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Abstract

In the framework of discontinuous function approximation and discontinuity
interface detection, we consider an approach involving Neural Networks. In
particular, we define a novel typology of Neural Network layers endowed with
new learnable parameters and discontinuities in the space of the activations.
These layers allow to create a new kind of Neural Networks, whose main property
is to be discontinuous, able not only to approximate discontinuous functions
but also to learn and detect the discontinuity interfaces. A sound theoretical
analysis concerning the properties of the new discontinuous layers is performed,
and some tests on discontinuous functions are proposed, in order to assess the
potential of such instruments.

Keywords: Discontinuous Functions, Neural Networks, Deep Learning,
Automatic Detection of Discontinuity Interface.
2020 MSC: 68T07, 65D15

1. Introduction

In this work, we introduce a new typology of layers for Neural Networks
(NNs); the novelty is given by the introduction of discontinuities in the layer’s
characterizing function and, consequently, in the Neural Network. In the frame-
work of NNs, discontinuities were involved in the first mathematical models of5

biological neurons, dating back to the 1940s [24], and the first Neural Networks
proposed in the 1950s and 1960s [29, 32]. In these models, the activation func-
tions of the NN units were mainly inspired by the mechanisms of the biological
neurons and, therefore, were modeled using the Heaviside step function, or suit-
able variants. Then, the activation functions evolved into the continuous (and10

often smooth) ones used nowadays in almost all the deep learning algorithms
(see [10, ch. 6.2.2, 6.3] and [4]), thanks to the advantages that they grant in
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adapting the parameters of a NN. To the best of authors’ knowledge, recent lit-
erature does not report examples of practical use of discontinuous NN layers or
discontinuous NNs; nonetheless, a renewed interest on discontinuous activation15

functions, at least from the theoretical point of view, is witnessed by very recent
works, see e.g. [30], in which the floor function f(x) = bxc is used as activation
function, and [26], which uses the Heaviside function.

We are interested in introducing discontinuities in NN learning models, aim-
ing at using feedforward NNs to detect the discontinuity interfaces while approx-20

imating discontinuous functions. The problem of detecting discontinuity inter-
faces is quite a challenging task, especially for functions with a high-dimensional
domain. Moreover, the information can be quite relevant in several applications.
To mention an example, the smoothness of the target function can critically af-
fect the behavior of numerical methods for stochastic collocation in the frame-25

work of uncertainty quantification; thus, knowing the discontinuity interfaces
and being able to partition the function domain in several regions in which
the function is smooth, can be of paramount importance (see, e.g., [17] and
references therein).

In the past decades, feedforward NNs have been used mainly for classification-30

type tasks [20, 11, 31] but they can perform very well also regression tasks, as
guaranteed by the universal approximation theorems [21, 28, 18, 26]. In partic-
ular, we recall that the universal approximation theorem of Leshno et al. [21] is
guaranteed also for discontinuous activation functions, while Park et al. recently
showed (see [26, Th. 3]) that a NN with relu and Heaviside activation functions35

is dense in the space of continuos functions from a compact set K ⊂ Rn to Rm.
Concerning the approximation of discontinuous functions with NNs, inter-

esting results have been recently obtained in [27, 13, 14]. In particular in [13, 14]
the problem is deeply investigated comparing deep NN estimators to other more
classical methods in the task of approximating piecewise-smooth functions with40

singularities on smooth hypersurfaces in their domain. In particular, according
to the analysis in [14], the superiority of deep NNs depends on the relative level
of smoothness of the function pieces and of the discontinuity interfaces. The
problem of approximation of nonsmooth functions using NNs is addressed in
[23] from a different perspective. Indeed, in [23] the focus is on the use of NNs45

for approximating numerical solutions of partial differential equations; the work
addresses in particular the case in which the PDE is defined on a polygonal or
polyhedral domain possibly yielding a solution with corner and/or edge singu-
larities. The analysis in [23] present rigorous estimates of the approximation
errors also in these situations.50

A precursor of the use of NN in the framework of approximation of discon-
tinuous functions can be found in [7]. In such a paper the author, leveraging
the interpretation of shallow NNs as the superposition of ridge functions, uses
a general construction based on ridgelets to build shallow NNs, thus presenting
a tool for approximating target functions with spatial inhomogeneities. Func-55

tions with linear discontinuity interfaces are well approximated with such an
approach, but the method is yet not satisfying for curvilinear interfaces, as
stated by the author.
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Overall, the NN models mentioned above are characterized by good approx-
imation skills for discontinuous functions but, on the other hand, they are not60

suitable nor designed to simultaneously tackle the discontinuity interface detec-
tion problem; indeed, the approximation of a discontinuous function with a NN
is quite a simple task, but the function represented by the NN will actually be
continuous, whenever continuous activation functions are used in the NN lay-
ers. Therefore, the aim of this work is to propose a new NN layer specifically65

designed to build NNs able to simultaneously perform these two tasks.
As far as the discontinuity detection problem is concerned, the main results

have been proposed in the last decades, see e.g. [6, 5, 16, 33]. In [6] a polynomial
annihilation edge detection method is proposed: the discontinuous interfaces of
a piece-wise smooth function f : Rn → R, n ≤ 2, are identified through the70

reconstruction of the jump function, given a set of function evaluations; the
method proposed in [6] is extended in [5] to higher dimensions by applying the
detection method for each input dimension to a generalized polynomial chaos
approximation of the target function. Nonetheless, the method in [5] suffers the
curse of dimensionality, setting practical restrictions on the dimensionality that75

can be handled; an improvement of [5] is proposed in [16], that exploits sparse
grids to develop an adaptive method that increases the possibilities to be used in
higher dimensions. The method proposed in [33] is based on the approximation
of the hypersurface representing the discontinuity interface with hyper-spherical
coordinates, and it is well suited also for large n, but the method is designed80

for decting a single interface, which is assumed to satisfy the star-convexity
assumption.

We remark that in general, a discontinuity interface detection method can
be generalized to the case of functions F : Rn → Rm with m > 1, through the
common practice of applying m times the method for functions with codomain85

of dimension one.
The present work aims at building new discontinuous NNs able to approxi-

mate discontinuous functions with other discontinuous functions, whose discon-
tinuity interfaces are relatively easy to be detected. More specifically, the new
NNs are endowed with trainable discontinuity jump parameters that allow the90

model to learn the discontinuity interface of the target function F : Rn → Rm;
then, analyzing the function compositions that define the NN, the discontinuity
interfaces and the continuity regions of F in the domain can be characterized.
The main advantages of this method are that the NN both returns an approx-
imation of F and an approximation of its discontinuity interfaces. Moreover,95

by a theoretical point of view, there are no restrictions on the applicability
of the method proposed, indeed: i) the method does not require assumptions
about the regularity of F (at least, F must be approximable according to one
of the universal approximation theorems); ii) there are no theoretical restric-
tions on the dimensions (there are only practical restrictions, due to the curse100

of dimensionality problem suffered by the regression task).
The work is organized as follows. In the next subsection, the main notations

used herein are listed. In Section 2, the new discontinuous layer for NNs is pre-
sented. In Section 3, the theoretical results that characterize a discontinuous NN
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are described. Section 4 illustrates numerical results on some examples assess-105

ing the potential of the new discontinuous NNs. We end with some conclusions
drawn in Section 5.

1.1. Notation and basic results

In this subsection we introduce some useful notations and simple results
for the following sections. First, we introduce the notation adopted for the110

description of the inner operations taking place in a fully-connected layer of a
Multi Layer Perceptron (MLP). Then, we introduce some notations that will be
useful in Section 3 to analyze discontinuities in NNs.

1.1.1. Notation for Neural Networks

Let N be an H-layers perceptron; i.e., N is an MLP characterized by H ∈ N115

hidden layers. We use the following notation to describe its architecture and
the related mathematical entities:

• L1, . . . , LH denote the hidden layers; L0 and LH+1 are the input and
output layers, respectively;

• for each h = 0 , . . . ,H + 1, Nh ∈ N is the number of units of layer Lh;120

• for each h = 0 , . . . ,H, W (h+1) ∈ RNh×Nh+1 is the matrix of weights
between layers Lh and Lh+1 and b(h+1) ∈ RNh+1 is the vector of biases of
layer Lh+1;

• fh : RNh → RNh denotes the element-wise application of the activation
function fh : R→ R used in layer Lh;125

• for each h = 0, . . . ,H, Lh+1 : RNh → RNh+1 denotes the characterizing
function of the fully-connected layer Lh+1, i.e. the map from the outputs
of layer Lh to the ones of layer Lh+1, defined as

Lh+1(x(h)) = fh+1

(
W (h+1)Tx(h) + b(h+1)

)
, with x(h) ∈ RNh . (1)

• we generalize the notation used for maps between pairs of layers to se-
quences of layers as follows:

Lh2

h1
:= Lh2 ◦ Lh2−1 ◦ · · · ◦ Lh1+1 ◦ Lh1 ,

for each 1 ≤ h1 < h2 ≤ H+ 1. Note that, following this notation, LH+1
1 is

the characterizing function F̂ of the perceptron N and Lh2

h1
is the function

characterizing a sub-NN of N given by layers Lh1−1, Lh1 , . . . , Lh2−1, Lh2 .

Remark 1.1. Equation (1) characterizes the action of the so-called fully-con-
nected layers; however it is easy to prove that it can describe also the action130

of convolutional layers (e.g., see [22]) or the connection of layers that are not
fully-connected, setting to zero specific elements of the weight matrix. Then,
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formula (1) can be used as representative of the general characterizing function
of a NN layer. Analogously, almost any feedforward (i.e., non-recurrent) NN
can be represented by an equivalent MLP or, at most, by a composition of135

MLPs; then, in this work, we use the H-layers perceptron N as representative
of a generic feedforward NN.

1.1.2. Notation for hyperplanes and corresponding partitions

Let Π = {Π1 , . . . ,Πm} be a set of hyperplanes in Rn, each one characterized
by the equation xTwj+bj = 0, for j = 1, . . . ,m. Then, we will use the following140

notation to denote some special subsets of Rn characterized by Π1 , . . . ,Πm:

• for each pair of disjoint subsets of hyperplanes {Πi1 , . . . ,Πis}, {Πk1 , . . . ,Πkt} ⊂
Π we denote by C({Πi1 , . . . ,Πis}; {Πk1 , . . . ,Πkt}) the subset of vectors
x ∈ Rn such that{

xTwi + bi ≥ 0 ∀ i = i1 , . . . , is

xTwk + bk < 0 ∀ k = k1 , . . . , kt
.

We observe that, if C({Πi1 , . . . ,Πis}; {Πk1 , . . . ,Πkt}) is not empty, then
it is convex.

• the set Π generates a partition C(Π) of convex subsets of Rn defined as

C(Π) =
{
C(P ;PC) |P ∈ P(Π)

}
\ {∅} , (2)

where PC is the complement of P in Π and P(Π) is the power set of Π.

Remark 1.2 (Special cases). Let Π = {Π1 , . . . ,Πm} be a set of hyperplanes145

in Rn and C(Π) the partition (2). Then, the following special cases may occur:

1. Let Πi,Πj ∈ Π, i 6= j, be such that Πi = Πj and wi = awj , bi = abj , for
an a ∈ R \ {0}. If a < 0, for each P ∈ P(Π) such that Πi,Πj ∈ P , we
have that the set C(P ;PC) lies on the hyperplane Πi = Πj , while the set
C(PC ;P ) is empty.150

2. Let us admit as possible elements of Π also the degenerate hyperplanes
Π0 = Rn and Π∅ = ∅ defined by equations xT0 + 0 = 0 and xT0 + b∅ = 0,
respectively, where b∅ 6= 0. Then, if Π0 ∈ Π and/or Π∅ ∈ Π, we have
that C(Π) is still a partition of Rn in convex subsets and, in particular,
C(Π) = C(Π \ {Π0,Π∅}).155

Each element X ∈ C(Π) can be identified by a unique vector with elements
in {0, 1}, as highlighted by the following definition.

Definition 1.1 (Region Vectors and Region Function). Let Π = {Π1 , . . . ,Πm}
be a set of m hyperplanes in Rn, possibly including the degenerate cases Π0 and
Π∅, each one characterized by the equation xTwj + bj = 0, for j = 1, . . . ,m.
Let g : Rn → {0, 1}m be the function

g(x) := H
(
WTx + b

)
, (3)
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where H denotes the component-wise application of the Heaviside function

H(x) =

{
1 , if x ≥ 0

0 , otherwise

and W = [w1, . . . ,wm] ∈ Rn×m and b = [b1, . . . , bm]T ∈ Rm. The function g
defined in (3) is called region function associated to Π, and g(x) ∈ {0, 1}m is
called region vector of x.160

The region function g introduced in Definition 1.1 characterizes uniquely the
subsets of Rn of the partition C(Π), as stated in the following Lemma, whose
proof is straightforward.

Lemma 1.1. Let Π be a set of m hyperplanes as in Definition 1.1. Then, for
each pair of vectors x1,x2 ∈ Rn such that x1 ∈ X1,x2 ∈ X2 with X1, X2 ∈165

C(Π), it holds that X1 = X2 if and only if g(x1) = g(x2).

Due to Lemma 1.1, each Xi ∈ C(Π) is uniquely identified by a vector ki ∈
{0, 1}m such that ki = g(x), for each x ∈ Xi.

Definition 1.2 (Region Vectors of Subsets). Let Π be as in Definition 1.1, and
let g be the region function associated to Π. Let ki ∈ {0, 1}m be a vector such170

that ki = g(x) for each x ∈ Xi, given a fixed Xi ∈ C(Π). Then ki is called
Region Vector of Xi with respect to the hyperplanes of Π.

We end this section with an example of a partition C(Π) of R2 and the
corresponding region vectors; this example is illustrated in Figure 1. Six hy-
perplanes Π = {Π1, . . . ,Π6} are considered, and some special cases are also175

included, as we have Π1 = Π2 and Π3 = −Π4; these situations correspond to
the one discussed in Remark 1.2, item 1, with a > 0 and a < 0, respectively.

In this example, for each Xi, Xj ∈ C(Π), we observe that the region vectors
ki, kj , are strictly related to subsets connection. For example, looking at X1

and X3 we observe that their boundaries do intersect in the point given by the
intersection

⋂4
k=1 Πk, which are the hyperplanes identified by elements of k1

and k3 that are different. In other cases, such as X3 and X6 or X1 and X10, we
observe that the intersection of the boundaries is contained in the intersection
of the hyperplanes identified by the region vector elements that are different.
More in general, still focusing on this example, let ki and kj differ for 1 ≤ t ≤ 6
components of indices `1, . . . , `t: if the shared boundary ∂Xi∩∂Xj is not empty
(the union of the closures X̄i ∪ X̄j is therefore a connected set), then

(∂Xi ∩ ∂Xj) ⊆ (Π`1 ∩ · · · ∩Π`t) ;

otherwise, the set Π`1 ∩ · · · ∩ Π`t does not intersect anyone of the boundaries
∂Xi, ∂Xj .

The relationship between the elements of the region vectors ki,kj and con-180

nectivity of X̄i ∪ X̄j , observed in the example of Figure 1, is generalizable to
partitions in Rn. However, the example is not intended to be exhaustive of all
possible cases which may occur.
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(a) Hyperplanes Π1, . . . ,Π6 and the corresponding sets
X1, . . . , X12.

region vector (ki)

reg. Π1 Π2 Π3 Π4 Π5 Π6

X1 1 1 0 1 0 1

X2 0 0 0 1 0 1

X3 0 0 1 0 0 1

X4 1 1 1 0 0 1

X5 0 0 0 1 1 1

X6 0 0 1 0 1 1

X7 0 0 1 0 1 0

X8 1 1 1 0 1 0

X9 1 1 1 0 0 0

X10 1 1 1 1 0 1

X11 0 0 1 1 0 1

X12 0 0 1 1 1 1

(b) Region vectors of the sets
X1, . . . , X12 with respect to the hy-
perplanes Π1, . . . ,Π6.

Figure 1: Left: example of partition of R2 by six hyperplanes Π1, . . . ,Π6. Dotted lines denote
the part of the plane with xTwj + bj < 0, for each j = 1, . . . , 6. Right: region vectors
ki ∈ {0, 1}6 corresponding to each subset Xi, i = 1, . . . , 12, of the partion.

2. Discontinuity for Neural Networks

Let N be an H-layers perceptron. We recall that the map Lh+1, character-185

izing the transformations performed by layer Lh+1 on the outputs of layer Lh,
is defined by (1).

From this formula, it is straightforward to note that the characterizing func-
tion F̂ = LH+1

1 : RN0 → RNH+1 of N is a continuous function if f1, . . . ,fH+1

are all continuous functions. In the earliest works on Neural Networks [24, 29],190

the first models for artificial neurons did not consider continuous activation
functions but the Heaviside function (or suitable variations of it), mainly used
to model the “on/off” activation of the neurons.

In the subsequent development of artificial intelligence, the Heaviside func-
tion H has been abandoned, as the subderivative constantly equal to zero pre-195

vents the use of the gradient descent during NN training; this phenomenon is
equivalent to the asymptotic end of the so-called vanishing gradient problem
(see [10, ch. 8.2.5]). In place of H, many other continuous functions have been
introduced; as a consequence, all recent NNs described in literature are char-
acterized by continuous functions since they are given by the composition of200

continuous functions.
In this work, we describe a novel approach to reintroduce discontinuities in

NNs in such a way that NNs can not only approximate discontinuous functions
but also learn discontinuities. In the sequel, we will refer to this property of
the NN as the ability of learning discontinuity interfaces, and such discontinuity205

interfaces will be called “learnable discontinuities”.
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2.1. Adding Heaviside to Activation Functions

The main idea behind learnable discontinuities for NNs is to apply the effects
of a bias “outside” the activation function f only when the inputs satisfy certain
conditions, for example to be not smaller than zero. Thanks to this new bias,210

the NN has a new trainable parameter that introduces a discontinuity in the
function of the NN. The discontinuity introduced depends both on the new
parameters and on the weights and biases of the NN; for this reason we will
refer to learnable discontinuities.

Herein, in order to introduce possible discontinuites in the layers, we add to
the activation functions a jump, whose size is expressed by a parameter ε. In
details, we add to each element of the right-hand-side of (1) a multiple of the

Heaviside function applied component-wise to W (h+1)Tx(h) + b(h+1), namely
we set:

x(h+1) = fh+1

(
W (h+1)Tx(h) + b(h+1)

)
+ε(h+1)�H

(
W (h+1)Tx(h) + b(h+1)

)
,

(4)
where the symbol � denotes the Hadamard (element-wise) product and ε(h+1) ∈215

RNh+1 is the vector collecting the Nh+1 jumps introduced (see Figure 2).

Figure 2: Examples of activation functions plus a multiple of H.

Definition 2.1 (Discontinuous Layer). A discontinuous fully-connected layer
L with input in Rc, output in Rd, and activation function f for the continuous
part, is a layer with incoming connections and output signals defined by the
characterizing function L : Rc → Rd such that:

L(x) = f
(
WTx + b

)
+ ε�H

(
WTx + b

)
, (5)

where ε ∈ Rd is the vector of trainable discontinuity jumps and where f , W ,
and b are the element-wise application of f , the weight matrix, and the bias
vector, respectively.

In the following, a discontinuous layer L of a NN and the corresponding220

characterizing function L, defined by (5), will be denoted by δL and δL, respec-
tively.

Definition 2.2 (Discontinuous Neural Network). Let N be a NN with at least
one discontinuous layer. Then N is called a discontinuous Neural Network and
will be denoted by δNN.225
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We remark that the d parameters ε1, . . . , εd appearing in (5) are learnable
parameters, since the derivatives of δL(x) with respect to them are not con-
stantly equal to zero, as stated in the following Proposition.

Proposition 2.1. Let yj be the j-th element of δL(x) =: y ∈ Rd given by (5).
Then it holds ∂ yj/∂ εj 6≡ 0 for each j = 1, . . . , d.230

Proof. The proof is straightforward since, for each j = 1, . . . , d, we have that

∂ yj/∂ εj = H
(
WT
· , jx + bj

)
,

that is not constantly equal to zero.

From the previous proposition, we can easily deduce also the following one.

Proposition 2.2. Let N be an H-layers perceptron. Assume that for a fixed h ∈
{0, . . . ,H}, the (h+ 1)-th layer of N is a discontinuous one (therefore, denoted
by δLh+1). For each x(0) ∈ RN0 , let yj be the j-th element of y = LH+1

1 (x(0))235

and let x(i) denote the vector Li1(x(0)) ∈ RNi , for each i = 1, . . . ,H + 1. Let J
denote the jacobian of LH+1

h+2 .

For each input vector x(0), if the derivatives corresponding to the j-th row
Jj , · of J exist at x(h+1), if the (j, k)-th function Jj,k of J is not constantly

equal to zero at x(h+1), and if W
(h+1)T
· , k x(h) + b

(h+1)
k is not constantly negative,

then
∂ yj

∂ ε
(h+1)
k

6≡ 0 ,

where j ∈ {1, . . . , NH+1}, k ∈ {1, . . . , Nh+1}, and ε
(h+1)
k is the k-th element of

ε(h+1) of δLh+1 (see (4)).

Proof. The proof is straightforward since y = (LH+1
h+2 ◦ L

h+1
1 )(x(0)). Indeed, for

each j = 1, . . . , NH+1 and k = 1, . . . , Nh+1, we have that

∂ yj

∂ ε
(h+1)
k

=

(
∇
(
LH+1
h+2 (x(h+1))

)
j

)T
· ∇

ε
(h+1)
k

x(h+1) =

= JTj , ·(x
(h+1)) · ∇

ε
(h+1)
k

x(h+1) =

= Jj,k(x(h+1)) ·
∂x

(h+1)
k

∂ε
(h+1)
k

= Jj,k(x(h+1)) · H
(
W

(h+1)T
· , k x(h) + b

(h+1)
k

)
,

and from the assumptions the thesis follows.240

Generalizing Propositions 2.1 and 2.2, we observe that the derivatives with
respect to the discontinuity parameters of the loss function can’t be constantly
equal to zero (excluding special cases) and, therefore, the discontinuity param-
eters are trainable. To the best of the authors’ knowledge, in literature there
are no discontinuous NNs characterized by trainable discontinuity jumps.245

9



Remark 2.1 (Theoretical justification for discontinuous activation functions).
Concerning the universal approximation properties of NNs, we recall the theo-
retical results of [21, 26], that involve also discontinuous activation functions.
These result legitimate the development of discontinuous layers. Indeed, even
if there are no clear universal approximation results for H-layers perceptrons250

with discontinuous activation functions, there are clues suggesting that discon-
tinuities may enhance the approximation (e.g., see [26, Th. 3] or [30]).

Remark 2.2 (Training discontinuous Neural Networks). Introducing discon-
tinuous layers inside a NN implies that the loss function can be piece-wise con-
tinuous. Then, during the training, the loss can be non-differentiable and/or255

discontinuous with respect to the current weights and biases. Actually, non-
smoothness is already quite frequent in the working environment of NNs and,
due to the discrete representations of functions in a computational domain, the
non-differentiability can be “safely disregarded” [10, ch. 6.3]. We can extend
the same reasoning when a derivative is needed at a discontinuity point x0; in-260

deed, it is likely that the underlying value is x̃0 = x0 ± ε, with a small ε > 0
(say, less than the machine precision) [10, ch. 6.3]. Furthermore, we observe
that derivative-based methods typically perform sufficiently well on piece-wise
continuous functions, generally converging to local minima (see the case studies
in [34]). Then, we can “safely disregard” the discontinuity of the activation265

functions during the gradient-based training. Indeed, the training methods for
NNs are typically gradient-based and stochastic and, usually, local minima are
sought, to avoid overfitting.
However, even if in discontinuous NNs the training ability is preserved (see the
results of Section 4), the optimization methods available in the Deep Learning270

frameworks (e.g., TensorFlow [3]) are indeed not designed to work efficiently
with discontinuous functions. The study of more efficient optimization algo-
rithms for the training of discontinuous NNs is certainly of great interest and
deserves future investigation.

Remark 2.3 (Discontinuity and increased capacity). We observe that the in-275

troduction of discontinuities in NN architectures increases their capacity (see
[10, ch. 5.2]), adding a new set of discontinuous functions to the set of func-
tions represented by continuous NNs, the latter being equivalent to formulation
(5) with ε = 0. Concerning this point, we remark that we refer to the layers
characterized by (5) as discontinuous layers independently of the actual values280

learned for ε.

In the next section, we analyze the properties of NNs with at least one
discontinuous layer; the aim of this analysis is to understand how a discontinuous
layer characterizes the discontinuities of the function LH+1

1 = F̂ of the NN.

3. Properties of Discontinuous Neural Networks285

An interesting property of δNNs is that, in principle, it is possible to ex-
actly find the discontinuities of their characterizing functions; indeed, these

10



NNs are piece-wise continuous functions with known analytical expression (see
Corollary 3.3 in the following). This property may be useful to improve the
approximations in regression problems but it can be also extremely important290

for problems in which the discontinuity interfaces of functions are sought, es-
pecially in high-dimensional domains (see [8], for an example of application).
With this new typology of NN architectures, we propose a novel approach to the
discontinuity detection problem, showing that such a kind of NNs can be po-
tentially useful both for discontinuity function approximation and for learning295

discontinuities.
In this section, we introduce some statements that describe properties related

to discontinuity of δNNs.

3.1. Theoretic Foundations of Discontinuous Neural Networks

The following propositions (Proposition 3.1 and Proposition 3.2) represent300

some basic results concerning properties of NNs characterized by discontinuous
layers. In a nutshell, the propositions state that in a δNN characterized by a
function LH+1

1 , for each discontinuous layer δLh+1 of N we have that:

• the discontinuity interfaces of the map δLh+1 are affine hyperplanes in

RNh , characterized by the columns of W (h+1) and the elements of b(h+1);305

• the existence of discontinuity interfaces for δLh+1 depends on the nonzero
elements of ε(h+1) corresponding to non-null columns of W (h+1).

Moreover, assuming that N has only one discontinuous layer δLh+1, a nec-

essary condition for a point x̂(0) to be a discontinuity point for LH+1
1 is that its

image through the first h layers, i.e. x̂(h) = Lh1 (x̂(0)), is a discontinuity point310

for the map δLh+1.
In view of the next results, we introduce here the following sets defined for

an H-layers perceptron with at least one discontinuous layer δLh+1:

• Π
(h+1)
j denotes the (possibly degenerate) hyperplane of RNh defined by

the j-th column of weights and the j-th bias of δLh+1, i.e.:

Π
(h+1)
j :=

{
x(h) ∈ RNh |W (h+1)T

· , j x(h) + b
(h+1)
j = 0

}
;

• Π(h+1) denotes the set of all the sets Π
(h+1)
j defined by the weights and

the biases of δLh+1, i.e..

Π(h+1) :=
{

Π
(h+1)
1 , . . . ,Π

(h+1)
Nh+1

}
;

• ∆(h+1) denotes the set of all and only the discontinuity points in RNh for
δLh+1;315

• ∆ denotes the set of all and only the discontinuity points in RN0 for LH+1
1

(i.e., for the NN).
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• Γh+1 denotes the (possibly empty) counterimage of ∆(h+1) through Lh1 ,
namely:

Γh+1 :=
{
x(0) ∈ RN0

∣∣∣ Lh1 (x(0)) ∈ ∆(h+1)
}

=:
(
Lh1
)−1

(∆(h+1)) , (6)

where we set L0
1 as the identity function, by convention;

• let δLh1+1, . . . , δLhM+1 be all and only the discontinuous layers of the H-
layers perceptron. Then, we denote by Γ the union of all the counterimages
Γh1+1, . . .Γhm+1:

Γ :=

M⋃
m=1

Γhm+1 . (7)

Proposition 3.1. Let N be an H-layers perceptron. Assume that for a fixed
h ∈ {0, . . . ,H}, the (h + 1)-th layer is a discontinuous one. Let C(Π(h+1)) be320

the partition of RNh generated by Π(h+1) as in (2) and characterized by P ∈ N
non-empty subsets such that C(Π(h+1)) = {X(h)

1 . . . , X
(h)
P }. For each X

(h)
p ∈

C(Π(h+1)), let k(h)
p be the region vector of X

(h)
p introduced in Definition 1.2.

Then, the following assertions are true:

1. for each x(h) ∈ RNh , equation (4) can be rewritten as

x(h+1) = fh+1

(
W (h+1)Tx(h) + b(h+1)

)
+ ε(h+1) � k

(h)
i , (8)

where i ∈ {1, . . . , P} is such that x(h) ∈ X(h)
i ;325

2. δLh+1 is discontinuous at x̂(h) ∈ RNh if and only if exists j ∈ {1, . . . , Nh+1}
such that x̂(h) ∈ Π

(h+1)
j , ε

(h+1)
j 6= 0, and W

(h+1)
· , j 6= 0. In other words:

∆(h+1) =
⋃

j=1,...,Nh+1

ε
(h+1)
j 6=0

W
(h+1)
· , j 6=0

Π
(h+1)
j . (9)

Proof.

1. The proof is immediate as it directly follows from Definition 1.1.

2. The function fh+1 is continuous and H is discontinuous at zero. Then,

for each j = 1, . . . , Nh+1, the function H(W
(h+1)T
· , j x(h) + b

(h+1)
j ) is discon-

tinuous at x̂(h) if and only if x̂(h) ∈ Π
(h+1)
j and W

(h+1)
· , j 6= 0. Therefore,330

δLh+1 is discontinuous at x̂(h) if and only if there exists j ∈ {1, . . . , Nh+1}
such that x̂(h) ∈ Π

(h+1)
j , W

(h+1)
· , j 6= 0, and ε

(h+1)
j 6= 0.
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In a nutshell, according to item 2 of the previous Proposition, discontinuity
interfaces of δLh+1 are affine hyperplanes in RNh , whose equations depend on335

the columns of W (h+1) and the elements of b(h+1).
While Proposition 3.1 characterizes the discontinuity points of a layer δLh+1,

in Proposition 3.2 we characterize the discontinuity points of LH+1
1 , assuming

that δLh+1 is the only discontinuous layer of the δNN.

Proposition 3.2. Under the assumptions of Proposition 3.1, assume that N340

has a unique discontinuous layer δLh+1 for a fixed h ∈ {0, . . . ,H}. Let x̂(0) be
a given vector in RN0 . Then:

1. Lh+1
1 is discontinuous at x̂(0) if and only if x̂(0) ∈ Γh+1, i.e. Lh1 (x̂(0)) ∈

∆(h+1);

2. if x̂(0) is a discontinuity point for LH+1
1 then x̂(0) is a discontinuity point

for Lh+1
1 ; i.e.:

∆ ⊆ Γh+1 .

Proof.345

1. For each x̂(0) ∈ Γh+1, the proof that x̂(0) is a discontinuity point for
Lh+1

1 is straightforward, as δLh+1 is the only discontinuous layer of N.

On the other hand, let x̂(0) ∈ RN0 be a discontinuity point for Lh+1
1 such

that Lh1 (x̂(0)) 6∈ ∆(h+1); then, δLh+1 is continuous at Lh1 (x̂(0)). But Lh1
is continuous and Lh+1

1 = δLh+1 ◦ Lh1 ; then, Lh+1
1 is continuous at x̂(0),350

which is a contradiction of the hypothesis.

2. The result is straightforward, as δLh+1 is the only discontinuous layer of
N.

Proposition 3.2 can be generalized to NNs that take into account more dis-355

continuous layers. This generalization is summarized in Theorem 3.1 in the next
section.

3.2. Main Results about Discontinuous Neural Networks

The results presented in Section 3.1 describe the discontinuity behavior in a
δNN and give a general idea about the potential of such a kind of instruments.360

Indeed, the discontinuities of a δNN can be quite well characterized.
However, the detection of all the discontinuity interfaces ∆ ⊂ RN0 of a map

LH+1
1 representing a δNN can be quite an hard task; even just considering a

δNN with one discontinuous layer (see Proposition 3.2), the search for points in
Γh+1 would require to solve the nonlinear system

W
(h+1)T
· , j1 Lh1 (x) + bj1 = 0

...

W
(h+1)T
· , jk Lh1 (x) + bjk = 0

,
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where ε
(h+1)
j 6= 0 and W

(h+1)
· , j 6= 0 for all and only the j ∈ {j1, . . . , jk} ⊆

{1, . . . , Nh+1}.
An alternative idea, useful to avoid the difficulties related to the direct de-

tection of the discontinuity interfaces, is to solve its complementary problem,365

i.e., find the continuity regions of the domain. Theorem 3.1 and Corollary 3.3
state that δNNs are, actually, piecewise continuous functions and that given a
pair of points in the function domain, it can be easily detected if they belongs
or not to a region described by the same continuous piece of function.

Before illustrating these results, we generalize Definition 1.1 with respect to370

all the discontinuous layers of a δNN.

Definition 3.1 (Generalized Region Vectors for δNN). Let N be an H-layers
perceptron with M discontinuous layers. Let δLhm+1, for m = 1, . . . ,M , and
0 ≤ h1 < . . . < hM ≤ H, be the discontinuous layers. For each m = 1, . . . ,M ,
let gm : RNhm → {0, 1}Nhm+1 denote the region function corresponding to the
weights and biases of δLhm+1, i.e.

gm(x(hm)) := H
(
W (hm+1)Tx(hm) + b(hm+1)

)
,

for each x(hm) ∈ RNhm ; then, we denote by Km the image of gm, i.e. the set

Km =
{
k(hm) ∈ {0, 1}Nhm+1

∣∣∣ ∃ x(hm) ∈ RNhm s.t. gm(x(hm)) = k(hm)
}
,

(10)
representing all the region vectors characterizing the sets of C(Π(hm+1)) in RNhm
identified by the weights and biases of layer δLhm+1.

Setting δN =
∑M
m=1Nhm+1, let G : RN0 → {0, 1}δN be defined as

G(x(0)) =


g1 ◦ Lh1

1 (x(0))
...

gM ◦ LhM1 (x(0))

 . (11)

Then, G is called generalized region function of N and we call generalized
region vectors of N all the vectors k ∈ K, where K is the image of G:

K :=
{
k ∈ {0, 1}δN

∣∣ ∃x(0) ∈ RN0 s.t. G(x(0)) = k
}
. (12)

in particular, for each m = 1, . . . ,M , we denote by k(hm) the subvectors of k
belonging to Km and related to δLhm+1 (see (10)).375

Thanks to the generalized region vectors of a given δNN, it is possible to
identify a partition of the domain RN0 such that the discontinuities of δNN
are contained in the union of all the boundaries of the partition sets, while the
map LH+1

1 is continuous in the interior of these sets. These results are better
described in the following theorem and corollaries.380
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Theorem 3.1. Let N be an H-layers perceptron with M discontinuous layers.
Let δLhm+1, for m = 1, . . . ,M , and 0 ≤ h1 < · · · < hM ≤ H, be the discontin-
uous layers. For each i = 1, . . . , |K|, consider the region vector ki ∈ K and let
Ki be defined as

Ki = {x(0) ∈ RN0 | G(x(0)) = ki}. (13)

Then, the following assertions are true:

1. The set ∆ of discontinuity points of LH+1
1 is contained in Γ (see (7)).

2. {K1 . . . ,K|K|} is a partition of RN0 ;

3. LH+1
1 is continuous in the interior of Ki (denoted by

◦
Ki), for each i =

1 , . . . , |K|;385

4. Let Γ̃ denote the union of all the counterimages, through Lhm1 , of the

hyperplanes Π
(hm+1)
j , i.e.:

Γ̃ :=

M⋃
m=1

⋃
j=1,...,Nhm+1

W
(hm+1)
· , j 6=0

(
Lhm1

)−1

(Π
(hm+1)
j ) (14)

Then,
|K|⋃
i=1

∂Ki = Γ̃ (15)

Proof.

1. Let x̂(0) be a discontinuity point for LH+1
1 such that x̂(0) 6∈ Γ. Then, for

each m = 1, . . . ,M , we have that Lhm+1
1 (x̂(0)) 6∈ ∆(hm+1) and Lhm+1

1 is

continuous at x̂(0). Therefore, all the layers are continuous at x̂(0) and

LH+1
1 is continuous at x̂(0), which is a contradiction of the hypothesis.390

2. The result is a direct consequence of the definition of K and K1 . . . ,K|K|.

3. Let x̂(0) be an arbitrary point of
◦
Ki, for a fixed i ∈ {1 . . . , |K|}; then, there

exists an ε̂ > 0 such that, for each 0 < ε ≤ ε̂, the ball Bε(x̂
(0)) contains

only points x(0) belonging to Ki and, therefore, for each m = 1 , . . . ,M it
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holds

lim
x(0)→x̂(0)

Lhm+1
1 (x(0)) = lim

x(0) −→
Bε(x̂

(0) )̂

x(0)
fhm+1

(
W (hm+1)TLhm1 (x(0)) + b(hm+1)

)
+

lim
x(0) −→

Bε(x̂
(0) )̂

x(0)
ε(hm+1) �H

(
W (hm+1)TLhm1 (x(0)) + b(hm+1)

)
=

= fhm+1

(
W (hm+1)TLhm1 (x̂(0)) + b(hm+1)

)
+

ε(hm+1) � k
(hm)
i =

= Lhm+1
1 (x̂(0)) ,

where [k
(h1)T
i , . . . ,k

(hM )T
i ]T = ki is the generalized region vector of Ki.

Then LH+1
1 (and Lhm+1

1 , for each m = 1 , . . . ,M) is continuous at x̂(0);

since x̂(0) is an arbitrary point, LH+1
1 is continuous in

◦
Ki, for each i =

1 , . . . , |K|.395

4. The inclusion Γ̃ ⊆
⋃|K|
i=1 ∂Ki is straightforward, by the definition of the

sets K1, . . . ,K|K|, so we are only left to prove the opposite inclusion.

Let x̂(0) be a boundary point for a given Ki, i ∈ {1 . . . , |K|}, i.e. x̂(0) ∈
∂Ki; then, for each ε > 0, the ball Bε(x̂

(0)) contains both an internal point

x
(0)
in ∈ Ki and an external point x

(0)
out ∈ Kj , j 6= i. Since these two vectors400

belong to two different continuity regions, they have different generalized

region vectors, i.e. ki := G(x
(0)
in ) 6= G(x

(0)
out) =: kj .

Let Kj , j 6= i, be a region that shares the boundary with Ki through x̂(0) ∈
∂Ki, and let m ∈ {1, . . . ,M} be the first index such that k

(hm)
i 6= k

(hm)
j ,

for each pair of internal and external points x
(0)
in ∈ Ki and x

(0)
out ∈ Kj ,405

respectively, in the ball Bε(x̂
(0)), for each ε > 0.

For item 3, the sub-NN characterized by Lhm1 is continuous on Bε(x̂
(0));

then, the image B
(hm)
ε (x̂(hm)) := Lhm1 (Bε(x̂

(0))) is a connected neighbor-

hood of x̂(hm) in RNhm , where we denoted by x̂(hm) the image of x̂(0)

through Lhm1 .410

Let us denote by x
(hm)
in ,x

(hm)
out ∈ B

(hm)
ε (x̂(hm)) the images of x

(0)
in ,x

(0)
out ∈

Bε(x̂
(0)), respectively, through Lhm1 . Since we have k

(hm)
i 6= k

(hm)
j , it holds

that x
(hm)
in ,x

(hm)
out belong to two distinct sets X

(hm)
i , X

(hm)
j ∈ C(Π(hm+1)),

respectively, where ∂X
(hm)
i ∩ ∂X(hm)

j 6= ∅.

Then, for each ε > 0, we have that x̂(hm) ∈ ∂X
(hm)
i ∩ ∂X(hm)

j and,415

therefore, x̂(0) ∈ Γ̃ because x̂(hm) belongs to one of the hyperplanes in

Π(hm+1). For the generality of the choice of Ki and x̂(0) ∈ ∂Ki, we have

that
⋃|K|
i=1 ∂Ki ⊆ Γ̃.
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Corollary 3.2. Let the hypotheses of Theorem 3.1 be satisfied. Then, the set

∆ of all the discontinuity points of LH+1
1 is contained in

⋃|K|
i=1 ∂Ki and, in

particular, we have that

∆ ⊆ Γ ⊆
|K|⋃
i=1

∂Ki . (16)

Proof. We observe that item 3 of Theorem 3.1 implies ∆ ⊆
⋃|K|
i=1 ∂Ki and we420

recall that item 1 of Theorem 3.1 implies ∆ ⊆ Γ. By construction, Γ ⊆ Γ̃ and

for item 4 we have Γ̃ =
⋃|K|
i=1 ∂Ki; then, (16) is proved.

The Theorem and the Corollary above highlight the importance of the par-
tition given by sets (13). Due to the properties illustrated in the theorem, we
denote the sets of the partition by the names of continuity regions, through the425

following definition.

Definition 3.2 (Continuity Regions of a δNN). Let N be an H-layers perceptron
with M discontinuous layers, and let K1 . . . ,K|K| ⊆ RN0 be defined as in (13).
The sets K1 . . . ,K|K| are called continuity regions of N.

Definition 3.2 makes even more sense looking at the results illustrated in the430

following Corollary, immediate consequence of Theorem 3.1, which states that
δNNs are piece-wise continuous functions.

Corollary 3.3. Let the hypotheses of Theorem 3.1 be satisfied. Let M(i)
hm+1 be

the function

M(i)
hm+1(x(hm)) = fh+1

(
W (hm+1)Tx(hm) + b(h+1)

)
+ ε(hm+1) � k

(hm)
i ,

for m = 1 , . . . ,M , where k
(hm)
i is the subvector of ki (see Definition 3.1).

Then LH+1
1 is a piecewise continuous function such that

LH+1
1 (x(0)) =


F1(x(0)) , if x(0) ∈ K1

...

F|K|(x(0)) , if x(0) ∈ K|K|

where, for each i = 1 , . . . , |K|, Fi is the continuous function defined by

Fi = LH+1
hM+2 ◦M

(i)
hM+1 ◦ L

hM
hM−1+2 ◦M

(i)
hM−1+1 ◦ · · · ◦M

(i)
h1+1 ◦ L

h1
1 .

We conclude this section making a resume and some observations concerning
the outcomes of Theorem 3.1 and Corollary 3.3 that are useful for practical435

applications. First, the results state that it is possible to identify the points
where the map LH+1

1 of the δNN is certainly continuous; these regions of the
domain are the open sets (Ki\∂Ki), i.e. the interior of the continuity regions Ki.
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As a consequence, we have the precise indication that the discontinuity interfaces
of LH+1

1 are contained in the union of the boundaries ∂Ki. Furthermore, since440

the continuity regions are characterized by the generalized region vectors and
the set K of these vectors is contained in K1 × · · · × KM (see (12)), we can
control the number of continuity regions through the following proposition.

Proposition 3.3 (Maximum number of continuity regions). Let the hypotheses
of Theorem 3.1 be satisfied. Then, the number |K| of continuity regions for N
is such that

|K| ≤ 2
∑M
m=1Nhm+1 .

The continuity regions Ki of a δNN are a bit more complex than their simpler

counterparts in the discontinuous layers, which are sets X
(h)
i identified by hyper-445

planes and region vectors (see Section 1.1.2). Indeed, sets Ki are not necessarily
convex nor connected sets in RN0 , due to the function compositions that take
place inside the δNN; this is also the reason for the difficulties in directly com-
puting the discontinuity interfaces, even if theoretically possible. On the other
hand, given a set X(0) ⊆ RN0 , the computation of the generalized region vector450

G(x(0)) for each x(0) ∈ X(0) is extremely easy and fast since, by definition, G
is characterized by sub-networks of the δNN considered (see (11)). Therefore,
in practice, the regions Ki can be deduced by sampling a large enough set of
points in the domain and then computing the generalized region vector for all
such points.455

Since the continuity regions can be non-convex and/or disconnected, the
actual significance of Proposition 3.3 is to define an upper bound to the number
of continuous functions that define the equation of LH+1

1 through (3.3).

4. Learning Discontinuities: Numerical Experiments

In the previous sections we have focused on the analysis of the function460

LH+1
1 characterizing a (trained) δNN, highlighting properties related to the dis-

continuous layers present in the network. In this section we show experimental
evidence about the ability of a δNN to learn discontinuity interfaces, given a
target function to approximate. To this aim, we perform the following experi-
ments:465

1. We start considering four test cases given by discontinuous functions dis-
playing different kinds of discontinuity interfaces with increasing complex-
ity (Section 4.1). Several δNN architectures are tested; since the main tar-
get is to show the viability of δNNs for discontinuous function regression
and discontinuity interfaces detection, we do not focus on the problem470

of finding the best hyper-parameters or architectures for regression per-
formance, but we focus on the parameters and characteristics related to
the discontinuous layers of the δNNs, aiming to highlight the actual sen-
sitivity of the δNN approximation performances with respect to the new
discontinuous layers.475
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From these experiments we observe interesting relationships between a
good discontinuity interface detection and the number/position of discon-
tinuous layers in the NN (Section 4.1.2). Then, we define a clustering
algorithm for the continuity regions of δNNs to reduce the overestimation
of the actual continuity regions and improve their detection (Section 4.1.3).480

2. We continue with an experiment in which the test function is obtained
from real data (Section 4.2). In particular, we consider the phase transition
phenomenon of acetone. Representing the acetone’s density ρ as a function
of temperature T and pressure p, a discontinuity interface is present and
corresponds to the so-called equilibrium points between gas and liquid485

states. Based on the observations of previous experiments, we train a
δNN and analyze the results using the clustering algorithm introduced in
Section 4.1.3.

3. We conclude with a more general simulation study (Section 4.3). We gen-
erate 50 random discontinuous functions and we compare the continuity490

region detection abilities of a given δNN and a well-assessed discontinuity
detection method proposed in literature. Each random function is given
by two functions g1, g2 : D ⊂ R2 → R, based on 2-dimensional Leg-
endre polynomials, separated by a discontinuity interface p, based on a
1-dimensional Legendre polynomial.495

4.1. Initial Test Cases

In all the test cases here considered, the underlying function is a scalar
function with domain in R2. In all the cases, we consider the functions restricted
to the region D = [−2, 2]× [−2, 2]. The test functions used are the following.

1. Test 1. We consider the function g` : D → R defined as

g`(x) =

{
2 sin(1.25π||x||) + 4 if x2 ≤ 2x1

2 sin(0.75π||x||) otherwise
, (17)

The discontinuity interface is the line ` : x2 = 2x1 that halves the square500

domain D (see Figure 3-(a)).

2. Test 2. As a second test function, we consider gs : D → R defined as

gs(x) =

{
−2x2

1 + 6 , if x ∈ [−1, 1]× [ 0,+∞)

4e(1−x2
1)/2 , otherwise

, (18)

The discontinuity interface is the segment s := {x(λ) = λ[−1, 0]T + (1 −
λ)[1, 0]T , 0 ≤ λ ≤ 1} (see Figure 3-(b)). Then, in this case, the disconti-
nuity is a sort of straight “rip” for the graph of the function.
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3. Test 3. The third test function we consider is gη : D → R, defined as

gη(x) =


sin (0.4π(x1 + x2)) , if x2 ≥ ex1

sin (0.7π(x1 + x2))− 4 , if x2 < ex1 − 1

sin (π(x1 + x2)) + 4 , otherwise

, (19)

The discontinuity interfaces are two curves, η1 and η2, that split the do-505

main in three regions (see Figure 3-(c)). In particular, η1 : x2 = ex1 and
η2 : x2 = ex1 − 1.

4. Test 4. As a last example we consider a function gγ : D → R characterized
by a discontinuity interface that is a closed curve, the circumference γ :
||x||2 = 1. The function gγ (see Figure 3-(d)) is defined as

gγ(x) =

{
sin(π(x1 + x2)) + 4 , if ||x||2 ≤ 1

sin (0.4π(x1 + x2)) , otherwise
. (20)

(a) g` (b) gs (c) gη (d) gγ

Figure 3: Top view of the functions g`, gs, gη , and gγ (see equations (17)-(20), respectively).
The dotted curves correspond to the discontinuity interfaces.

4.1.1. Architectures and Performance Measures

In the numerical experiments, we use discontinuous H-layers perceptrons.
We consider three archetypes of δNN architectures, varying the depth, the num-510

ber of discontinuous layers, and the size and position of these layers. The number
of units in the fully connected (i.e., non-discontinuous) hidden layers is fixed to
128, while we let d denote the number of units in each discontinuous layer.

The three architecture archetypes we consider are:

1. Architectures with one discontinuous layer only. We consider a unique515

discontinuous layer with d units, which is the h-th inner layer, with h ∈
{1, . . . ,H} (see Figure 4-(a)). We let Adh,H denote such an architecture.

2. Architectures with two discontinuous layers.

2.1. We consider two consecutive discontinuos layers with d units each,
which are the h-th and (h+ 1)-th inner layers, for h ∈ {1, . . . ,H−1}520

(see Figure 4-(b)). We let Bdh,H denote such an architecture.
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2.2. We consider two discontinuos layers with d units each, separated by
a fully-connected layer; they are the h-th and (h+ 2)-th inner layers,
with h ∈ {1, . . . ,H − 2} (see Figure 4-(c)). We let Cdh,H denote such
an architecture.525

In our tests we considered: architecture Adh,H with H = 5, h = 1, . . . , 5 and

d = 2, 4, 8; architecture Bdh,H with H = 5, 7, h = 1, . . . ,H − 1 and d = 2, 4, 8;

architecture Cdh,H with H = 5, 7, h = 1, . . . ,H − 2 and d = 2, 4, 8. As a whole,
we tested 69 architectures.

The activation function for all the hidden layers of the δNNs is the elu530

activation function [9], chosen after a preliminary investigation, while in the
output layer the linear activation function is used. The depth H for the NNs
has been chosen to analyze the effects of the discontinuous layers with respect to
their position in the network, while guaranteeing a good approximation of the
target function, and trying to avoid the so-called degradation problem [12]. The535

size of the discontinuous layers d has been chosen to keep limited the maximum
number of continuity regions (see Proposition 3.3) to ease the analysis.
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(c) Cdh,H

Figure 4: The three archetypes Adh,H , Bdh,H , Cdh,H (example with h = 3 and H = 5). Discon-

tinuous layers are represented by orange units, fully-connected hidden layers by purple units,
input layers by green units, and output layers by red units.

All the networks are trained with the same training options and configura-
tions:

• Dataset: for each testcase g = g`, gs, gη, gγ , the dataset D is made of540

10 000 pairs (xi, yi), with xi randomly sampled with uniform distribution
from the domain of the target function and yi = g(xi). Then, D is ran-
domly split into the training set (5 600 pairs), validation set (1 400 pairs)
and test set (3 000 pairs);

• Data preprocessing: standardization (see [25]) of the input data with545

respect to the training set;
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• Training options: Mean Square Error (MSE) loss function, Adam op-
timizer (learning rate ε = 10−3, decay rates β1 = 0.9 and β2 = 0.999;
see [19]) with learning rate reduction on plateaus (factor 0.75, patience 50
epochs), mini-batch size of 64 samples, 5 000 maximum number of epochs,550

early stopping with best-weights restoration (patience of 250 epochs) as
regularizer.

The performance measure that we adopt to evaluate the results on the test
set is the Mean Absolute Error (MAE), considering that the values of all the
test functions are approximately between −2 and 6:

MAE(δNN,P) :=
1

|P|
∑

(xi,yi)∈P

|yi − ŷi| ,

where P is the test set and ŷi denotes the output prediction of the δNN for xi.

4.1.2. Performance Analysis for the Test Functions

We start our analysis verifying the performance of the δNN in the regression555

task. Upon training all the NNs, with respect to all the test cases, we analyze
the MAE of the models on the test set. The errors, reported in Table 1, prove
that δNNs behave quite well in the regression task, and discontinuous layers do
not hinder the regression abilities of Neural Networks.

MAE g` gs gη gγ

mean 0.0906 0.0218 0.1868 0.0605

std 0.1597 0.1363 0.2706 0.0557

median 0.0274 0.0029 0.0695 0.0427

Table 1: Statistics of the MAEs over all the δNNs on the test sets of the functions g`, gs, gη , gγ .

Once the good approximation abilities of the δNNs are verified, we focus560

the analysis on the ability to identify the continuity regions. We recall that the
computation of the generalized region vectors for an arbitrary set of points in the
domain is extremely easy and fast since, by definition, G is characterized by sub-
networks of the δNN (see (11)). In a nutshell, when we compute the prediction
LH+1

1 (x(0)) for a generic vector x(0) ∈ RN0 , we can easily obtain from the565

NN, at no additional cost, also the intermediate values Lh1 (x(0)) needed in (11),
returned by any arbitrary hidden layer Lh; the computation of G is therefore
and extremely easy and fast task, for an arbitrary batch of vectors.

In Figure 5 we report some examples of results of the regression and interface
detection tasks obtained on all the tests considered. For each subfigure the left570

plot reports the approximation of the corresponding function, and the right
panel reports the continuity regions identified by the δNN. These last figures
are obtained by picking a large enough number of points in the region D, and
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(a) A8
1,5 on g`. MAE: 0.0107 (b) B8

1,5 on gs. MAE: 0.0013

(c) A4
5,5 on gη . MAE: 0.0370 (d) B4

6,7 on gγ . MAE: 0.0262

Figure 5: Approximation of g`, gs, gη , gγ with the δNNs A8
1,5, B8

1,5, A4
5,5, B4

6,7, respectively.

For each subfigure we have the δNN function values (left) and the continuity regions (right).
In the plots of the continuity regions, each region is identified by a different color, according
to the colorbar on the right.

computing the corresponding region vector. Points with the same region vector
are labeled with the same color. Note that according to Proposition 3.3 the575

number of continuity regions can be up to 2δN , being δN the total number of
units in the discontinuous layers.

In general, we observe a very good approximation of both the test function
and the actual continuity regions by the δNNs. In Figure 5, we show the results
obtained for each test function on a selected δNN. Looking at the continuity580

regions of the δNNs, we observe the following phenomena.

Boundaries of the continuity regions. If the first hidden layer is discon-
tinuous, then there are necessarily some continuity regions with straight
boundaries. This is due to the fact that the boundaries of the continuity
regions correspond to the counterimages through Lh1 of the hyperplanes585

Π
(h+1)
j introduced by the discontinuous layers (see Theorem 3.1, item 4).

When the first layer is a discontinuous one, since by convention L0
1 is the

identity function (see (6)), the continuity region boundaries identified by

the hyperplanes Π
(1)
j are the hyperplanes themselves. In particular, if δL1

is the only discontinuous layer, then the continuity regions have only linear590

boundaries. This phenomenon is depicted in Figure 5: figure top, left is
obtained with a unique discontinuous layer which is the first hidden layer,
whereas figure top, right is obtained with two discontinuous layers, which
are the first and second hidden layers. Note that in the second case the
boundaries separating the continuity regions identified are either lines or595

mildly curvilinear lines.
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On the other hand, the more the discontinuous layers are located toward
the output layer, the more the counter-images of the corresponding hyper-
planes are obtained from the application of nonlinear functions, and the
more the boundaries of the continuity regions can have a curved shape.600

This behaviour is still depicted in Figure 5: the bottom figures are ob-
tained with discontinuos layers which are either the last one (bottom left
case) or the last two (bottom right case): in both cases, highly curved
boundaries are obtained.

Trade-off between approximation and discontinuity detection. The more605

the discontinuous layers are located toward the output layer, the more they
are forced to focus on learning the discontinuity jumps of the target func-
tion. Indeed, a discontinuous layer near to the input can mainly focus
on learning the discontinuity interface while spending not much effort on
the precise values of the jump parameters ε, since the following layers can610

enlarge/shorten these jumps to reach appropriate values for the approxi-
mation task. Then, a discontinuous layer followed by few layers is forced
also to learn the jumps, having less help available from the following layers.

In few cases, we observe that the efforts of the δNN is mostly spent in
learning the discontinuity interfaces, harming the function approximation.615

However, this mainly happens with discontinuous layers with few units
(i.e., d = 2) that are not near to the input layer. This rare problems
clearly depend on the dimensionality reduction inside the NN (from R128

to R2) that occurs toward the end of the network.

Since the δNNs can learn much more discontinuity interfaces than the ones620

actually characterizing the test functions, we observe that the models use
the discontinuous layers also trying to adjust and improve the regression.
In particular, we observe that in many cases the boundaries of the conti-
nuity regions partially “follow” the level curves of the target function but
discontinuities are almost imperceptible.625

From all the previous observations, the following indications can be deduced.
If we are looking for discontinuities with an almost linear discontinuity interface,
it is preferred to introduce discontinuous layers near to the input layer, whereas if
we are looking for discontinuities with highly curvilinear interfaces, it is preferred
to introduce discontinuous layers near to the output layer. Moreover, too small630

discontinuous layers should be avoided, and also the use of a discontinuous
layer as first hidden layer should be avoided, unless it is a priori known that
the discontinuity interface is a straight line or segment.

We remark that in case of an incorrect choice of the discontinuous layers,
we observe that the approximation abilities very rarely are compromised even if635

the discontinuity interfaces are not learned. Typical examples are the ones
illustrated in Figure 6, where two δNN approximating the function gγ (see
Figure 3-(d)) have continuity regions with boundaries that are “not-enough”
curvilinear to approximate the circumference γ. Following these indications,
the architectures used in Figure 5 are the best δNNs among the ones with640
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h < dH/2e for g` and gs and among the ones with h ≥ dH/2e for gη and gγ ,
where we recall that h is the index of the first discontinuous layer in the NN
architecture and H is the depth of the NN.

(a) A2
1,5 (b) C21,5

Figure 6: Approximation of gγ with the δNNs A2
1,5 and C2

1,5. For each subfigure we have the

δNN function values (left) and the continuity regions (right). In the plots of the continuity
regions, each region is identified by a different color, according to the colorbar on the right.

4.1.3. Continuity Region Clustering

In the previous section, we observed that most of the trained δNNs approxi-645

mate with a good quality level both the functions and their continuity regions of
the test functions. Nonetheless, in most of the cases, the continuity regions of the
test functions are approximated by the δNNs with many continuity regions that
are separated by negligible/inexistent discontinuities; in practice the method in
its basic form largely overestimates the number of continuity regions. For ex-650

ample, in Figure 5-(b), we see more than 100 continuity regions but, clearly, the
regions in the bottom half of the square can be considered as one single continu-
ity region, as no discontinuities are perceived in the left plot; the same applies
to the top half of the square. Then, to identify the actual continuity regions of
the test functions, we introduce a method to group the continuity regions of the655

δNNs if the discontinuities on the boundaries are negligible/inexistent.
The development of such a kind of method is by far not trivial. From Propo-

sition 3.1 we know that if a discontinuity jump parameter is zero, the δNN does
not introduce a discontinuity on the corresponding continuity region boundary.
Nonetheless, small values of the discontinuity jump parameters not necessarily660

correspond to negligible discontinuity jumps; indeed, as previously observed,
a jump introduced by a discontinuous layer can be enlarged/shortened by the
following layers. Then, we developed a clusterization method based both on the
values of the discontinuity jump parameters and on the action they play inside
the δNN.665

Let N be a discontinuous H-layers perceptron defined as in Theorem 3.1,
i.e. with M discontinuous layers δLh1+1, . . . , δLhM+1 such that 0 ≤ h1 < · · · <
hM ≤ H. We recall that Nhm+1 is the number of units of the discontinuous layer
δLhm+1 and that δN denote the total number of units in discontinuos layers,

namely δN :=
∑M
m=1Nhm+1; we also recall that the generalized vector function670

is G : RN0 → {0, 1}δN . In view of the formal description of the clusterization
method, we introduce here the following further notation:
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• for each {i1, . . . , ik} ⊆ {1, . . . , δN}, we denote by G|i1,...,ik the vector
valued function whose elements are elements i1, . . . , ik of G (see Defini-
tion 3.1);675

• after introducing a global indexing for the discontinuity jump parame-
ters, now labeled εi for i = 1, . . . , δN , we denote by LH+1

1 |εi=0 the char-
acterizing function of the δNN obtained from N by setting to zero the
discontinuity jump parameter εi;

• for any finite set of vectors X = {x1, . . . ,xq} ⊂ RN0 , we denote by
LH+1

1 (X) the matrix in RNH+1×q defined as

LH+1
1 (X) :=

[
LH+1

1 (x1) . . .LH+1
1 (xq)

]
;

we adopt the same convention for LH+1
1 |εi=0(X).680

We can now describe the clusterization method for the continuity regions
of N. The proposed method defines new regions by suitably merging some
continuity regions of the δNN, leveraging the function G|i1,...,ik . To understand
the merging procedure, consider for example the function G|i, restricted to the
index i ∈ {1, . . . , δN} only: this restriction is blind to all the interfaces not685

related to εi and therefore only two regions in RN0 are retained, which are,
respectively: i) the union of all the continuity regions Ĉ such that

(
G(x(0))

)
i

=

G|i(x(0)) = 0, for all x(0) ∈ Ĉ; ii) the union of all the continuity regions C̃ such

that
(
G(x(0))

)
i

= G|i(x(0)) = 1 for all x(0) ∈ C̃.
The number k ∈ N of discontinuity interfaces can be arbitrarily fixed. The

clustering is based both on the values of the discontinuity jump parameters εi
and on the action they play inside the δNN. Indeed, we introduce for each εi a
rank value which depends not only on the size of εi itself, but also on its effect
on the δNN; the latter dependence is obtained measuring the difference between
LH+1

1 and LH+1
1 |εi=0, i.e. switching-off εi. Formally, let X = {x1, . . . ,xq} ⊂

RN0 be a finite set of vectors. Let ||·|| be a norm on RNH+1×q and let k ∈ N,
k ≤ δN , be fixed. For each i = 1, . . . , δN , we compute the rank value

ρi(X) := |εi| · ||LH+1
1 (X)− LH+1

1 |εi=0(X)|| . (21)

In a nutshell, ρi(X) measures how much εi contributes to the outputs of the690

δNN, weighted by the value of εi itself. The higher ρi(X) is, the more likely
the discontinuity interface corresponding to εi approximates a real discontinuity
interface of the target function. Then, retaining only the discontinuity interfaces
corresponding to the k highest rank values only, we can merge the continuity
regions that are unlikely to be separated by a discontinuity interface of the target695

function. Following this idea, the rank values are sorted in descending order,
and continuity regions separated by hyperplanes corresponding to parameters
εi with the smallest rank values are merged, in such a way that we end with a
fixed number of discontinuity interfaces.

The above procedure can be sketched in the following algorithm.700
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Algorithm 4.1 (Clusterization Method for Continuity Regions of a δNN). Let
N be a discontinuous H-layers perceptron defined as in Theorem 3.1 and let
k ∈ N, k ≤ δN , be the number of indices with respect to which I want to
perform the continuity region clustering of N. Then:

1. For each i = 1, . . . , δN , compute the rank value ρi(X) as in (21);705

2. sort the rank values in descending order: ρi1(X) ≥ · · · ≥ ρiδN (X). Let
i1, . . . , ik be the indices corresponding to the largest rank values;

3. Compute the new regions with respect to G|i1,...,ik .

Algorithm 4.1 represents a first attempt to build an effective method to iden-
tify the continuity regions of a target unknown function using a δNN. Testing710

it on the best δNNs selected for the test functions (see Figure 5), we observe
extremely good results. In this tests we use the infinity norm for the rank val-
ues computations (see (21)), as a preliminary analysis showed better clustering
performance with respect to the `1 and `2 norms.

As far as functions g`, gs, and gη are concerned, regions returned by Algo-715

rithm 4.1 follow very well the actual discontinuity interfaces of the test function,
for each 1 ≤ k ≤ δN (see Figures 7-9). The only exception is the case of gγ ,
in which the method is not able to catch the circumference for k = 1 (see Fig-
ure 10), and k = 3 is needed to reach the target. However, we observe that
the method is able to detect the circumference γ with other non-optimal δNNs720

(e.g., see Figure 11); this phenomenon is still under investigation and may sug-
gest that a basic error-based criterion not necessarily select the δNN that best
identify the discontinuity interfaces of the target function.

Nevertheless, δNNs proved to have the potential for being a new useful tool
for the discontinuity detection problem.725

(a) k = δN = 8 (b) k = 5 (c) k = 3 (d) k = 1

Figure 7: Test 1. Regions returned by Algorithm 4.1 and A8
1,5

4.2. Real Data Test Case

The tests reported in the previous subsection are based on the synthetic
functions g`, gs, gη, gγ ; here we train a δNN to approximate a discontinuous
function obtained from real data, considering the phase transition phenomenon
of a given medium. For any medium, the state of matter can be identified by
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(a) k = δN = 16 (b) k = 11 (c) k = 6 (d) k = 1

Figure 8: Test 2. Regions returned by Algorithm 4.1 and B8
1,5

(a) k = δN = 4 (b) k = 3 (c) k = 2 (d) k = 1

Figure 9: Test 3. Regions returned by Algorithm 4.1 and A4
5,5

some parameters, such as the density ρ. However, the density of a medium
depends on the temperature T and the pressure p; i.e., for each medium there
exists a function g such that

ρ = g(T, p) . (22)

For a wide range of media, experimental density measurements show that the
function g is characterized by discontinuity interfaces that separate two or more
regions of the (T, p) plane representing different states of matter; in particular,
the points along these discontinuity interfaces are defined as equilibrium points730

with respect to the states of matter they separate. On the other hand, not
necessarily a phase transition takes place through a discontinuity jump of the
density and can happen continuously, crossing a region of so-called supercritical

(a) k = δN = 8 (b) k = 5 (c) k = 3 (d) k = 1

Figure 10: Test 4. Regions returned by Algorithm 4.1 and B4
6,7
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(a) k = δN = 16 (b) k = 11 (c) k = 6 (d) k = 1

Figure 11: Test 4. Regions returned by Algorithm 4.1 and B8
4,7

points of the (T, p) plane. This classification of phase transition phenomena is
called Ehrenfest classification [15].735

Due to the discontinuous behavior of (22), we perform a new numerical
test that involves δNNs and the acetone medium. Specifically, we train a δNN
to approximate the acetone’s density function (from now on labeled ga) and
its discontinuity interface, starting from the data reported in [1] with pressure
smaller than or equal to 10MPa (see Figure 12-(a)).740

(a) (b)

Figure 12: (a): (T, p, ρ) points of acetone taken from [1]; red dots correspond to liquid state,
magenta to liquid state at equilibrium, blue to gas state, cyan to gas state at equilibrium,
and purple to supercritical points. (b): Acetone’s density function g̃a reconstructed from
the experimental measures reported in subfigure (a); temperature, pressure, and density are
normalized.

Looking at these data, we observe that the discontinuity interface described
by the equilibrium points is a nonlinear “rip”. Then, following the indications at
the end of Section 4.1.2, we avoid to train a large set of δNNs and we only train
a δNN with architecture B8

3,5, as it is expected to fit sufficiently well this type
of discontinuity interface. The training of the δNN is characterized by the same745

hyper-parameters and training options described in Section 4.1.1, where the
dataset D of pairs ((Ti, pi), ρi) is generated using the piece-wise linear density
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function g̃a reconstructed from the experimental measures (see Figure 12-(b)).
The trained δNN shows very good approximation results of both the func-

tion (see Table 2 and Figure 13-(a)) and the continuity regions (Figure 13-(b)).750

Indeed, the MAE on the test set is approximately 5 · 10−3 and, using the clus-
tering algorithm of Section 4.1.3, we observe a quite accurate detection of the
nonlinear rip of ga. In details, the clustering algorithm for the continuity regions
of B8

3,5 is applied starting from the δN = 16 discontinuity interfaces of the δNN,
using the infinity norm for the computation of the rank values. Then, for each755

1 < k ≤ δN , the clustering algorithm shows that the discontinuity interface of
ga is approximated very well by the ones of the δNN (see Figure 13-(b), for the
case k = 2).

mean (MAE) std median

Absolute Error 0.0048 0.0192 0.0015

Table 2: B8
3,5. Statistics of the absolute error for the test set of acetone’s density function.

(a) (b)

Figure 13: (a): approximation of ga returned by B8
3,5; (b): continuity regions of B8

3,5 after
the clustering algorithm, k = 2. In both panels, black markers and dashed lines denote the
discontinuity interface defined by the equilibrium points.

4.3. Simulation Study

We conclude the numerical experiments performing a simulation study that760

involves 50 synthetic discontinuous functions g : D → R, with D = [−2, 2] ×
[−2, 2], in order to make a quantitative analysis of the continuity region detection
ability of the δNNs, considering as a reference method the one described in
[5], that is characterized by the following steps. In the one-dimensional case,
letting [g] denote the jump function of the target function g (i.e., [g](x) = 0 if765

g is continuous in x, otherwise [g](x) is equal to the discontinuity jump), for
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any fixed x ∈ R a high order polynomial approximation Lmg(x) of [g](x) is
built, using function evaluations on a local stencil made of m + 1 points near
x; in order to reduce misinterpretations possibly induced by oscillations which
may occur for large values of m, the minmod limiter is also applied. The key770

property of such approximation is that it converges rapidly to [g](x), with a
rate depending on m and on the local smoothness of g; namely, away from
discontinuities, we have Lmg(x) ' O(hmin(m,k)), where k is such that g ∈ Ck
in a neighborhood of x, and h is the grid-size; close to discontinuities, we have
Lmg(x) ' [g](x) + O(h). Hence, once the polynomial approximation of [g] is775

built, this can be used to detect presence of jumps by analyzing its departure
from 0: introducing a tolerance τ > 0, we assume the presence of a discontinuity
interface between two points if the absolute value of the approximated jump in
the midpoint is greater than τ . For a function g : Rn → R, the one-dimensional
method is applied to each one of the n dimensions.780

4.3.1. Generation of Random Discontinuous Functions

Let Pn denote the Legendre polynomial of degree n; the 50 random discon-
tinuous functions considered herein are piece-wise smooth functions gπ : D → R
defined as

gπ(x) =

{
g1(x) , if π(x1)− x2 ≥ 0

g2(x) , otherwise
, (23)

where:

• the functions g1, g2 are defined as

gj(x) =
∑

h+k≤4

chkPh

(
x1 + 2

4

)
Pk

(
x2 + 2

4

)
, ∀ j = 1, 2 , (24)

with chk random coefficients sampled from the normal distributionN (0, 10);

• the function π is defined as

π(x) = C
q(x)

max−2≤y≤2 |q(y)|
, (25)

with

q(x) =

4∑
h=0

chPh

(
x+ 2

4

)
, (26)

C > 0, and ch random coefficients sampled from the normal distribution
N (0, 10); namely, π is the polynomial q rescaled to a maximum absolute785

value equal to C. In our experiments, we used C = 1.75. See Figure 14
for some examples of test functions.
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Figure 14: Top view (top row) and 3D view (bottom row) of the first four random functions
generated for the simulation study. The dotted curves in the top views correspond to the
discontinuity interfaces given by the random polynomials π.

4.3.2. Quantification of the Continuity Region Detection Ability

According to the indications given at the end of Section 4.1.2, for this study
we only train a δNN with architecture B8

3,5, as already made in Section 4.2,790

for each one of the 50 functions; the training options and the hyper-parameters
of the δNN are the same described in Section 4.1.1. Since all the problems
are characterized by two continuity regions, we use the clustering algorithm
to identify the highest-rank parameter εi of each δNN, that identifies the two
“main” continuity regions of the NN’s characterizing function; namely, we run795

the clustering algorithm with k = 1.
For each test function, we also run the discontinuity interface detection

method of [5] in order to classify the 2500 points of the 50-by-50 regular grid in
D, generated by the cartesian product of 50 equally spaced points on each axis,
including the extrema of the interval [−2, 2]. Specifically, we use the method800

in [5] to approximate the jump function in the midpoints between any pair of
neighboring points in the grid. Then, we perform the domain classification al-
gorithm in [5] for the points of the regular grid, with respect to two continuity
regions.

In brief, the domain classification method in [5] can be summarized by the805

following procedure:

1. starting from (x
(0)
1 , x

(0)
2 ), move along the two domain dimensions and visit

the points of the grid. The movement is blocked if a discontinuity jump
is detected in the midpoint along the movement direction;

2. when it is no more possible to visit other grid points, classify the visited810

points as belonging to “region 1”. Then, classify the non-visited grid
points as members of “region 2”.

We run the method in [5] with m = 4 and tolerance values τ = 10−t, t = 1, . . . , 4.
We classify the points of the regular grid also by means of the continuity regions
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identified by the δNNs. Then, we compare these classifications, measuring the815

accuracy and the weighted F1-score [2] with respect to the real continuity regions
of the functions. Here, we briefly recall the definition of these two values.

• Accuracy: let C = {C1, . . . , CM} be a set of M classes associated to the
vectors of a finite set {x1, . . . ,xN} := X ⊂ Rn. For each i = 1, . . . , N , we
denote by ci ∈ C the true class of xi and by ĉi ∈ C the class predicted by
a given model Ĉ for xi. Then, the accuracy of Ĉ is the ratio between the
number of elements in X whose class has been correctly predicted, over
the cardinality of X itself, i.e.:

accĈ(X ) :=
|{xi ∈ X | ci = ĉi}|

N
.

The accuracy of a model is often reported as a percentage.

• F1-score: let us consider the sets X and C, and the model Ĉ as defined in
the previous item. If the classes are not uniformly distributed among the
elements of X , the accuracy can be not enough to describe the classification
performances of Ĉ; e.g., if 90% of the elements of X belong to class C1 ∈ C
and Ĉ predicts constantly the class C1 for any input, then the accuracy of
the model on X would be 90%. Therefore, other two values are typically
introduced to describe the performances of the model Ĉ: the precision
and the recall, with respect to each class in C. In a nutshell, the precision
of Ĉ with respect to class Cj ∈ C is the ratio between the number of
correct predictions of Cj over the number of all the elements predicted as
belonging to class Cj , i.e.:

precĈ(Cj ,X ) :=
|{xi ∈ X | ci = Cj = ĉi}|
|{xi ∈ X | ĉi = Cj}|

;

on the other hand, the recall of Ĉ with respect to class Cj ∈ C is the ratio
between the number of correct predictions of Cj over the number of all
the elements really belonging to class Cj , i.e.:

recĈ(Cj ,X ) :=
|{xi ∈ X | ci = Cj = ĉi}|
|{xi ∈ X | ci = Cj}|

.

Then, in order to aggregate the precision and recall values, the F1-score
of Ĉ with respect to class Cj is introduced and defined as the harmonic
mean of these values, i.e.:

F1Ĉ(Cj , X̂) := 2
precĈ(Cj ,X ) · recĈ(Cj ,X )

precĈ(Cj ,X ) + recĈ(Cj ,X )
.

In the end, the weighted F1-score of Ĉ with respect to X is the weighted
mean of the classes’ F1-scores, where the weights are the number of ele-820

ments really belonging to the classes in X .
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Accuracy

[5], t = 4 [5], t = 3 [5], t = 2 [5], t = 1 B8
3,5

mean 0.8559 0.8973 0.8777 0.8576 0.9103

std 0.2070 0.1645 0.1720 0.1789 0.1329

median 0.9872 0.9944 0.9942 0.9948 0.9720

Table 3: Statistics over the 50 random test functions of the accuracy w.r.t. the continuity
region classification performed by method [5] for several tolerance values τ = 10−t, and B8

3,5

F1-score

[5], t = 4 [5], t = 3 [5], t = 2 [5], t = 1 B8
3,5

mean 0.8210 0.8598 0.8324 0.8039 0.9040

std 0.2562 0.2257 0.2363 0.2462 0.1489

median 0.9873 0.9944 0.9942 0.9948 0.9722

Table 4: Statistics over the 50 random test functions of the F1-score w.r.t. the continuity
region classification performed by method [5] for several tolerance values τ = 10−t, and B8

3,5

Looking at the results in Table 3 and Table 4, which report statistics on
the accuracy and the F1-score, we clearly observe the good performances of the
δNN, also with respect to method [5]. Indeed, the δNN has both an average
accuracy and an average F1-score larger than the method in [5], and with a825

smaller standard deviation; only the median accuracy and median F1-score are
slightly larger for [5] than for the δNN.

The lower performance of method [5], especially with respect to the F1-score,
depends on the fact that this method typically returns only very good or very
bad domain classifications. Indeed, even only one missed jump (along one of the830

two domain dimensions) may lead [5] to a total misclassification of one of the two
regions; this misclassification is more frequent for large values of τ . It is worth
noting that in most cases missed jumps occur, independently of the tolerance
value, at points of the discontinuity interface π where the two functions g1 and
g2 take the same value (i.e., the jump is zero at that point). On the other hand,835

if false discontinuity points are detected, undesired discontinuity interfaces are
built, which let only partially identify one of the two regions during the domain
classification algorithm [5]; this misclassification is more frequent when τ is
small.

In both cases, typically we have an almost total miscalssification of one con-840

tinuity region from [5]. On the other hand, the δNNs very rarely misclassify an
entire region, and for this reason the performance statistics of B8

3,5 are charac-
terized by a higher mean and a smaller standard deviation, especially for the
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F1-score.
On the other hand, the possible difficulties of the δNN are likely to be the845

same already observed in Section 4.1; i.e., the architecture B8
3,5 is not always the

best one for the test function gπ and, therefore, the discontinuous layers some-
times focus too much on the function approximation, rather than on learning
the discontinuity interface π.

(a) function gπ (b) B8
3,5, k = 1

(c) [5], τ = 10−4, . . . , 10−1

Figure 15: Classification example 1. (a) 3D and top view of gπ ; (b) domain classification with
the δNN B8

3,5 (regions identified are colored in red and magenta); (c) domain classification

with [5], τ = 10−4, . . . , 10−1, left to right (regions identified are colored in yellow and purple).
The dotted line is the actual discontinuity interface π.

We conclude this simulation study showing some examples of misclassifica-850

tion for [5], B8
3,5, or both (Figures 15-17). In Figure 15 we depict a situation

in which both B8
3,5 and [5] classify almost perfectly the continuity regions of

gπ. The only exception is [5], τ = 10−4, where a too small tolerance causes an
overidentification of discontinuity points and the discontinuity regions are not
properly identified (see the leftmost picture of subfigure (c)). In Figure 16 both855

B8
3,5 and [5] show difficulties in the domain classification and only [5], τ = 10−3,

is able to make an almost perfect classification. In particular, τ = 10−2 and
τ = 10−1 are too large and small jumps at the discontinuity interface π are not
detected (see the two rightmost pictures of subfigure (c)). On the other hand,
a too small tolerance, such as τ = 10−4, once again yields an overidentification860

of discontinuities and a consequent misclassification (see the leftmost picture of
subfigure (c)). Finally, in Figure 17 only B8

3,5 is able to make a good domain
classification. The difficulties of [5] in this case depend on the fact that there
is a point on the discontinuity interface π where g1 and g2 take the same value,
and the approximated jump function is zero; then, a jump is never detected near865

this point. Therefore, almost all the domain is classified as belonging to one
region (see the three pictures on the right of subfigure (c)). Only the tolerance
value τ = 10−4 can mitigate the effect of this situation, because it combines the
problem here illustrated with the problem related to a small tolerance (see the
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(a) function gπ (b) B8
3,5, k = 1

(c) [5], τ = 10−4, . . . , 10−1

Figure 16: Classification example 2. (a) 3D and top view of gπ ; (b) domain classification with
the δNN B8

3,5 (regions identified are colored in red and magenta); (c) domain classification

with [5], τ = 10−4, . . . , 10−1, left to right (regions identified are colored in yellow and purple).
The dotted line is the actual discontinuity interface π.

(a) function gπ (b) B8
3,5, k = 1

(c) [5], τ = 10−4, . . . , 10−1

Figure 17: Classification example 3. (a) 3D and top view of gπ ; (b) domain classification with
the δNN B8

3,5 (regions identified are colored in red and magenta); (c) domain classification

with [5], τ = 10−4, . . . , 10−1, left to right (regions identified are colored in yellow and purple).
The dotted line is the actual discontinuity interface π.
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leftmost picture in subfigure (c)), but the classification is still incorrect.870

5. Conclusions

We have presented a novel typology of layers for Neural Network models,
characterized by a discontinuous map where the discontinuity action is obtained
adding a vector of multiples of the Heaviside function applied to input signals of
the layer (see (4)); consequently, the function LH+1

1 of a NN with at least one of875

these discontinuous layers could be discontinuous, too. Denoting by δNN such a
NN, we analyzed and studied the theoretical properties that characterize their
maps LH+1

1 . Some useful results have been proven (see Section 3), concerning
the discontinuities introduced in the δNNs.

We have also performed numerical experiments to show possible applica-880

tions of δNNs to discontinuous functions. We started considering four different
examples with increasing complexity to analyze the sensitivity of the new NN
models in both approximating the discontinuous functions and detecting their
discontinuity interfaces using the continuity regions. Extremely interesting re-
sults have been obtained, showing a reat deal of potential for the new δNNs;885

indeed, the δNNs proved to have a remarkable ability in detecting the actual
discontinuity interfaces of the approximated function, without compromising
the function approximation ability typical of the NNs. Since in its basic form
the method proposed overestimate the number of continuity regions, we also
propose a method for clustering the continuity regions of the δNN in order to890

have a more precise identification of the actual continuity regions of the original
function.

Given the analyses of the δNNs on the four examples, we extended the
numerical experiments to a similar problem based on real data arising from a
phase transition phenomenon. In particular, according to the observations on895

the previous experiments, we select only one δNN architecture to approximate
the target function. Also in this case, the new discontinuous NN model shows
both good regression skills and good continuity region detection abilities. In the
end, we presented a simulation study that involved 50 random discontinuous
functions, where a comparison of the continuity region detection abilities of900

δNNs are compared with the ones of a well-assessed method. The results of the
study are extremely interesting, showing that the detection performances of the
δNNs are very promising.

Data Availability Statement

The code used to implement the Discontinuous Neural Networks is available905

at https://github.com/Fra0013To/deltaNN (accessed on 11 August 2022).
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