cases in which this value is lower than 0.001 –

i.e. cases of rejection of the null hypothesis that there is no correlation – are those marked with the 

symbol “*”. 

 

 

Table 3. Pearson correlation table for the main factors (n, m, c  and W) and responses (  and  ). 

 
Variable nreg m c W    
nreg 1           

m 0 1      

c  -0.266* 0.001 1     
W -0.341* -0.126* 0.084* 1    
  0.119* -0.088* -0.843* 0.125* 1   
  -0.145* -0.561* -0.580* 0.258* 0.732* 1 

*p-value for the hypothesis test of the correlation coefficient being zero is lower than 0.001. 

 
According to the proposed correlation analysis, the major factor affecting both responses is c , 

followed by W. Additionally, we note that W is positively related with   and  ; this means that a 

                                                      
9 This coefficient is a measure of the linear correlation between two variables and has a value between +1 and −1, where 
+1 is total positive correlation, 0 is no correlation, and −1 is total negative correlation (Ross, 2014). 
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certain degree of disagreement between the rankings fosters the accuracy and precision of the 

solution. This behaviour certainly depends on the intrinsic characteristics of the ZMII aggregation 

technique, with particular reference to the propagation of the uncertainty of the input data 

(Franceschini and Maisano, 2019a). 

Excluding the correlations involving nreg and m, since they are related to the way incomplete 

preference rankings are randomly generated10, it can be noted that the correlation between c  and W 

is relatively weak ( ≈ 0.084), confirming the impression gained by analyzing Figure 9. 

Let us now return to the major factor affecting responses, i.e., c , which can be affected by the four 

deterioration sub-factors: “Ranking type”, “Manage oZ/oM?”, “t/b value”, and “Order t/b-objects?”. 

The interaction plot in Figure 10 shows that these sub-factors seem to be uncorrelated with each 

other. Not surprisingly, their mutual Pearson’s correlation coefficients are null. On the other hand, 

the predominant sub-factor affecting c  is the “Ranking type”, with  ≈ -0.741; in fact, Figure 10 

shows that Type-t rankings tend to make c  decrease dramatically, deteriorating the accuracy of the 

solution. We checked that the solution accuracy tends to worsen considerably for the less preferred 

objects especially, due to the relatively lower information content concerning these objects. 

The factor c  is affected by the sub-factors “t/b value” and “Order t/b-objects?”, with  values of 

0.363 and 0.369 respectively. On the other hand, the impact of the sub-factor “Manage oZ/oM?” is 

significantly lower ( ≈ 0.154). 
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Figure 10. Interaction plot for c , considering the four deterioration sub-factors: “Ranking type”, “Manage oZ/oM?”, “t/b 
value”, and “Order t/b-objects?”. 
 

                                                      
10 E.g., for a given t/b value, the Type-t or Type t&b rankings with a relatively large number of regular objects (nreg) are 
likely to have lower c  and W values. Also, when increasing the number of judges (m), the possibility to generate 
discordant preference rankings will grow (and therefore W will decrease). 



23 

Regression model 

To further confirm the above quantitative results, this sub-section illustrates the construction of a 

regression model, which links the response   to the most influential factors ( c  and W). This 

analysis also provides an estimate of the so-called effect size of the factors themselves (Levine and 

Hullett, 2002). 

This section focuses on a regression model to link the response   with the predominant factors, c  

and W, for incomplete decision-making problems. This model enriches the analysis presented in the 

section “Results”.  

The data related to the decision-making problems described in the section “Factorial simulations” 

have been used to construct the model. Considering Figure 6 – which shows the patterns of  r  

and  W  – a second order polynomial model was chosen. Being quadratic with respect to c  and 

W, this model seems to well represent the previous graph patterns: 

 WcKWKcKWKcKK  6
2

5
2

4321 . (15) 

It is important to notice the presence of the last term (K6ꞏ c ꞏW), which accounts for the interaction 

between c  and W. 

With the support of the Minitab Best-Subsets tool, it was confirmed the importance of all terms (see 

results in Figure 11). 

Best Subsets Regression:   versus c, W, c2, W2, c*W  
 

 (K2) (K3) (K4) (K5) (K6) 
Vars  R-Sq  R-Sq(adj)  Mallows Cp       S c W c2 w2 c·W 
   1  66.9       66.9      1528.3  5.4154 X 
   1  62.4       62.4      2283.6  5.7763   X 
   2  71.9       71.9       700.4  4.9894  X   X 
   2  71.9       71.9       702.1  4.9903 X   X 
   3  74.8       74.8       223.2  4.7261 X  X X 
   3  74.7       74.7       239.4  4.7353 X X X 
   4  76.0       76.0        22.7  4.6106 X X X  X 
   4  75.9       75.8        53.3  4.6284 X  X X X 
   5  76.2       76.1         6.0  4.6003 X X X X X  

Figure 11. Results obtained from Minitab Best-Subsets tool. The above table suggests that the model with the five terms 
c , W, c 2, W2 and c ꞏW is relatively precise and unbiased because its Mallows’ Cp (6.0) is closest to the number of 
predictors plus the constant (6).  

 

Since the variance of the response variable ( ) is not homogeneous, a simple linear regression is 

not perfectly suitable. In particular, heteroscedasticity11 may have the effect of giving too much 

weight to data subsets where the error variance is larger, when estimating coefficients. To reduce 

standard error associated with coefficient estimates, in regression in which homoscedasticity is 

                                                      
11 Sect. 5 showed that 2  is positively correlated with  . Since the variance of   is related to   (demonstration is left 
to the reader), it can be deduced that the variance of   tends to grow while   itself increases. 
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violated, a common approach is to weight observations by the reciprocal of the estimated point 

variance12 (Box et al., 1978).  

The final regression equation is  

WcWcWc  9.3700118.04.654.224.1031.43 22 . (16) 

The residual plots in Figure 12 show that the variance of the residuals seems rather uniform across 

the full range of fitted values, confirming the efficacy of the above “weighing” of the observations. 

Although the top-right plot denotes a slight under-fitting pattern in the bottom-left part, residuals 

seem globally satisfactory. Furthermore, they can be considered as randomly distributed by the 

Anderson-Darling normality test at p < 0.05. 

The regression output is quantitatively examined by an ANOVA (see Figure 13). Based on a t test at 

p < 0.05, it can be deduced that all the terms in Eq. 16 are significant. The model fits the 

experimental data well. 

In addition to the significance tests, the so-called effect size of the terms in Eq. 16 can be estimated 

(Levine and Hullett, 2002). Precisely, the ANOVA table in Figure 13 can be enriched by 

determining the eta-squared coefficient related to each term: 

Total

term

SS

SS
2 , (17) 

being the SS and SSTotal values reported in the third column of the ANOVA table itself. From a 

practical point of view, 2 describes the proportion of variance of the dependent variable ( ), 

which is explained by the term of interest; according to a rule of thumb, 0 ≤ 2 ≤ 0.01 denotes a 

small effect, 0.01 < 2 ≤ 0.06 denotes a medium effect, while 0.06 < 2 ≤ 1 denotes a large effect 

(Pierce et al., 2004; Field, 2013). Therefore, returning to the analysis in Figure 13, the 2 values 

reported in the lower right part denote a large effect of the c  and W terms,  a medium effect of the 

2c  and Wc   terms, and a small effect of the W2 term. 

Figure 14 graphically represents the final regression equation, confirming the previous results: the 

predominant effect of c , the relatively lower effect of W on  , and the relatively weak interaction 

between c  and W.  

We underline that this regression model is aimed at confirming and quantifying the effects of c  and 

W on  , which have already been highlighted in the “Results” section. Unfortunately, this model 

cannot be used for predictive purposes (e.g., to estimate the   value of a certain incomplete 

problem), for the simple fact that W cannot be calculated directly for incomplete problems, but only 

for complete ones. 
                                                      
12 Although being aware that 2  depends on the variances of the 

iŷ  values (see Eq. 5), we have – for simplicity – 

considered 2  as a proxy for the point variance related to each   value. 
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Figure 12. Minitab residual plots resulting from the (weighted) regression analysis. 

 

(Weighted) Regression Analysis:   versus c, W, c2, W2 and cꞏW  
 
Regression Equation 
 = 43.1073 - 103.359·c + 22.3868·W + 65.389·c2 + 0.00117845·W2 - 37.8818·c·W 
 
Coefficients 
Term          Coef  SE Coef         T      P 
Constant    43.107  1.50909   28.5650  0.000 
c         -103.359  3.35368  -30.8196  0.000 
W           22.387  3.20286    6.9896  0.000 
c2          65.389  2.15008   30.4124  0.000 
W2     0.001  0.00027    4.4336  0.000 
c*W        -37.882  2.33708  -16.2091  0.000 
 
Summary of Model 
S = 0.415199     R-Sq = 68.86%        R-Sq(adj) = 68.82% 
PRESS = 684.233  R-Sq(pred) = 68.73% 
 
Analysis of Variance 
Source           DF      SS  Adj SS   Adj MS        F          P       2 
Regression        5  320007  320007  64001.4  3261.66  0.0000000   
  c               1  287840   14946  14945.9   761.68  0.0000000  0.71132 
  W               1   16091    1344   1344.0    68.49  0.0000000  0.03976 
  c2               1    9614   11366  11366.0   579.24  0.0000000  0.02376 
  W2               1     276     339    338.9    17.27  0.0000331  0.00068 
  c*W             1    6185    6185   6185.3   315.22  0.0000000  0.01528 
Error          4314   84651   84651     19.6 
  Lack-of-Fit  3833   82686   82686     21.6     5.28  0.0000000 
  Pure Error    481    1964    1964      4.1 
Total 4319 404658  

Figure 13. Results of the (weighted) regression analysis. 
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Figure 14. Graphic representation of the experimental regressive model in Eq. 16. 

CONCLUDING REMARKS 

The ZMII-technique includes a flexible response mode that can be adapted to various practical 

contexts, in which (i) the concentration of judges cannot realistically be too high, or (ii) judges may 

find it difficult to formulate complete preference rankings. This flexibility encourages the reliability 

of input data, as it prevents judges from providing forced and unreliable responses. The present 

study proposed an original approach to verify the robustness of the ZMII-technique, through massive 

structured experimentation. 

Being based on a large number of simulated decision-making problems (i.e., 4,320), the proposed 

factorial experiments showed the robustness of the aggregation technique, even for significantly 

incomplete problems. The concept of robustness is here interpreted as the ability to provide a 

relatively stable solution, despite relatively significant variations in the type of input data. 

Interestingly, the technique tends to converge to a reasonable solution, even for problems where 

judges can identify only a few more preferred objects, neglecting the others (e.g., Type-t rankings 

with t =1 or 2). The solution towards which the technique converges is the one related to complete 

rankings; the plausibility of the ZMII’s solution is guaranteed by the fact that it coincides with that 

of the LCJ, which is a very consolidated technique of the scientific literature. For a quantitative 

assessment of the plausibility of the results related to a specific complete problem – without 

necessarily knowing the corresponding complete problem from which it derives – it is possible to 

integrate the ZMII-technique with some indicators present in the literature, such as those proposed in 

(Franceschini and Maisano, 2015) or others (Kendall, 1962; Perny, 1998; Brasil Filho et al., 2009). 

The factor that mostly affects the solution accuracy ( ) is c , depicting the degree of completeness 

of a problem, while the predominant sub-factor affecting c  is the “Ranking type”: in fact, the 

solution accuracy and dispersion are significantly deteriorated in the presence of Type-t rankings. In 
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addition, both the sub-factors “t/b value” and “Order t/b-block?” have a certain impact on c , while 

the sub-factor “Manage oZ/oM?”, depicting the ability to include oZ and oM within preference 

rankings, does not seem to be very influential. 

The factor W, depicting the inter-judge agreement, has a less pronounced influence on   than c . 

Paradoxically, a relatively low degree of agreement tends to improve the solution, both in terms of 

accuracy and precision; however, this effect is rather weak. 

The simulated (incomplete) problems are characterized by “homogeneous” preference rankings, i.e., 

all rankings have the same form of incompleteness (e.g., all Type-t rankings with t=2, unordered 

t-objects and without oZ/oM). Nevertheless, the aggregation technique can also be applied to 

problems characterized by “heterogeneous” preference rankings (e.g., partly complete, partly 

incomplete and/or with different forms of incompleteness). The example in the section “Application 

of the aggregation technique to ‘heterogeneous’ preference rankings” (in the Appendix) 

demonstrates the adaptability of the aggregation technique to problems with heterogeneous 

preference rankings. 

The solutions of the simulated decision-making problems were determined using an ad hoc 

software application, developed in the MS Excel - Visual Basic for Applications environment, 

which is available on request. This software application made the generation and solution of the 

(thousands of) simulated problems agile. 

A methodological limitation of the proposed study regards the estimation of the degree of inter-

judge agreement: since W is applicable to complete problems only, it was assumed that one 

incomplete problem “inherits” the W value of the corresponding (source) complete problem. 

Regarding the future, we plan to replace W with another suitable indicator, which can also be 

applied to incomplete problems. 
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APPENDIX 

Example of generation of incomplete rankings 

Table A.1 shows an example of deterioration of a single complete ranking – i.e., 

(oM~o12)≻(o9~o8)≻o1≻(o11~o2)≻(o10~o3~o6)≻o7≻(o4~o5~oZ) – into the aforementioned nineteen 

incomplete rankings, by changing the deterioration sub-factors in Figure 4(b). For each of these 

incomplete rankings, the corresponding ck value is also determined to depict the degree of 

completeness (see the last column of Table A.1); of course, the ck values may change depending on 

the combination of deterioration sub-factors.  

 
Table A.1. Example of generation of nineteen different incomplete preference rankings (in the last column) by 

“deteriorating” a single complete ranking – (oM~o12)≻(o9~o8)≻o1≻(o11~o2)≻(o10~o3~o6)≻o7≻(o4~o5~oZ) – through 
different combinations of the four sub-factors: “Ranking type”, “Manage oZ/oM?”, “t/b value”, and “Order t/b objects?”. 
Reconstructed parts are marked in red. 

Ranking type Manage 
oZ/oM? 

t/b 
value 

Order 
t/b-objects? 

Incomplete rankings   c 

Quasi-complete No N/A N/A {oM||o12}≻(o9~o8)≻o1≻(o11~o2)≻(o10~o3~o6)≻o7≻{oZ||(o4~o5)} 96.7% 

Type-t&b Yes 1 Yes (oM~o12)≻{o1||o2||o3||o6||o7||o8||o9||o10||o11}≻(o4~o5~oZ) 60.4%

Type-t&b Yes 2 Yes (oM~o12)≻(o9~o8)≻{o1||o2||o3||o6||o7||o10||o11}≻(o4~o5~oZ) 76.9%

Type-t&b Yes 3 Yes (oM~o12)≻(o9~o8)≻{o1||o2||o3||o6||o10||o11}≻o7≻(o4~o5~oZ) 83.5%

Type-t&b No 1 Yes {oM||o12}≻{o1||o2||o3||o6||o7||o8||o9||o10||o11}≻{oZ||(o4~o5)} 57.1%

Type-t&b No 2 Yes {oM||o12}≻(o9~o8)≻{o1||o2||o3||o6||o7||o10||o11}≻{oZ||(o4~o5)} 73.6%

Type-t&b No 3 Yes {oM||o12}≻(o9~o8)≻{o1||o2||o3||o6||o10||o11}≻o7≻{oZ||(o4~o5)} 80.2%

Type-t&b N/A 1 No {oM||o12}≻{o1||o2||o3||o6||o7||o8||o9||o10||o11}≻{oZ||o4||o5} 56.0%

Type-t&b N/A 2 No {oM||o8||o9||o12}≻{o1||o2||o3||o6||o7||o10||o11}≻{oZ||o4||o5} 67.0%

Type-t&b N/A 3 No {oM||o8||o9||o12}≻{o1||o2||o3||o6||o10||o11}≻{oZ||o4||o5||o7} 70.3%

Type-t Yes 1 Yes (oM~o12)≻{oZ||o1||o2||o3||o4||o5||o6||o7||o8||o9||o10||o11} 27.5%

Type-t Yes 2 Yes (oM~o12)≻(o9~o8)≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11}(*) 50.5%

Type-t Yes 3 Yes (oM~o12)≻(o9~o8)≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 50.5%

Type-t No 1 Yes {oM||o12}≻{oZ||o1||o2||o3||o4||o5||o6||o7||o8||o9||o10||o11} 26.4%

Type-t No 2 Yes {oM||o12}≻(o9~o8)≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11}(*) 49.5%

Type-t No 3 Yes {oM||o12}≻(o9~o8)≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 49.5%

Type-t N/A 1 No {oM||o12}≻{oZ||o1||o2||o3||o4||o5||o6||o7||o8||o9||o10||o11} 26.4%

Type-t N/A 2 No {oM||o8||o9||o12}≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11}(*) 44.0%

Type-t N/A 3 No {oM||o8||o9||o12}≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 44.0%

(*) Consistently with the convention described in footnote 6, the number of  t- or b-objects in these rankings is higher than the 
respective t and b value, due to the presence of some indifference relationships among these objects. 

 

Application of the aggregation technique to “heterogeneous” preference rankings 

This section exemplifies a decision-making problem in which preference rankings of different 

nature are aggregated (e.g., partly complete, partly incomplete and/or with different forms of 

incompleteness). Let us consider the example in Table A.2, which contains twenty not-necessarily-

complete preference rankings (representing an incomplete problem), obtained by deteriorating 
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twenty corresponding complete rankings (representing the “source” complete problem). 

Deterioration is performed by changing the four sub-factors in Figure 4. 

The aggregation technique of interest is applied to the incomplete problem, resulting in the solution 

in Figure A.1. We note that the error bands of the iŷ  values (which represent 
iŷi Uŷ  ; see Eq. 11) 

are relatively wide, due to the relatively low degree of completeness of the problem ( c = 62.2%). 

Despite this, the above solution is relatively close to that of the complete problem (which – by the 

way – is also characterized by W = 69.9%). Figure A.2 shows that the iŷ  values related to these two 

solutions are strongly correlated. 
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Table A.2. Incomplete preference rankings (in the last column) that are obtained by deteriorating some complete source rankings (in the second column). It can be noticed that the 
deterioration mechanism may differ from ranking to ranking. The reconstructed parts of the incomplete rankings are marked in red. 

Judge Complete rankings 
(Complete problem) 

Deterioration parameters  Non-necessarily-complete rankings 
(Incomplete problem) Ranking type Manage oZ/oM? t/b 

value 
Order 
t/b-block(s)? 

j1 (oM~o1~o8~o12)≻o9≻o7≻o6≻o11≻o2≻o4≻(o3~o10~oZ~o5) Type-t&b Yes 3 Yes (oM~o1~o8~o12)≻{o2||o4||o6||o7||o9||o11}≻(o3~o10~oZ~o5) 
j2 (oM~o8)≻o11≻o9≻(o7~o12)≻o1≻(o4~o2)≻(o10~o6~o3)≻(o5~oZ) Type-t&b Yes 3 No {oM||o8||o9||o11}≻{o1||o2||o4||o7||o12}≻{oZ||o3||o5||o6||o10} 
j3 (oM~o9)≻o1≻o11≻o12≻o8≻o5≻(o3~o2)≻o7≻(o6~o10~o4~oZ) Type-t No 3 Yes {oM||o9}≻o1≻o11≻{oZ||o2||o3||o4||o5||o6||o7||o8||o10||o12} 
j4 (oM~o9~o12)≻o8≻o1≻(o4~o2)≻o7≻o11≻(o6~o3)≻(o10~oZ~o5) Complete Yes N/A N/A (oM~o9~o12)≻o8≻o1≻(o4~o2)≻o7≻o11≻(o6~o3)≻(o10~oZ~o5) 
j5 oM≻o1≻o9≻(o8~o4)≻(o6~o11~o12)≻(o2~o7)≻o3≻(o10~oZ~o5) Type-t&b No 1 Yes {oM||o1}≻{o2||o3||o4||o6||o7||o8||o9||o11||o12}≻{oZ||(o10~o5)} 
j6 (oM~o12)≻(o9~o8)≻o1≻(o11~o2)≻(o10~o3~o6)≻o7≻(o4~o5~oZ) Type-t Yes 3 Yes (oM~o12)≻(o9~o8)≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 
j7 oM≻(o1~o8)≻o9≻o12≻o2≻(o7~o4)≻o11≻o5≻(o6~o10~oZ~o3) Type-t&b No 1 No {oM||o1||o8}≻{o2||o4||o5||o7||o9||o11||o12}≻{oZ||o3||o6||o10} 
j8 (oM~o9)≻(o2~o7~o1)≻o5≻(o8~o12)≻o11≻(o6~o4)≻(o10~oZ~o3) Type-t Yes 3 Yes (oM~o9)≻(o2~o7~o1)≻{oZ||o3||o4||o5||o6||o8||o10||o11||o12} 
j9 (oM~o11~o12)≻o9≻(o1~o6~o7)≻o5≻(o2~o3)≻o4≻o8≻(oZ~o10) Type-t Yes 3 Yes (oM~o11~o12)≻o9≻{oZ||o1||o2||o3||o4||o5||o6||o7||o8||o10} 
j10 (oM~o12)≻(o11~o5)≻o9≻o7≻(o4~o2)≻(o8~o6)≻o1≻(o10~oZ~o3) Type-t&b No 1 No {oM||o12}≻{o1||o2||o4||o5||o6||o7||o8||o9||o11}≻{oZ||o3||o10} 
j11 (oM~o12)≻(o7~o8~o1)≻o11≻o9≻o2≻o3≻(o10~o6~o4)≻(o5~oZ) Type-t Yes 3 Yes (oM~o12)≻(o7~o8~o1)≻{oZ||o2||o3||o4||o5||o6||o9||o10||o11} 
j12 (oM~o8~o9~o12)≻(o11~o2)≻(o1~o5)≻o6≻o7≻(o3~o10)≻(oZ~o4) Type-t Yes 3 Yes (oM~o8~o9~o12)≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 
j13 oM≻o8≻(o1~o12)≻o9≻o2≻(o11~o5)≻o7≻o10≻(oZ~o6~o3~o4) Type-t&b Yes 3 No {oM||o1||o8||o12}≻{o2||o5||o7||o9||o10||o11}≻{oZ||o3||o4||o6} 
j14 (oM~o1)≻o8≻o12≻(o2~o5)≻(o9~o6)≻(o11~o4)≻o3≻o7≻(oZ~o10) Type-t No 3 No {oM||o1||o8||o12}≻{oZ||o2||o3||o4||o5||o6||o7||o9||o10||o11} 
j15 oM≻o12≻(o9~o2)≻o1≻(o8~o6~o7)≻(o11~o10)≻o5≻(o4~oZ~o3) Type-t&b No 3 No {oM||o2||o9||o12}≻{o1||o6||o7||o8||o10||o11}≻{oZ||o3||o4||o5} 
j16 (oM~o8~o9)≻o12≻o7≻(o4~o5)≻o6≻o1≻o11≻o3≻o10≻o2≻oZ Type-t No 3 Yes {oM||(o8~o9)}≻o12≻{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 
j17 oM≻o11≻o2≻(o4~o8~o1)≻(o5~o12)≻(o3~o9)≻o7≻o10≻(oZ~o6) Type-t No 2 Yes {oM||o11}≻o2≻{oZ||o1||o3||o4||o5||o6||o7||o8||o9||o10||o12} 
j18 (oM~o9~o12)≻o1≻o2≻(o6~o8)≻o7≻(o11~o5)≻o4≻(o10~oZ~o3) Quasi-complete No N/A N/A {oM||(o9~o12)}≻o1≻o2≻(o6~o8)≻o7≻(o11~o5)≻o4≻{oZ||(o10~o3)} 
j19 (oM~o8~o12)≻o2≻o7≻(o11~o1)≻o9≻(o6~o4)≻o3≻(o10~oZ~o5) Type-t No 3 Yes {oM||(o8~o12)}≻o2≻{oZ||o1||o3||o4||o5||o6||o7||o9||o10||o11} 
j20 (oM~o9~o11)≻o12≻o8≻o1≻o5≻(o2~o7)≻o4≻(o6~o10~oZ~o3) Type-t&b No 4 No {oM||o8||o9||o11||o12}≻{o1||o2||o5||o7}≻{oZ||o3||o4||o6||o10} 
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Curiously enough, the value of   for the incomplete problem (i.e., 7.98) is relatively close to the 

value that would be expected through the application of the experimental regression model in Eq. 

16:  

 
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The above result represents a sort of plausibility check of the model in Eq. 16. 

 

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 
70.0 56.6 6.7 24.1 17.5 23.0 45.5 75.9 77.4 7.2 55.9 83.9 
10.7 11.2 15.6 14.0 13.7 14.1 12.1 10.5 10.6 14.8 10.8 10.5 

iŷ

iŷU
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Figure A.1. Graphic representation of the solution of the incomplete problem in Table A.2 (last column). 

  
Solution of the incomplete problem vs. Solution of the complete one 

 o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 
Compl. problem 67.7 49.3 19.6 30.5 35.8 32.9 44.1 73.1 74.5 13.6 56.5 82.5 
Incompl. problem 70.0 56.6 6.7 24.1 17.5 23.0 45.5 75.9 77.4 7.2 55.9 83.9  

Figure A.2. Comparison between the solution of the incomplete problem and that of the complete problem in Table A.2. 
Error bands represent the expanded uncertainty associated with the scaling of the incomplete problem. The complete 
problem is characterized by W = 69.9%, while the incomplete problem by c  = 62.2% and  = 7.98. 


