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Matematiche, Università di Siena, Italy, riccardo.scala@unisi.it

4Istituto Nazionale di Alta Matematica at Politecnico di Torino,
Italy, davide.zucco@polito.it

January 8, 2020

Abstract

The upscaling of a system of screw dislocations in a material subject to
an external strain is studied. The Γ-limit of a suitable rescaling of the renor-
malized energy is characterized in the space of probability measures. This
corresponds to a discrete-to-continuum limit of the dislocations, which, as a
byproduct, provides information on their distribution when the circulation
of the tangential component of the external strain becomes larger and larger.
Specifically, for particular choices of the limiting external strain, dislocations
are shown to concentrate at the boundary of the material and to distribute
as the limiting external strain.

Keywords: Dislocations, Γ-convergence, discrete-to-continuum limit, core radius
approach, Ginzburg-Landau vortices, divergence-measure fields.

2010 MSC: 74E15 (35J25, 74B05, 49J40).

1 Introduction

Dislocations are line defects in the lattice structure of crystalline materials, that
have been first observed in metals by electron microscopy in 1956 by Hirsch, Horne,
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and Whelan [15], thus providing experimental support to the theoretical work of
Volterra [37]. The literature on dislocations is vast, including physical, engineering,
and mathematical approaches; we refer the reader to the classical monographs
[16, 19, 23] for general treaties. From the mechanical point of view, dislocations are
of the utmost importance to understand some properties of materials, especially
those related to their plastic behaviour: in 1934, Orowan [24], Polanyi [25], and
Taylor [32] theorized that dislocations are the ultimate cause of plasticity, thus
proposing that the presence and motion of defects at the atomic scale is responsible
for macroscopic effects.

It is therefore relevant to bridge phenomena happening at different length scales
by means of a suitable limiting process which allows one to derive an averaged,
macroscopic quantity from discrete, microscopic ones. A macroscopic strain gra-
dient theory for plasticity from a model of discrete dislocations was obtained by
Garroni, Leoni, and Ponsiglione [11]. Further and more recent results include
[1], where the dynamics of topological singularities in two dimensions is studied
and compared to that of Ginzburg-Landau vortices, and [21], where a discrete-to-
continuum limit for particles with an annihilation rule in dimension one is obtained.

In this paper we focus our attention on an isotropic crystal which occupies a
vertical cylindrical region Ω × R and which undergoes antiplane shear. In this
case, the dislocation lines are parallel to the lattice mismatch, here vertical, and
the dislocations are called of screw type. According to the model proposed by
Cermelli and Gurtin in [7], the system is fully described by the cross section of the
material. This allows us to work in Ω ⊂ R2 so that dislocations are represented by
points {ai}i ⊂ Ω, corresponding to the intersections of the dislocation lines with
the cross section. Throughout the paper, without any further explicit reference, we
assume Ω to be a bounded open domain with Lipschitz boundary and the lattice
spacing of the material to be 2π.

The stressed material is described by the strain field, a vector field with curl
concentrated on the discrete set of dislocations {ai}i, and minimizing the energy

F 7→
∫

Ω

|F (x)|2 dx.

Due to the singularity of the curl, such energy is not finite. The usual strategy to
circumvent this obstruction consists in avoiding the dislocation cores, small disks
{Bε(ai)}i around each dislocation ai with radius ε > 0 sufficiently small, and then
computing the energy in the resulting perforated domain, i.e.,

Eε(a1, . . . , an) := min
1

2

∫
Ω\

⋃
i Bε(ai)

|F (x)|2 dx,

where the minimum is taken among all vector fields in L2(Ω \
⋃
iBε(ai);R2),

with zero curl in the sense of distributions D′
(
Ω \

⋃
iBε(ai)

)
, and satisfying the

condition 〈F · τ, 1〉γ = 2πm for an arbitrary simple closed curve γ in Ω \
⋃
iBε(ai)
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winding once counterclockwise around m dislocations. Here and henceforth τ
denotes the tangent unit vector to γ, F · τ must be intended in the sense of traces,
and 〈·, ·〉γ denotes the pairing between H−1/2(γ) and H1/2(γ) (see [9]).

Once the non-integrability of the strain field around the dislocations is removed,
classical variational techniques can be applied. For this reason, the core radius
approach is standard in the literature and it is employed in different contexts,
such as linear elasticity (see, for instance, [23, 31, 36]; also [1, 4, 7, 26] for screw
dislocations and [8] for edge dislocations), the theory of Ginzburg-Landau vortices
(see, for instance, [2, 28] and the refereces therein), and liquid crystals (see, for
instance, [12]).

In the setting above, the dynamics of dislocations is determined by the Neu-
mann boundary condition satisfied by the strain field (the natural boundary con-
ditions coming from the Euler-Lagrange equation associated to the energy above),
implying that the energy of the system decreases as the dislocations approach the
boundary of the domain. In other words, as time passes, dislocations move towards
the boundary and leave the domain in finite time (see [3, 17]).

Different types of boundary condition can be imposed if one is interested in
the confinement of the dislocations inside the material. We impose a Dirichlet
boundary condition for the strain field: physically, this corresponds to stressing
the material by means of a prescribed external strain (see [2, 20, 30]). More
specifically, given n ∈ N we prescribe the tangential strain on the boundary of the
exterior domain: in the minimization problem above, we require that F ·τ = fn on
∂Ω \

⋃n
i=1Bε(ai), where fn is a distribution in H−1/2(∂Ω) such that 〈fn, 1〉∂Ω =

2πn, whereas τ denotes the tangent unit vector to ∂Ω (which exists H1-a. e. on
∂Ω thanks to the regularity assumption on Ω). This Dirichlet boundary condition
reflects in confinement and separation effects: for every ε sufficiently small one
can observe n distinct dislocations (a1, . . . , an) inside Ω (see, e.g., [2, 28] for a
comment on the topological necessity of the presence of exactly n defects). The
heuristics behind this is the following: recalling that we chose units in such a way
that the lattice spacing is equal to 2π, the condition 〈fn, 1〉∂Ω = 2πn imposes
that the tangential strain produces a rupture of the lattice of magnitude equal
to n lattice spaces. Each dislocation is stable if it carries the mismatch of one
single lattice spacing, hence there must be n of them. We refer the reader to [18,
Theorem 3.2] for a result on the stability of one screw dislocation under anti-plane
deformations.

For ε sufficiently small, it can be shown (see [20] and also [2, 28]) that the
energy behaves like

Eε(a1, . . . , an) = −πn log ε+ E0(a1, . . . , an) + o(1),

which is infinite whenever one dislocation is on the boundary ∂Ω or when two
dislocations collide. The formula above provides an energetic justification of the
confinement and separation effects induced by the Dirichlet boundary condition:
the dislocations are all confined inside Ω and that it is energetically convenient
that they arrange all separate from each another.
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The renormalized energy E0 is also related to the so-called Hadamard finite part
of a divergent integral (see [14]) and keeps into account the energetic dependence
of the position of the dislocations {ai}i inside Ω. One has in particular that

E0(a1, . . . , an) =

n∑
i=1

Eself(ai) +
∑
i 6=j

Eint(ai, aj) (1.1)

where the self energy Eself, responsible for the contribution of individual disloca-
tions, is given by

Eself(ai) :=π log d(ai)+
1

2

∫
Ω\Bd(ai)

(ai)

|∇φi(x)+∇wi(x)|2dx+
1

2

∫
Bd(ai)

(ai)

|∇wi(x)|2dx,

with d(ai) := dist(ai, ∂Ω), while the interaction energy Eint, which encodes the
mutual position of two dislocations, is

Eint(ai, aj) :=

∫
Ω

(∇φi(x) +∇wi(x)) · (∇φj(x) +∇wj(x)) dx.

Here the functions φi and wi are the solutions (wi is defined up to an additive
constant) to{

∆φi = 2πδai in Ω,

φi(x) = log |x− ai| for x ∈ ∂Ω,
and

{
∆wi = 0 in Ω,

∂νwi = 1
nf

n − ∂νφi on ∂Ω.
(1.2)

Notice that the solution φi, which in principle is searched only in Ω, is well defined
also in the complement R2 \ Ω: clearly its explicit formula is φi(x) = log |x − ai|
so that, given a regular bounded domain B containing Ω, we have φi ∈ W 1,p(B)
for every 1 ≤ p < 2 (the value p = 2 is excluded, due to the singularity of the
logarithm). Without loss of generality, we always consider wi as the solution with
zero average in Ω. The functions φi and wi provide an additive decomposition of
the deformation of a defected body: more specifically, φi encodes the deformation
generated by a single dislocation sitting at ai (via the PDE in the first system in
(1.2)) and it is singular at ai; wi describes the elastic deformation of the material
in response of the tractions at the boundary (given by the boundary condition in
the second system in (1.2)) and it is a harmonic function.

Apart from the following existence result, that has been proved in [20] (see also
[2, 28] for related results for Ginzburg-Landau vortices), nothing is known on the
positions of the dislocations minimizing the energy functional (1.1).

Theorem 1.1 (Existence). Given n ∈ N, the minimization problem

min E0(a1, . . . , an) (1.3)

among all n-tuples of distinct points in Ω has a solution.
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Note that the lack of compactness of the underlying space where the minimiza-
tion problem is set makes the result highly non trivial. In this paper we address
the upscaling problem: we study the asymptotic distribution in Ω, as n → ∞, of
the minimizing configurations of the renormalized energy E0. As the number of
dislocations increases, it is not practical anymore to describe them as individual
particles, but it is necessary to associate them a probability measure describing
their distribution in Ω. This is usually achieved (see, e.g, [5, 21, 22, 35]) by con-
sidering the empirical measures

µn :=
1

n

n∑
i=1

δai , (1.4)

with δai denoting the Dirac measure centered at ai, and studying the Γ-limit of
the sequence of functionals Fn : P(Ω)→ R ∪ {+∞} defined by

Fn(µn) :=


1

n2
E0(a1, . . . , an) if µn is of the form (1.4),

+∞ otherwise.
(1.5)

Notice that the rescaling by 1/n2 does not affect the solution to the minimization
problem (1.3). Moreover, it is the natural one in order to prevent the renormalized
energy to diverge in the limit when n → ∞. This is evident from the expression
(1.1) of the energy E0, since the contribution Eself is the sum of n quadratic terms
and the contribution Eint involves n× n pairwise interactions.

We are now ready to state the main result of the paper.

Theorem 1.2 (Upscaling). Let n ∈ N and fn ∈ H−1/2(∂Ω) with 〈fn, 1〉∂Ω = 2πn.
Assume that 1

nf
n → f strongly in H−1/2(∂Ω) as n→∞. Then the functionals Fn

in (1.5) Γ-converge, with respect to the weak-* convergence in P(Ω), as n → ∞,
to the functional F∞ : P(Ω)→ [0,+∞] defined by

F∞(µ) :=


1

2

∫
Ω

|∇U(x)|2 dx if µ ∈ H−1(B),

+∞ otherwise,
(1.6)

where B is any regular bounded domain containing Ω and the function U ∈ H1(Ω)
solves {

∆U = 2πµ in Ω,

∂νU = f − 2πµ ∂Ω on ∂Ω,
(1.7)

in the sense that∫
Ω

|∇U(x)|2 dx = 2π〈f, U〉∂Ω − 2π

∫
Ω

U(x) dµ(x).
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Remark 1.3. We notice that the energy F∞ defined in (1.6) is independent of
the set B. This is trivial, since the support of µ is contained in Ω. Therefore, in
the sequel we choose a particular regular bounded domain B such that Ω ⊂ B and
we call it box.

Remark 1.4. We observe that the limiting energy is finite only for measures
µ ∈ H−1(B). This has the interpretation that the density of dislocations does not
concentrate on isolated points.

Remark 1.5. In order to see that problem (1.7) is well defined, we need to

introduce the definition of interior and exterior normal derivative ∂νv± ∈ H
1
2 (∂Ω)

of a function v ∈ H1(B) on ∂Ω, such that ∆v = 2πµ ∈ H−1(B) ∩ P(Ω): for any
ψ ∈ H1(B) ∩ C0(B) we have

〈∂νv+, ψ〉∂Ω := −
∫
B\Ω
∇v · ∇ψ dx+ 〈∂νv, ψ〉∂B , (1.8)

〈∂νv−, ψ〉∂Ω := 2π

∫
Ω

ψ dµ+

∫
Ω

∇v · ∇ψ dx. (1.9)

Notice that (1.8) coincides with the classical notion of normal derivative for a
harmonic function in B \ Ω. Both (1.8) and (1.9) can be extended to any ψ ∈
H1(B) by exploiting the fact that µ is supported in Ω and is non-negative. As a
consequence, the jump of the normal derivative of v on ∂Ω is well-defined as

〈∂νv+ − ∂νv−, ψ〉∂Ω := −
∫
B

∇v · ∇ψ dx+ 〈∂νv, ψ〉∂B − 2π

∫
Ω

ψ dµ, (1.10)

for all ψ ∈ H1(B), and (∂νv+ − ∂νv−) ∈ H 1
2 (∂Ω).

Let µ be as in Theorem 1.2; we claim that

2πµ ∂Ω = ∂νφ+ − ∂νφ−, (1.11)

with

φ(x) :=

∫
R2

log |x− y|dµ(y). (1.12)

Indeed, applying (1.10) to φ we have

〈∂νφ+ − ∂νφ−, ψ〉∂Ω = −
∫
B

∇φ · ∇ψ dx+

∫
∂B

ψ ∂νφdH1 − 2π

∫
Ω

ψ dµ

= 2π

∫
B

ψ dµ− 2π

∫
Ω

ψ dµ = 2π〈µ ∂Ω, ψ〉∂Ω ,

which gives (1.11), by the arbitrariness of ψ. Notice that in the right-hand side of
(1.8) we have replaced the pairing 〈∂νφ, ψ〉∂B by the integral over ∂B, since φ is
regular on ∂B.
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We conclude that problem (1.7) is well defined in H1(Ω), since the boundary
datum f−2πµ ∂Ω belongs to H−1/2(∂Ω). This fact follows from the assumptions
on f and from the fact that µ ∂Ω is the jump of the normal derivative across ∂Ω
of an H1 function.

As a consequence of Theorem 1.2 (see [10]), since P(Ω) is compact with respect
to the weak-* topology, we deduce the following result.

Corollary 1.6. Let n ∈ N and fn ∈ H−1/2(∂Ω) with 〈fn, 1〉∂Ω = 2πn. Assume
that 1

nf
n → f strongly in H−1/2(∂Ω) as n→∞. If (a1, . . . , an) is a minimizer of

(1.3), the corresponding empirical measures µn defined by (1.4) weak-* converge
to µ∞, where µ∞ ∈ P(Ω) is the unique minimizer of the functional F∞ defined in
(1.6). Moreover, Fn(µn)→ F∞(µ∞), as n→∞.

For particular choices of f we are able to characterize explicitly the measure µ∞

and then to derive information on minima and minimizers of (1.3). In particular,
we see that for a non-negative f ∈ L1(∂Ω) the density µ concentrates on the
boundary of Ω. Notice that the sole information that µ ∈ H−1(B) ∩ P(Ω) does
not ensure this property.

Corollary 1.7. Let n ∈ N and fn ∈ H−1/2(∂Ω) with 〈fn, 1〉∂Ω = 2πn. Assume
that 1

nf
n → f strongly in H−1/2(∂Ω) as n → ∞. If f ∈ L1(∂Ω) and f ≥ 0 then

if (a1, . . . , an) is a minimizer of (1.3), the corresponding empirical measures µn

defined by (1.4) weak-* converge to the measure µ∞, which is absolutely continuous
with respect to H1, and is defined by

µ∞ =
f

2π
H1 ∂Ω. (1.13)

Moreover, the energy vanishes in the limit, i.e.,

lim
n→∞

Fn(µn) = 0. (1.14)

A related result to Theorem 1.2 can be found in the framework of Ginzburg-
Landau theory [30], where the authors treated only the case fn = nf , for a
fixed continuous function f , independent of n. We point out that the interest in
studying more general sequences fn of non constant and non regular (i.e. possibly
discontinuous) boundary data has been raised by Sandier and Soret in [29, Open
Problem 1]. In light of these similarities, our results can be regarded as generaliza-
tions of those contained in the papers [29, 30]. We underline that we also weaken
the assumptions on the regularity of the domain Ω and we do not require simple
connectedness. For these reasons, the proof strategy of [29, 30], based on the reg-
ularity of the domain and the boundary datum, does not seem easily adaptable to
the present case. In this respect, the introduction of the box B will be crucial in
the proof of the Γ-convergence result to recast the renormalized energy (1.5) and
pass to the limit in the annular region B \ Ω.
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The starting point of our analysis is the rewriting of the energy Fn in Section 2.
Then, in Section 3 we prove some auxiliary lemmas for the proof of Theorem 1.2,
which is finally addressed in Section 4, together with the proofs of Corollaries 1.6
and 1.7.

The proof of Theorem 1.2, is obtained by showing the liminf and limsup in-
equalities (Propositions 4.1 and 4.2, respectively). In particular, the construction
of the recovery sequence in Proposition 4.2 is obtained in two steps, first for µ
a piecewise constant measure with compact support in Ω, and then, by density,
for a generic µ ∈ H−1(B). As mentioned above, a problem similar to ours has
been addressed by Sandier and Soret in [29, 30], but the weaker regularity of the
boundary data that we assume makes it impossible to adapt their proof strategy
to the present case. On the other hand, we take inspiration from the proof of [22,
Theorem 3.3] to obtain the limsup inequality.

Notation

The symbol H1 denotes the 1-dimensional Hausdorff measure, while ] the counting
measure. Given an open set with Lipschitz boundary, we denote by ν the outer
unit normal vector to the boundary, defined almost everywhere on it. We always
use the symbols

∑
i 6=j and

∑
i<j to denote the summation over all indices i, j with

i 6= j and i < j, respectively, ranging from 1 to some n ∈ N whose value is clear
from the context. Recalling Remark 1.3, we fix once and for all a box B containing
Ω and we denote by 40 = {(y, z) ∈ B × B : y = z} its diagonal. Given x ∈ R2

and r ∈ R+, we denote by Br(x) the open disk centered at x with radius r, and
by Br(x) its closure. The duality product between H−1/2(∂Ω) and H1/2(∂Ω) is
denoted by 〈·, ·〉∂Ω. Given A ⊂ R2, we denote by 11A its characteristic function,
namely 11A(x) = 1 if x ∈ A and 11A(x) = 0 if x /∈ A.

2 The renormalized energy

In this section we rewrite the energy functional Fn introduced in (1.5) in a more
convenient way. Let µn ∈ P(Ω) be the empirical measure associated to an n-tuple
(a1, . . . , an) of distinct points ai ∈ Ω according to (1.4). We define

φn :=
1

n

n∑
i=1

φi and wn :=
1

n

n∑
i=1

wi. (2.1)

In view of (1.2), these functions solve, respectively,{
∆φn=2πµn in Ω,

φn(x)= 1
n

∑n
i=1 log |x− ai| on ∂Ω,

and

{
∆wn=0 in Ω,

∂νw
n(x)= 1

nf
n − ∂νφn on ∂Ω.

(2.2)
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Notice that φn belongs to W 1,p(B) for every 1 ≤ p < 2 (but not to H1(B)) and
reads

φn(x) =

∫
Ω

log |x− y|dµn(y). (2.3)

Moreover, since all the ai’s are inside Ω, the exterior and interior normal traces
of φn coincide, namely ∂νφ

n
+ = ∂νφ

n
− (and the same holds for all the φi’s as

well, see Remark 1.5). As for wn, since every wi has zero average, it is uniquely
determined and has zero average in Ω. Performing an integration by parts in (1.1)
and exploiting (1.2), we get

Eself(ai) = π log d(ai) +
1

2

∫
Ω\Bd(ai)

(ai)

(
|∇φi|2 + 2∇φi · ∇wi

)
dx+

1

2

∫
Ω

|∇wi|2 dx

= −1

2
〈∂νφi, φi〉∂Ω +

1

n
〈fn, φi〉∂Ω +

1

2

∫
Ω

|∇wi|2 dx,

so that the contribution of the self energy in (1.5) can be written as

1

n2

n∑
i=1

Eself(ai) = − 1

2n2

n∑
i=1

〈∂νφi, φi〉∂Ω +
1

n2
〈fn, φn〉∂Ω +

1

2n2

n∑
i=1

∫
Ω

|∇wi|2 dx.

(2.4)
The terms in the interaction energy Eint(ai, aj), after expanding the power and
integrating by parts, read

1

2n2

∑
i 6=j

∫
Ω

∇φi ·∇φj dx=
1

2n2

∑
i6=j

〈∂νφj , φi〉∂Ω−π
∫

Ω×Ω

log |x− y|dµn�µn,(2.5a)

1

2n2

∑
i 6=j

∫
Ω

∇φi · ∇wj dx =
1

2n2

∑
i 6=j

〈 1
nf

n − ∂νφj , φi〉∂Ω, (2.5b)

1

2n2

∑
i 6=j

∫
Ω

∇φj · ∇wi dx =
1

2n2

∑
i 6=j

〈 1
nf

n − ∂νφi, φj〉∂Ω, (2.5c)

1

2n2

∑
i6=j

∫
Ω

∇wi · ∇wj dx =
1

2

∫
Ω

|∇wn|2dx− 1

2n2

n∑
i=1

∫
Ω

|∇wi|2dx, (2.5d)

where we set

µn � µn :=
1

n2

∑
i 6=j

δ(ai,aj). (2.6)
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By grouping (2.5a), (2.5b), and (2.5c) together, recalling (2.2) and (2.6), we obtain
the contribution

1

2n2

∑
i6=j

(∫
Ω

∇φi · ∇φj dx+

∫
Ω

∇φi · ∇wj dx+

∫
Ω

∇φj · ∇wi dx

)
=
n− 1

n2
〈fn, φn〉∂Ω −

1

2
〈∂νφn, φn〉∂Ω

+
1

2n2

n∑
i=1

〈∂νφi, φi〉∂Ω − π
∫

Ω×Ω

log |x− y|dµn � µn,

which combined with (2.5d) yields

1

n2

∑
i 6=j

Eint(ai, aj) =
n− 1

n2
〈fn, φn〉∂Ω −

1

2
〈∂νφn, φn〉∂Ω

+
1

2n2

n∑
i=1

〈∂νφi, φi〉∂Ω − π
∫

Ω×Ω

log |x− y|dµn � µn

+
1

2

∫
Ω

|∇wn|2dx− 1

2n2

n∑
i=1

∫
Ω

|∇wi|2dx.

Plugging this new expression together with (2.4) into (1.5) allows to rewrite the
renormalized energy functional as

Fn(µn)=
1

2

∫
Ω

|∇wn|2 dx+
1

n
〈fn, φn〉∂Ω−

1

2
〈∂νφn, φn〉∂Ω−π

∫
Ω×Ω

log |x−y|dµn�µn,

(2.7)
which will be fundamental in the sequel.

3 Auxiliary lemmas

In the following, we prove some auxiliary lemmas which will play a crucial role in
the proof of the Γ-liminf inequality for Theorem 1.2. The first one concerns an
equi-coercivity property of the functionals Fn.

Lemma 3.1. For every n ∈ N, let µn be as in (1.4), let fn ∈ H−1/2(∂Ω) with
〈fn, 1〉∂Ω = 2πn, and assume 1

nf
n be uniformly bounded in H−1/2(∂Ω). Let φn

and wn be as in (2.1). Then there exist two constants C1, C2 > 0 independent of
n such that

Fn(µn) ≥ C1

(
‖wn‖2H1(Ω) + ‖φn‖2

H1(B\Ω)

)
−π

∫
Ω×Ω

log |x−y|dµn�µn(x, y)−C2.

(3.1)

10



Proof. By hypothesis, Fn(µn) is of the form (2.7). We have assumed that each
wi in (1.2), and hence wn in (2.1), have zero average in Ω, thus, by the Poincaré-
Wirtinger inequality, the first term in the right-hand side of (2.7) is equivalent to
the H1 norm of wn. As for φn, we note that ‖φn‖2

L2(B\Ω)
is uniformly bounded:

‖φn‖2
L2(B\Ω)

=

∫
B\Ω

∣∣∣∣ 1n
n∑
i=1

φi

∣∣∣∣2dx =
1

n2

∫
B\Ω

( n∑
i=1

|φi|2 + 2
∑
i 6=j

φiφj

)
dx

≤ 2n+ 1

n2

n∑
i=1

‖φi‖2L2(B) dx ≤ C,

for some positive constant C independent of n. In particular, we get

‖∇φn‖2
L2(B\Ω;R2)

≥ ‖φn‖2
H1(B\Ω)

− C. (3.2)

By using the divergence theorem in B \ Ω, we can write the third term in the
right-hand side of (2.7) as

−〈∂νφn, φn〉∂Ω =

∫
B\Ω
|∇φn|2 dx−

∫
∂B

φn∂νφ
n dH1. (3.3)

Here the regularity of φn and ∂νφ
n on ∂B (in particular the fact that ∂B is

disjoint from Ω, where the measure µn concentrates) allows us to replace the
duality brackets 〈∂νφn, φn〉∂B with an integral over ∂B. By combining (3.3),
(3.2), and the assumption on the uniform boundedness of 1

nf
n, we obtain

1

n
〈fn, φn〉∂Ω−

1

2
〈∂νφn, φn〉∂Ω ≥

1

2
‖φn‖2

H1(B\Ω)
− C‖ 1

nf
n‖

H−1/2(∂Ω)
‖φn‖

H1(B\Ω)
− C2

≥ C1‖φn‖2
H1(B\Ω)

− C2, (3.4)

where C,C1, C2 > 0 are three constants independent of n, which may vary from line
to line. In the first inequality of (3.4) we have used the trace theorem in B \Ω and
the fact that φn and ∂νφ

n are uniformly bounded in C∞(∂B); while in the second
inequality we have used the Young’s inequality ‖ 1

nf
n‖H−1/2(∂Ω)‖φn‖H1(B\Ω) ≤

1
2c‖

1
nf

n‖2
H−1/2(∂Ω)

+ c
2‖φ

n‖2
H1(B\Ω)

with a suitable choice of c > 0, small enough.

The lemma is proved, possibly by changing the constants C1 and C2.

As noticed in [13, Lemma 1] omitting the diagonal in the definition (2.6) of the
measures µn � µn does not change their limiting behavior.

Lemma 3.2. Let µn, µ ∈ P(Ω) be such that µn is of the form (1.4) for all n ∈ N
and µn

∗
⇀ µ as n→∞. Then, µn � µn

∗
⇀ µ⊗ µ.

11



Proof. Let ψ ∈ C(Ω× Ω) and write∫
Ω×Ω

ψ dµn � µn −
∫

Ω×Ω

ψ dµ⊗ µ

=

∫
Ω×Ω

ψ (dµn � µn − dµn ⊗ µn) +

∫
Ω×Ω

ψ (dµn ⊗ µn − dµ⊗ µ).

Let us study the asymptotics as n → ∞ of the two terms in the right-hand side:
the modulus of the first one is bounded above by ‖ψ‖∞/n, thus it converges to
zero; as for the second term, it vanishes thanks to the weak-* convergence of µn

to µ. This concludes the proof, by definition of weak-* convergence and by the
arbitrariness of the continuous test function ψ.

The previous two lemmas allows to transfer equiboundedness of the functionals
Fn into information on the measure µ⊗ µ.

Lemma 3.3. Let µn, µ ∈ P(Ω) be such that µn
∗
⇀ µ as n → ∞. Let us assume

that Fn(µn) is uniformly bounded. Then the measure µ ⊗ µ does not charge the
diagonal 40. In particular, µ does not charge points.

Proof. Let {ani } be the family of points defining the measure µn in (1.4) and
consider, for every ε ∈ (0, 1) and n ∈ N, the quantity

Nn,ε := ]{(ani , anj ) ∈ B ×B : ani 6= anj and |ani − anj | < ε}
= ]{(i, j) ∈ {1, . . . , n}2 : i 6= j and (ani , a

n
j ) ∈ 4ε},

where 4ε denotes the ε-neighborhood of the diagonal of B ×B, namely the open
set 4ε := {(y, z) ∈ B ×B : |y − z| < ε}. By Lemma 3.1, recalling (2.6) and using
the monotonicity of the logarithm, we have

Fn(µn) ≥ −π
∫
4ε

log |x− y|dµn � µn − C ≥ −πNn,ε log ε

n2
− C. (3.5)

By Lemma 3.2, the weak-* convergence µn � µn
∗
⇀ µ⊗ µ implies

lim inf
n→∞

Nn,ε
n2

= lim inf
n→∞

µn � µn(4ε) ≥ µ⊗ µ(4ε) ≥ µ⊗ µ(40).

Thus, taking the lim inf as n→∞ in (3.5) and recalling that for ε small − log ε > 0,
we get

lim inf
n→∞

Fn(µn) ≥ −π
(
µ⊗ µ(40)

)
log ε− C.

Finally, the arbitrariness of ε ∈ (0, 1) and the uniform boundedness of Fn(µn)
imply that µ⊗ µ(40) = 0. The lemma is proved.

We now prove a stability result for the functions φn introduced in (2.1).
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Lemma 3.4. Let µn, µ ∈ P(Ω) be such that µn is of the form (1.4) for all n ∈ N,

µ does not charge points, and µn
∗
⇀ µ as n→∞. Then the sequence of functions

φn defined in (2.1) converges strongly in L1(B) to the function

φ(x) :=

∫
Ω

log |x− y|dµ(y). (3.6)

Proof. First, we notice that the function φ in (3.6) belongs to L1(B), since it can
be written as the convolution of an L1 function with a probability measure (recall
that µ is concentrated on Ω, thus the domain of integration Ω can be replaced by
the entire plane R2). Let M > 0 and let us consider the truncated functions

φM (x) :=

∫
Ω

log |x−y|∨(−M) dµ(y) and φnM (x) :=

∫
Ω

log |x−y|∨(−M) dµn(y).

A direct computation shows that ‖φnM − φn‖L1(B) ≤ π
2 e
−2M , uniformly with re-

spect to n. Indeed, if {ani } is the family of points defining the measure µn in (1.4),
by the triangle inequality we have

‖φnM − φn‖L1(B) =
1

n

∫
B

∣∣∣ n∑
i=1

log |x− ani | ∨ (−M)− log |x− ani |
∣∣∣dx

≤ − 1

n

n∑
i=1

∫
{x∈R2: log |x−ai|<−M}

(M + log |x− ani |) dx.

The latter integrals can be computed in polar coordinates, so that, by taking
ρ = |x− ai|,

‖φnM − φn‖L1(B) ≤ −2π

∫ e−M

0

(M+log ρ)ρdρ = −πMe−2M +πMe−2M +
π

2
e−2M ,

which gives the uniform bound claimed above.
Moreover, since for every x ∈ B the function log |x− ·| ∨ (−M) is a continuous

function on Ω, by the weak-* convergence µn
∗
⇀ µ we deduce that φnM (x) →

φM (x) as n → ∞. Then, since ‖φn‖∞ ≤ M ∨ | log(diamB)| by the Dominated
Convergence Theorem we obtain φnM → φM strongly in L1(B) as n→∞.

Finally, since µ does not charge points, log |x − y| ∨ (−M) → log |x − y| as
M → +∞, for all x ∈ B and for all µ-a. e. y ∈ B. This with the fact log |x− y| <
log(diamB) allows us to use the Monotone Convergence Theorem and obtain
φM (x) → φ(x) as M → +∞ for all x ∈ B. Since also φM (x) ≤ log(diamB), by
using again the Monotone Convergence Theorem, we obtain that φM → φ strongly
in L1(B) as M → +∞.

Therefore, by the triangle inequality,

‖φn − φ‖L1(B) ≤
π

2
e−2M + ‖φnM − φM‖L1(B) + ‖φM − φ‖L1(B),

and the result follows from letting first n→∞ and then M → +∞.
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`

Figure 1: The sets D(y), D(z) and `.

Lemma 3.5. Let y, z ∈ B with y 6= z. There exists a positive constant C inde-
pendent of y and z such that∫

B

1

|x− y|
1

|x− z|
dx ≤ C

(∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx+ 1

)
. (3.7)

Proof. Let 2d := |y − z| and let us considers the two discs B3d(y) and B3d(z) of
radius 3d centered at y and z, respectively. Let us denote B3d(y)∪B3d(z) =: D =
D(y) ∪D(z) ∪ `, where D(y) and D(z) are the two disjoint parts of D on the y and
z side of the (open) segment ` given by the intersection of the axis of yz with D
(see Fig. 1). By symmetry of the set D, for every A ⊆ B we have∫
A

1

|x− y|
1

|x− z|
dx

=

∫
A\D

1

|x− y|
1

|x− z|
dx+

∫
D(y)∩A

1

|x− y|
1

|x− z|
dx+

∫
D(z)∩A

1

|x− y|
1

|x− z|
dx

≤
∫
A\D

1

|x− y|
1

|x− z|
dx+ 2

∫
D(y)

1

|x− y|
1

|x− z|
dx

≤
∫
A\D

1

|x− y|
1

|x− z|
dx+

2

d

∫
B3d(y)

1

|x− y|
dx.

By computing the last integral over B3d(y) in polar coordinates centered at y we
obtain ∫

A

1

|x− y|
1

|x− z|
dx ≤

∫
A\D

1

|x− y|
1

|x− z|
dx+ 12π.
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If we take A = B in the above inequality, we get∫
B

1

|x− y|
1

|x− z|
dx ≤

∫
B\D

1

|x− y|
1

|x− z|
dx+ 12π, (3.8)

if instead we take A = B ∩D, we obtain the estimate∣∣∣∣∫
B∩D

x− y
|x− y|2

· x− z
|x− z|2

dx

∣∣∣∣ ≤ ∫
D

1

|x− y|
1

|x− z|
dx ≤ 12π. (3.9)

Moreover, we notice that

x− y
|x− y|2

· x− z
|x− z|2

=
cosα(x)

|x− y||x− z|
, (3.10)

where α(x) is the angle centered at x formed by the vectors z − x and y − x.
Since there exists an angle 0 ≤ α0 < π/2 (independent of y, z, and d) such that
|α(x)| < α0 for all x ∈ B \D, then integrating (3.10) over B \D leads to∫

B\D

x− y
|x− y|2

· x− z
|x− z|2

dx =

∫
B\D

cosα(x)

|x− y||x− z|
dx ≥

∫
B\D

cosα0

|x− y||x− z|
dx.

(3.11)
Therefore, by combining (3.8) with (3.11), we obtain∫

B

1

|x− y|
1

|x− z|
dx ≤ 1

cosα0

∫
B\D

x− y
|x− y|2

· x− z
|x− z|2

dx+ 12π,

which, together with (3.9), gives∫
B

1

|x− y|
1

|x− z|
dx ≤ 1

cosα0

∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx−
∫
B∩D

x− y
|x− y|2

· x− z
|x− z|2

dx

+12π ≤ 1

cosα0

∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx+ 24π,

which is (3.7) with the constant C = max{1/ cosα0, 24π}.

We prove now some summability properties of the functions appearing in
Lemma 3.5.

Lemma 3.6. Let µ ∈ P(Ω) be such that

−
∫

Ω×Ω

log |y − z|dµ⊗ µ(y, z) < +∞. (3.12)

Then

(i) the functions (y, z) 7→
∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx and

(y, z) 7→
∫
B

1

|x− y|
1

|x− z|
dx belong to L1(B ×B,µ⊗ µ);
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(ii) the function x 7→
∫
B

x− y
|x− y|2

dµ(y) belongs to L2(B;R2).

In particular, the function φ defined in (3.6) belongs to H1(B).

Proof. First we notice that (3.12) yields that µ⊗ µ does not charge the diagonal
40 in B ×B. Indeed, by (3.12), we have that, for ε > 0 small enough,

+∞ > −
∫
4ε

log |y − z|dµ⊗ µ(y, z) ≥ −(log ε)µ⊗ µ(4ε) ≥ −(log ε)µ⊗ µ(40),

where4ε := {(y, z) ∈ B×B : |y−z| < ε} and where we have used the monotonicity
of µ ⊗ µ in the last inequality. By taking the limit ε → 0 we conclude that
µ⊗ µ(40) = 0.

For brevity, we set

β(y, z) :=

∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx and γ(y, z) :=

∫
B

1

|x− y|
1

|x− z|
dx.

Since |β(y, z)| ≤ γ(y, z) and µ does not charge 40, we have∫
B×B
|β(y, z)|dµ⊗µ(y, z) ≤

∫
B×B

γ(y, z)dµ⊗µ(y, z)= lim
ε→0

∫
(B×B)\4ε

γ(y, z)dµ⊗µ(y, z).

The last estimate, together with Lemma 3.5 and the fact that µ concentrates only
on Ω, yields the estimate∫

B×B
|β(y, z)|dµ⊗ µ(y, z) ≤ C lim

ε→0

∫
(B×B)\4ε

β(y, z) dµ⊗ µ(y, z) + C

= C lim
ε→0

∫
(Ω×Ω)\4ε

β(y, z) dµ⊗ µ(y, z) + C.

(3.13)

Taking into account that by the divergence theorem

β(y, z) =

∫
∂B

x− y
|x− y|2

· ν(x) log |x− z|dH1(x)− 2π log |y − z|

for µ⊗ µ-a. e. (y, z) ∈ B ×B, the estimate (3.13) becomes∫
B×B

|β(y, z)|dµ⊗ µ(y, z)

≤C
∫
B×B

(∫
∂B

x− y
|x− y|2

· ν(x) log |x− z|dH1(x)−2π log |y − z|
)

dµ⊗µ(y, z) + C.

The boundary integral on ∂B can be easily bounded by
max{| log d|, | log(diamB)|}/d where d = dist(∂B,Ω), so that the iterated
integral over B × B is finite. Moreover, the term with the logarithm belongs
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to L1(B × B,µ ⊗ µ) thanks to hypothesis (3.12). Therefore (i) follows for the

function (y, z) 7→
∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx. The L1 integrability of the function

(y, z) 7→
∫
B

1

|x− y|
1

|x− z|
dx follows in a similar way, again by applying Lemma

3.5.
To show (ii), we use (i) and the Fubini Theorem [27, Theorem 8.8 and the

following Notes therein] applied to the function (x, y, z) 7→ 1/(|x− y||x− z|) and
to the measure spaces (B×B,µ⊗µ) and (B,L). First, we deduce that the iterated
integrals∫
B×B

(∫
B

1

|x− y|
1

|x− z|
dx

)
dµ⊗µ(y, x),

∫
B

(∫
B×B

1

|x− y|
1

|x− z|
dµ⊗µ(y, x)

)
dx

are finite and equal. This implies that the function (y, z) 7→ (x− y) · (x− z)/(|x−
y||x− z|) belongs to L1(B×B,µ⊗µ) for a. e. x ∈ B. Similarly, by (i) and Fubini
Theorem applied to the function (x, y, z) 7→ (x − y) · (x − z)/(|x − y||x − z|), we
infer that ∫

B×B

(∫
B

x− y
|x− y|2

· x− z
|x− z|2

dx

)
dµ⊗ µ(y, z)

=

∫
B

(∫
B×B

x− y
|x− y|2

· x− z
|x− z|2

dµ⊗ µ(y, z)

)
dx

is finite. In particular, the function x 7→
∫
B×B

x− y
|x− y|2

· x− z
|x− z|2

dµ ⊗ µ(y, z)

belongs to L1(B), so that its value is finite for a. e. x ∈ B. As a consequence,
we can apply again Fubini Theorem for a. e. x ∈ B to the function (y, z) 7→
x− y
|x− y|2

· x− z
|x− z|2

∈ L1(B ×B,µ⊗ µ), so we can write

∫
B

(∫
B×B

x− y
|x− y|2

· x− z
|x− z|2

dµ⊗µ(y, z)

)
dx =

∫
B

∣∣∣∣ ∫
B

x− y
|x− y|2

dµ(y)

∣∣∣∣2 dx < +∞.

This proves (ii).
It remains to show the H1 regularity of φ: on the one hand, it is easy to see that

φ belongs to W 1,p(B) for every 1 ≤ p < 2; on the other hand, a direct computation
proves that its distributional gradient agrees with the function defined in (ii). The
claim follows by Poincaré-Wirtinger inequality combined with the integrability
provided in (ii). This concludes the proof of the lemma.

Remark 3.7. We bring to the reader’s attention that, as a consequence of Lem-
mas 3.4 and 3.6, the function φ defined in (1.12) is the limit of the sequence of
functions φn in (2.3) and it turns out to have improved regularity: as it has been
noticed, φn ∈W 1,p(B) for any 1 ≤ p < 2, whereas φ ∈ H1(B). Mechanically, this
corresponds to a homogenization effect of the material defects.
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4 Proofs of the main results

We are now ready to prove Theorem 1.2 and Corollaries 1.6 and 1.7.

Proposition 4.1 (Γ-liminf inequality). Let n ∈ N and fn ∈ H−1/2(∂Ω) with
〈fn, 1〉 = 2πn. Assume that 1

nf
n → f strongly in H−1/2(∂Ω) as n → ∞. Then,

for every µn
∗
⇀ µ in P(Ω) as n→∞, there holds

lim inf
n→∞

Fn(µn) ≥ F∞(µ). (4.1)

Proof. Up to the extraction of a subsequence, we can consider a sequence {µn}
along which the lim inf in (4.1) is a finite limit. This implies that each µn is of the
form

µn =
1

n

n∑
i=1

δani ,

for some distinct points an1 , . . . , a
n
n ∈ Ω and, by Lemma 3.3, that µ does not charge

points.
Since the logarithmic term in the right-hand side of (3.1) is bounded below,

by Lemma 3.1 we infer that ‖wn‖H1(Ω) and ‖φn‖H1(B\Ω) are bounded. Therefore

(up to subsequences) wn converges weakly to some w ∈ H1(Ω) and φn converges
weakly to φ ∈ H1(B \ Ω), where φ is the L1-limit found in Lemma 3.4. By the
divergence theorem and (2.2), recalling (1.8), for every test function ψ ∈ H1(B\Ω),
we have

〈∂νφn, ψ〉∂Ω = −
∫
B\Ω
∇φn∇ψ dx+

∫
∂B

ψ ∂νφ
n dH1 n→∞−→ 〈∂νφ+, ψ〉∂Ω. (4.2)

In other words, on the boundary ∂Ω, the sequence of normal traces ∂νφ
n converges

to the exterior normal trace ∂νφ+, weakly in H−1/2(∂Ω). These convergences,
together with the definition (3.6) of φ, the system (2.2) satisfied by wn, and the
assumption on fn, imply that the limits φ and w solve

∆φ = 2πµ in B and

{
∆w = 0 in Ω,

∂νw = f − ∂νφ+ on ∂Ω.
(4.3)

Let us first analyze the logarithmic term in the energy: using a truncation argu-
ment as in [22, formula (3.26)] (taking their potential V (x, y) = − log |x− y|), we
can prove that

lim inf
n→∞

−π
∫

Ω×Ω

log |x− y|dµn � µn ≥ −π
∫

Ω×Ω

log |x− y|dµ⊗ µ,

so that the equicoercivity of the energy (3.1) guarantees that the right-hand side
above is bounded. As a consequence, thanks to Lemma 3.6, the equation for φ in
(4.3) implies in particular that µ ∈ H−1(B).
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By (3.3), we can write the energy (2.7) as

Fn(µn) =
1

2

∫
Ω

|∇wn|2 dx+
1

2

∫
B\Ω
|∇φn|2 dx− π

∫
Ω×Ω

log |x− y|dµn � µn

− 1

2

∫
∂B

φn∂νφ
n dH1 +

1

n
〈fn, φn〉∂Ω,

and taking the lim inf as n→∞, we obtain

lim inf
n→∞

Fn(µn) ≥1

2

∫
Ω

|∇w|2 dx+
1

2

∫
B\Ω
|∇φ|2 dx

− π
∫

Ω×Ω

log |x− y|dµ⊗ µ− 1

2

∫
∂B

φ∂νφ dH1 + 〈f, φ〉∂Ω.

(4.4)

Here we have used the assumption 1
nf

n → f strongly in H−1/2(∂Ω), the lower
semicontinuity of the H1 norm, and that of the term with the logarithm. Recalling
(3.6) and (4.3), integrating by parts the term with the logarithm we have

−π
∫

Ω×Ω

log |x− y|dµ⊗ µ = −π
∫
B×B

log |x− y|dµ⊗ µ

=
1

2

∫
B

|∇φ|2 dx− 1

2

∫
∂B

φ∂νφ+ dH1

=
1

2

∫
Ω

|∇φ|2 dx+
1

2

∫
B\Ω
|∇φ|2 dx− 1

2

∫
∂B

φ∂νφ+ dH1

=
1

2

∫
Ω

|∇φ|2 dx− 1

2
〈∂νφ+, φ〉∂Ω,

(4.5)

where in the last equality we have used (4.2). Moreover, integrating by parts in
B \ Ω, we have

1

2

∫
B\Ω
|∇φ|2 dx− 1

2

∫
∂B

φ∂νφ dH1 = −1

2
〈∂νφ+, φ〉∂Ω, (4.6)

so that, by adding (4.5) and (4.6), the right-hand side of (4.4) becomes

1

2

∫
Ω

|∇w|2 dx+
1

2

∫
Ω

|∇φ|2 dx+ 〈f − ∂νφ+, φ〉∂Ω.

Defining U := w+ φ and using (4.3) and Remark 1.5, we have that U solves (1.7)
and the expression above is precisely the functional F∞(µ) defined in (1.6). This
concludes the proof of (4.1) and of the proposition.

Proposition 4.2 (Γ-limsup inequality). Let n ∈ N and fn ∈ H−1/2(∂Ω) with
〈fn, 1〉 = 2πn. Assume that 1

nf
n → f strongly in H−1/2(∂Ω) as n → ∞. Let
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Ω

(a)

(b)

(c)
Ωj

∂Ω

Ωj

Figure 2: (a) Dashed, the family of open squares Qj . (b) Definition of the Borel
sets Ωj when Qj ∩ ∂Ω = ∅. (c) Definition of the Borel sets Ωj when Qj ∩ ∂Ω 6= ∅.

µ ∈ P(Ω). Then there exists a sequence of measures µn ∈ P(Ω) such that µn
∗
⇀ µ

in P(Ω) as n→∞ and

lim sup
n→∞

Fn(µn) ≤ F∞(µ). (4.7)

Proof. In the case µ /∈ H−1(B) the inequality is trivially satisfied by choosing
µn = µ. Therefore, let us assume that µ ∈ H−1(B). Since F∞(µ) < +∞, in order
to prove (4.7) we look for a sequence of approximating measures µn of the form
(1.4), for n distinct points an1 , . . . , a

n
n ∈ Ω, which implies that Fn(µn) is finite and

can be written as in (2.7).
Step 1. We first prove the lim sup inequality assuming that µ is absolutely

continuous with respect to the Lebesgue measure and is of the form

dµ =
∑
j

αj11Ωjdx, (4.8)

where Ωj is a finite family of pairwise disjoint Borel sets defined as follows. For
a fixed parameter h > 0, we define Qj as the collection of all open squares with
corners on the lattice hZ2 such that Qj ∩ Ω 6= ∅. Denoting by Γj the closure of
the right and top sides of ∂Qj , we set (see Figure 2)

Ωj := (Qj ∩ Ω) \ (Γj \ ∂Ω). (4.9)

The coefficients αj in (4.8) are such that αj ∈ [0, 1] for all j, αj = 0 whenever
Ωj ∩ ∂Ω 6= ∅, and

∑
j αj |Ωj | = 1. With this choice of the αj ’s, the measure µ is a

piecewise constant probability measure with compact support in Ω.
For every n, we construct µn := 1

n

∑n
i=1 δani , for some distinct points

an1 , . . . , a
n
n ∈ Ω, such that µn

∗
⇀ µ, by placing a suitable number of disloca-

tions of the order of bnαj |Ωj |c in each Ωj (this is a standard construction, see,

20



e.g., [5, 22] and also [6, 33, 34]). Since the dislocations remain at positive dis-
tance to ∂Ω we have that the functions φn associated with µn via (2.2) converge
strongly in H1(B \ Ω) to the function φ defined in (3.6); hence the first three
terms in (2.7) converge. Moreover, arguing as in [22, formula (3.32)] (taking their
V (x, y) = − log |x− y|), it follows that

lim sup
n→∞

−π
∫

Ω×Ω

log |x− y|dµn � µn ≤ −π
∫

Ω×Ω

log |x− y|dµ⊗ µ.

Therefore, (4.7) is proved when µ is a piecewise constant measure with compact
support in Ω.

Step 2. By [10], to obtain (4.7) for a general µ ∈ H−1(B), it is enough
to prove that the class of piecewise constant measures with compact support in
Ω is dense in energy, namely that there exists a sequence of piecewise constant
measures µh ∈ P(Ω) with compact support in Ω such that µh

∗
⇀ µ and

lim sup
h→∞

F∞(µh) ≤ F∞(µ). (4.10)

We construct the approximating measures µh of the form (4.8), by choosing coef-
ficients αhj and sets Ωhj as follows. We consider a parameter h > 0 and we define

the collection {Qhj }j of open squares intersecting Ω as in Step 1. Accordingly, we

define the Γhj ’s, and the Ωhj ’s as in (4.9), namely Ωhj := (Qhj ∩ Ω) \ (Γhj \ ∂Ω). We

observe that, for every h > 0, Ωhj ∩Ωhk = ∅ if j 6= k, that Ω =
⋃
j Ωhj , and that for

any j we have |Ωhj | > 0.

For every j, we define βhj := µ(Ωhj )/|Ωhj |, so that the approximating measure
µh of the form (4.8) is constructed as follows: for each j

(i) if Ωhj ∩ ∂Ω = ∅ then we set αhj := βhj .

(ii) otherwise, if Ωhj ∩ ∂Ω 6= ∅ we set αhj = 0 and transfer the mass βhj to ΩhK ,

where ΩhK is a square such that ΩhK∩∂Ω = ∅ and is the closest to Ωhj (clearly,

there can be more than one such ΩhK), that is

αhK := βhK + βhj
|Ωhj |
|ΩjK |

.

We finally define µh as dµh :=
∑
j α

h
j 11Ωhj

dx and notice that it has compact support

in Ω, as desired.
We claim that these measures µh converge strongly to µ in H−1(B). We first

observe that 2πµh(x) = ∆φh, where φh(x) =
∫
B

log |x − y|dµh(y), and similarly
2πµ = ∆φ, where φ is defined in (1.12). By using the definition of the H−1

norm, proving the convergence of µh to µ is equivalent to proving that ∇φh → ∇φ
strongly in L2(B;R2). Since∫

B

|∇φh|2 dx =

∫
∂B

φh ∂νφh dH1 − 2π

∫
B×B

log |x− y|dµh ⊗ µh
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and the boundary term converges to
∫
∂B

φ∂νφdH1, invoking the lower semincon-
tinuity of the L2 norm, we are left with proving that

lim sup
h→∞

−
∫
B×B

log |x− y|dµh ⊗ µh ≤ −
∫
B×B

log |x− y|dµ⊗ µ.

This can be proved using a truncation argument as in [22, equation (3.27)] (taking
again V (x, y) = − log |x− y|), so that we obtain

‖∇φh‖L2(B;R2) → ‖∇φ‖L2(B;R2). (4.11)

The boundedness of ‖∇φh‖L2(B;R2) implies that ∇φh converges weakly in
L2(B;R2) to its distributional limit ∇φ, so that (4.11) allows us to conclude that
the convergence of ∇φh to ∇φ is indeed strong in L2(B;R2).

Thus the solutions Uh associated with µh by (1.7) converge strongly in H1(Ω)
to the solution U associated with µ. Then (4.10) follows by definition of F∞.

Proof of Theorem 1.2. Propositions 4.1 and 4.2 imply that the functionals Fn
defined in (1.5) Γ-converge to the functional F∞ defined in (1.6) (see [10]). The-
orem 1.2 is then proved.

Proof of Corollary 1.6. The proof follows from [10, Corollary 7.20]. The strict
convexity of F∞ implies that its minimizer is unique (and thus the convergence
holds without extracting subsequences).

Proof of Corollary 1.7. The uniqueness of the minimizer of F∞ obtained in Corol-
lary 1.6 and the fact that F∞(µ) ≥ 0 for any µ ∈ P(Ω) imply that it is enough to
show that the measure µ∞ in (1.13) is such that F∞(µ∞) = 0. This assertion is
a simple verification obtained by integrating by parts (1.6) and using (1.7). The
limit (1.14) is granted again by Corollary 1.6.

Acknowledgements

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la
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