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Abstract—Recently, proposals have been made for enhancing the
Oscillation Based Test (OBT) methodology by using non-plain oscillation
regimes, leading to so called Complex Oscillation Based Test (COBT).
Here we focus on a recently illustrated strategy for the testing of analog
2nd order filters, showing that the COBT dynamics is quite similar to that
expressed by Resonate & Fire (R+F) neuron models. In this interpretation,
the testing approach can be related to firing-rate measures. A brief
description is given of the mathematical models necessary to achieve
a precise characterization of firing times, showing how it can be used
for testing purposes. A practical example with simulation data is also
provided.

I. INTRODUCTION

Oscillation Based Test (OBT) is a technique introduced in the
late ’90s to address the increasing costs associated with the testing
of analog subsystems in large mixed-mode ICs and Systems on
a Chip (SOCs) [1]. Savings are made by avoiding the need
of dedicated circuits or signal injection point for exciting the
Blocks Under Test (BUTs). This is achieved by turning the BUTs
themselves into oscillators whose features can reveal faults [2].
Costs can be further reduced by characterizing the oscillations
only by means of quantities that are inherently expressed in the
time domain, so that data acquisition can be directly practiced by
counters and no A/D converters are required for testing.

In typical deployments, OBT oscillation regimes are plain
sinusoidal. Consequently, the only time-domain quantity at hand
is the oscillation period. Relying on this single measurand is
known to limit the achievable fault coverage [2], [3] and to
hinder most forms of functional testing [4, and references therein].
To overcome these issues, the usage of non-plain oscillation
regimes (including long-period-non-sinusoidal, multi-periodic or
chaotic) has recently been proposed under the name of Complex
Oscillation Based Test (COBT) [5], [6].

Given that COBT can be considered a super-set of OBT, the
spectrum of COBT techniques can obviously be quite large.
So far, ideas have been presented for data-converters [5] and
analog filters [6]. In [4], an attempt has been made at defining a
general strategy for achieving multiple time-domain measurands
via COBT from analog BUTs. The strategy is particularly suited
at blocks where the initial behavior is already based on resonance
phenomena (as in many types of filters).

Here, we re-interpret this latest approach, by noticing that
the dynamical features being exploited are actually quite similar
to those found in so called Resonate & Fire (R+F) neuron
models [7] and Chaotic Spiking Oscillators (CSOs) [8], [9].
Intriguingly, in this interpretation the time-domain measurands

being gathered for testing purposes correspond to the firing rates.
The inherent scenario sees the “neuron” fed by stationary inputs,
while parameter changes in the BUT get converted into model
variations, that induce changes in the average firing rates.

In this paper, by studying the R+F (or CSO) dynamics by the
statistical approach in [10], we can accurately characterize the
BUT parameters to firing-rate relationships. Once inverted, such
relationships offer a means to functionally/parametrically check
the BUT against its nominal specifications. The current analysis
represents a significant step ahead of previously presented models
[4] that were based on relatively rough approximations. To aid
comparison, simulation data is provided with regards to the same
sample circuits.

II. BACKGROUND

A. COBT of a bandpass filter

Fig. 1 illustrates the Band-pass (BP) filter used as a benchmark
for the present discussion. It is the same 2nd order switched
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Figure 1: The filter used as an example.

capacitor circuit adopted in [4]. When clocked at a sufficiently
high rate fΦ � f0 (where f0 is the center band frequency) it
can accurately emulate a Continuous-Time (CT) transfer function
such as:

H(s) = G0

2πf0

Q s

s2 + 2πf0

Q s+ (2πf0)2
(1)

where Q is the merit factor, G0 is the center band gain, and

f0

fΦ
=

1

2π
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In the following, for the sake of brevity, the discussion will
directly rely on the CT model.1

Fig. 2 shows the same filter as in Fig. 1 once modified for
COBT as in [4]. The effect of the changes are the following.
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Figure 2: The filter modified for COBT.

First, the two switches SW1, SW2 allow the filter to become part
of a loop when in test mode (BIST signal asserted). Secondly,
capacitors C1, C1a and C1b allow to control the loop gain among
two different values GLa|b = (C1+C1 a|b)/C4, both larger than
1 and capable to assure that the system will diverge from the
equilibrium point created by the above loop. Specifically, one has

GLa|b = G0 ·
(

1 +
C1 a|b
C1

)
(3)

where the ratio C1 a|b/C1 can be set with good precision. Thirdly,
comparator CMP1 allows the zero crossings of the state variable
x2 (corresponding to the output of OA2 and to Vout) to be observed
from the digital signal XD. Finally, comparator CMP2 allows
tracking events when x2 exceeds a given threshold Vref by means
of the digital signal JP (the two D-latches merely adjust the
synchronization of JP to the clock). When JP is asserted, thanks
to the split of capacitor CB into γCB and (1 − γ)CB and to a
couple of JP-driven switches in the local loop around OA2, x2

gets reset to a known value Vreset ≈ Vref(2γ−1)/γ, while the other
state variable x1, output of OA1 is unaffected. For further details
see [4].

As a consequence of these changes, when the filter enters test
mode, trajectories such as those in Fig. 3 are obtained. In practice,
as long as x2 does not exceed Vref, one has a quasi-harmonic
oscillatory behavior with increasing envelope. As soon as x2

reaches Vref, there is a sudden “jump” in the trajectory due to the
reset of x2. The state is almost instantaneously taken close to the
system equilibrium point, so that the quasi-harmonic divergence
can start again.

Altogether, one has an autonomous impulsive differential sys-
tem [11] such as



x′ = Ax x2 > Vref

∆x = (0, Vreset − Vref)
T otherwise

(4)

1In principle, this is appropriate since the functional validation is typically
to be performed against Eq. (1) anyway. However, it introduces some minor
and easy to compensate systematic errors (as illustrated at the end of the
paper), that shall be fully addressed in a future publication.

Vreset

Vref

x2

x1

Figure 3: Sample COBT trajectories.

where x = (x1, x2)T, a1,1 = 0, a1,2 ≈ −C2fΦ/CA, a2,1 ≈
C3fΦ/CB , a2,2 ≈ (−C4+C1+C1 a|b)fΦ/CB . Under this model, the
state variables evolve as piece-wise exponentially-increasing sine-
waves. Namely, as long as jumps are not exercised,

xi(t) = Aie
αt sin(ω0t+ φi) (5)

where i ∈ {1, 2}, Ai, φi are appropriate parameters related to
initial conditions, φ1 is in quadrature with φ2, and ω0 = 2πf0.
Note that as long as this situation is exercised, XD can directly
reveal f0. Furthermore, the quantity α is given by the real part
of the eigenvalues of A as:

α =
C1 + C1 a|b − C4

2CB
fΦ =

ω0

2Q
(GLa|b − 1) (6)

B. Resonate and fire (chaotic spiking) dynamics

It is now possible to make a parallel between the dynamics in
Fig. 3 and that portrayed in [7] for R+F systems. The waveforms
are remarkably similar since R+F systems also involve signals
made of portion of exponential growing sinusoids (in the resonant
phases) separated by sharp discontinuities (the firing events).

The parallel is interesting since in R+F neurons the firing
activity is the major means by which information is encoded.
The firing patterns fully incorporate both the effects of the input
excitation and of the internal processing parameters. In absence
of external inputs, as it is now the case, one can expect the firing
to reveal many aspects of the internal neuron tuning and this is
one of the reason why the observation of the “state jumps” seems
a promising approach to validate the BUT operation in COBT.

In most conditions, R+F systems show firing events arranged
in highly irregular patterns, where order can only be found by
statistical means. Simplified, artificial models explain this as a
manifestation of chaotic dynamics. Approaching R+F systems as
CSOs [9], using a statistical toolbox [10], can thus be effective
in tying averaged indicators to system parameters. In a COBT
perspective, this is indispensable since COBT precisely aims at
identifying system parameters from such indicators.

Due to the complexity of the nonlinear models inherent in
CSOs, a common first step in the analysis is a model order
reduction practiced by taking Poincare sections [8], [12]. The
very existence of a thresholding mechanism in the model suggest a
practical way to do so by building a return map, namely a function
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M : R → R tying to each other the subsequent intersections of
the trajectories with the threshold.

III. ANALYSIS OF THE FIRING RATE

For the specific model in Eq. (4), the return map is a function
M such that if x(n) is the value that x1 takes at the n-th firing
event, then x(n+ 1) = M(x(n)) is the value of x1 at the (n+ 1)-
th firing. Unfortunately, it is impossible to express M in closed
form using conventional mathematical operators. However, this
can be done by devising ad hoc operators from an “exponential
envelope” trigonometry. The actual way to do so is simple but
cumbersome and will be discussed elsewhere. Here, it is sufficient
to remark that the shape of M only depends on two adimensional
parameters, namely the α/ω ratio and the Vreset/Vref ratio. As an
example, Fig. 4 (top) show a sample return map. As long as

Figure 4: Return map (top) and firing time map (bottom) for
α/ω = 1/10 and Vreset/Vref = 1/10. The quantities Vref and ω that
merely act as scaling factors are normalized to one.

α/ω is sufficiently low (lower than approximately 0.18 in typical
setups), the map admits an invariant set I.

While the typical analysis of CSOs focuses on studying the
return map properties capable to assure chaoticity (and possibly
some bifurcation features) [8], here the goal is to express the
dependency of the average firing rate on the system parameters. To
this aim: (i) the conventional analysis of CSOs is here enhanced
by the application of statistical analysis toolboxes such as those
in [10]; and (ii) the return-map is coupled to a firing-time-map
T : R→ R, such that if x(n) is the value that x1 takes at the n-th
firing event, t(n) = T (x(n)) is the time taken to get to the next
firing event. Fig. 4 (bottom) shows a sample firing-time-map.

Specifically, with regards to the first point, an approximated
N ×N kneading matrix [10] K is built, by partitioning I into N
intervals Ii, with i = 1 . . . N . Entry ki,j of K is taken to indicate
the fraction of Ii that maps into Ij . By construction, K is thus
a stochastic matrix and as such it has a unitary eigenvalue. From

[10, and references therein] it is known that if such eigenvalue
has unitary multiplicity, then the corresponding eigenvector P

(once its elements are normalized with regards to the lengths
of the partition intervals so that their sum is 1), happens to
(approximately) encode the probabilities by which x distributes
over the many Ii when the iteration x(n + 1) = M(x(n)) is
started at non-pathological initial conditions. The approximation
accuracy increases as the partitioning is refined.

For our experiments we have considered uniform partitions
with N values up to 4096. Notably, from the observation of
K one cannot generally prove whether M is chaotic or not
(due to the approximated nature of the partitioning, though there
are particular cases where “perfect” partitionings can be taken).
Nonetheless, from the way in which the spectrum of K varies
as N is increased, strong arguments “suggesting” chaoticity can
be extrapolated. Specifically, as long as: (i) the multiplicity of
the largest eigenvalue remains unitary; (ii) the gap between the
second largest eigenvalue an the unitary circle does not close as N
is increased; and (iii) P is not sparse, one can reasonably assume
that the system is chaotic. In our system, this is the case, but
for quite specific set of parameters, typically involving negative
Vreset/Vref values.

By computing K and P , one can thus find out how the starting
points of the state jumps distribute when the COBT approach is
practiced on the filter. A Probability Density Function (PDF) is
derived as:

ρ(x) = pi/µ(I) if x ∈ Ii (7)

where µ(I) is the length of I. Figure 5 shows the PDF relative to
the same conditions as in Fig. 4. Eventually, once ρ(x) is known,

−1 −0.5 0
x

0

0.5

1

1.5

ρ(
x)

Figure 5: PDF for the same conditions as in Fig. 4. Plot obtained
with a partition refinement index N = 4096.

the average period between successive firings can be found thanks
to the firing-time-map T as

τ =

∫

I
T (x)ρ(x) dx (8)

What is most interesting is to relate τ to α/ω as illustrated in Fig. 6.
As it can be seen the relationship is almost hyperbolic (note that
the abscissa is inverted in the graph for better representation), but
not quite. From the plot it is evident that: (i) the experimental
data is extremely well matched by the current model; (ii) the
match is much more accurate that the previously proposed one
[4], that was relying on a purely hyperbolic approximation and
as such limited to a rather restricted interval of α values. Another
interesting feature of the current model with regards to [4] is that
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Figure 6: Dependency of τ on α/ω, for Vreset/Vref = 1/10. The
quantity (α/ω)−1 is reported on the abscissa to better visualize
that the dependency is almost an inverse proportionality. Data
obtained with the current analysis (solid line) is compared that
that delivered by the approximated analysis in [4] (dashed line)
and to data extrapolated from time-domain simulations with
fΦ/f0 = 1000 (dotted line).

it does not need to be tuned over experimental data (typically
obtained by behavioral simulations). Consequently curves such
as the solid line in Fig. 6 can be computed in an very efficient
way. For instance, a few minutes of computation are enough on
a current PC exploiting sparse matrix codes for the eigensystem
solution (in comparison to several hours for models that need
tuned over experimental data).

Once a relationship such as that in Fig. 6 is available, its
exploitation for testing is rather straightforward. As already dis-
cussed in [4], one can collect two average firing rate periods
τa|b exploiting the two different loop capacitors C1 a|b in the
schematic of Fig. 2. From the two τa|b two different αa|b values
can be estimated by inverting the relationship. Finally, by solving
a system where equation (6) is used twice, together with (3), the
values G0 and Q can finally be obtained.

Table I shows some simulations data by which the above
claim can be validated. Data is obtained from a filter that should
be nominally tuned at f0 = 1 kHz, G0 = 1, Q = 5, where
mismatches and other non-idealities are on purpose applied to
affect the operation. The table reports G0 and Q values obtained
by the present methodology and compares them to those obtained
by a frequency sweep.

Table I: Experimental validation data from simulation.

Standard measure Current estimation (I) Current estimation (II)

G0 Q G0 Q G0 Q

0.99 4.50 1.01 5.54 1.01 4.6
1.08 4.62 1.11 5.92 1.11 4.9
0.92 5.16 0.93 5.72 0.93 4.8
1.03 4.63 1.04 5.60 1.04 4.6
0.98 5.92 0.99 7.07 0.99 5.9

As it can be seen from column (I), the estimation of G0 is
always almost perfect, while the estimation of Q is affected by
a significant bias. Once this systematic error is removed as in
column (II), also the estimation of Q becomes rather accurate.
The bias is a consequence of the adoption of a CT modeling for
a system that is in fact Discrete-Time (DT). In addition to typical

CT/DT discrepancies, in the COBT setup there are also other.
For instance state “jumps” or “firings” are compelled to happen
with a clock-period delay. This effect is also visible from Fig. 6,
where the solid curve (model) and the dotted data (experimental
data) have a little slope difference. In any case, bias does not
affect the usability of the proposed approach since, as illustrated,
it can be easily empirically corrected. In a further publication,
DT effects will be dealt with from start. An analysis of error
propagation through the system of equations used to estimate G0

and Q from αa|b suggests that once biases are removed in the test
conditions used from the table a 5 % uncertainty in the estimation
of the average firing times can translate in approximately a 1 %
uncertainty on G0 and a 10 % uncertainty on Q.

IV. CONCLUSIONS

It has been shown that by taking advantage of tools from statis-
tical nonlinear dynamics, the accuracy of a previously proposed
methodology for the COBT of analog filters can be significantly
improved. Furthermore, the dynamical system used for testing can
be related to R+F and CSO models. The present analysis also
allowed to identify some second order effects that appear when
the circuit to be tested is DT. These will be more thoroughly
analyzed in another forthcoming paper.
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