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MEAN-FIELD ANALYSIS OF MULTIPOPULATION DYNAMICS
WITH LABEL SWITCHING∗

MARCO MORANDOTTI† AND FRANCESCO SOLOMBRINO‡

Abstract. The mean-field analysis of a multipopulation agent-based model is performed. The
model couples a particle dynamics driven by a nonlocal velocity with a Markov-type jump process on
the probability that each agent has of belonging to a given population. A general functional analytic
framework for the well-posedness of the problem is established, and some concrete applications are
presented, both in the cases of a discrete and continuous set of labels. In the particular case of a
leader-follower dynamics, the existence and approximation results recently obtained in [G. Albi et
al., Math. Models Methods Appl. Sci., 29 (2019), pp. 633–679] are recovered and generalized as a
byproduct of the abstract approach proposed.
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1. Introduction. The concept of mean-field interaction, originally used in sta-
tistical physics by Kac [32] and then McKean [35] to describe the collisions between
particles in a gas, has later proved to be a powerful tool to analyze the asymptotic
behavior of systems of interacting agents. Recent applications range from biological,
social, and economic phenomena [1, 11, 20] to automatic learning [13, 31] and op-
timization heuristics [26, 33]. The underlying idea is that the collective behavior of
large systems of particles (agent-based models, usually consisting of a set of ODEs)
can be efficiently treated by replacing the influence of all the other individuals in the
dynamics on a given agent by a single averaged effect. From a mathematical point
of view, this amounts to passing from a particle description to a kinetic description,
consisting of a limit PDE whose unknown is the particle density distribution in the
state space. The well-posedness of such models has therefore to be proven in spaces
of measures (see, for instance, the results in [19]).

In some of the applications, the interacting agents are assumed to belong to a
number of different species, or populations [3, 4, 22, 24, 28]. This is a useful modeling
assumption, e.g., in the theory of mean-field games, or in control theory, where it
can been used to distinguish informed agents steering pedestrians to leave unknown
environments [17], or to highlight the influence of few key investors in the stock
market (see the discussion in [12, introduction]). In a multipopulation setting, source
(or sink) terms can be added to the model, to account for the “birth” and “death”
rate of a single population (see, for instance, [40, sections 4–5]). Furthermore, even
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1428 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

in the case where the number of agents remains constant along the evolution, the
possibility of having some individuals switching from one population to another has
been considered [41].

As a matter of fact, exchange rates among populations are a common feature in
several applications. For instance, in models of chemical reaction networks a particle
may change its type as a result of the interaction with the others, at a stochastic rate
which may also depend on its position [34, 36, 38]. Another relevant example comes
from social dynamics, where transition rates appear in some kinetic models of opinion
formation in the presence of strong leaders, as the one proposed in [27], inspired by the
earlier contribution [42]. In this model, the opinion of the agents, described by their
position in the state space, evolves because of the exchange of opinion with the others.
This is encoded by a nonlocal transport term taking into account the presence, among
the overall population, of a restricted number of “leaders” promoting their opinion
with a strong influence on the “followers.” It is natural to postulate, as the authors do
(see [27, section 3.b] for a detailed discussion), that opinion leadership is not constant
over time: someone who is an opinion leader today may lose this role tomorrow, or a
follower may become a leader in the future.

Summarizing, the multipopulation dynamics we are interested in attaches to an
agent sitting at a position x a probability measure λ ∈ P(U), where U is a compact
space of labels accounting for the population to which the agent belongs. In fact, we
find it natural not to assume any deterministic knowledge of the label of a single agent,
since transitions are usually modeled as the outcome of a stochastic process. Hence, λ
expresses the probability that the agent has, at a certain moment in time, of belonging
to a subset of U , and may itself evolve as a consequence of the interaction among the
agents. The rate of change of the position of an agent, as well as the transition rates
among different populations, may be influenced by the global state of the system.
For instance, in [27] if the mass of leaders sharing a similar opinion (i.e., sitting in
the same small region of space) exceeds a certain threshold, the transition rates from
leaders to followers becomes higher. Similarly, the velocity of the system, inducing
the spatial evolution of the agents (their change of opinion, in the model proposed in
[27]) is the result of pairwise interactions which depend on the mutual positions and
are weighted differently depending on the actions of members of different populations
(leaders and followers in [27]).

The minimal model for evolution that we propose1 consists of the coupling of a
nonlocal transport dynamics with a Markov-type jump process. We, namely, assume
that

• a particle at position xi with probability distribution of labels λi experiences
a velocity field

ẋi = vΨN (xi, λi)

influenced by the global state of the system ΨN , the empirical measure
1
N

∑N
i=1 δ(xi,λi);

• the probability distribution of labels λi evolves according to

λ̇i = TΨN (xi, λi),

where the operator TΨN , accounting for the transitions among the labels, may
depend on the position of the particle and on the state of the system.

1We neglect in the present contribution the possible presence of diffusion terms.
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MEAN-FIELD OF MULTILABEL DYNAMICS WITH SWITCHING 1429

In the case of two populations U = {F,L} = {followers, leaders}, a model of this type
has been recently analyzed in [2], as a (partial) discrete counterpart of the PDE model
in [27]. Some simplifying assumptions had, however, to be added in order to perform
a mean-field analysis. In particular, the velocity field

(1.1a) vΨN (xi) =
1

N

N∑
j=1

KF (xi − xj)λj({F}) +
1

N

N∑
j=1

KL(xi − xj)λj({L})

did not depend on the probability of the labels λi and the transition operators

(TΨN (λi))({F}) = −αF (ΨN )λi({F}) + αL(ΨN )(1− λi({F})) ,
(TΨN (λi))({L}) = αF (ΨN )λi({F})− αL(ΨN )(1− λi({F}))

(1.1b)

did not depend on the position xi. The goal of the present paper is to get rid of
these simplifying assumptions, providing an appropriate functional setting as well as
a general set of assumptions on the velocity field vΨ and on the operator TΨ (see
section 3) which allow one to perform a rigorous mean-field analysis of agent-based
models of the kind discussed above.

In order to develop our analysis, we will borrow some functional-analytic and some
measure-theoretic tools that have been recently specified for the different, although
related, context of spatially inhomogeneous evolutionary games in [5]. The analogue
of (1.1) is described in [5, section 3.2], where the dynamics considered is

(1.2)



ẋi = a(xi, σi) =

∫
U

e(xi, u) dσi(u),

σ̇i =

(
1

N

N∑
j=1

(∫
U

J(xi, ·, xj , u′) dσj(u
′)

−
∫
U

∫
U

J(xi, w, xj , u
′) dσj(u

′) dσi(w)

))
σi,

for x ∈ Rd tracking the position of a player and σ ∈ P(U) denoting their mixed
strategy. In (1.2), the velocity ẋi is determined by the x-dependent vector field e(x, u)
through an averaging process with respect to the strategies available to the player xi;
the evolution of the mixed strategy σi is dictated by the replicator equation (see
[30]): the term in the parentheses in the right-hand side of the second equation above
determines the performance of the strategy played by player xi with respect to all of
the available strategies, averaging out all of the possible distributions of the opponents
xj with their mixed strategies σj . In particular, J(xi, u, xj , u

′) is the payoff of the
game between player xi with strategy u against player xj with strategy u′. For the
heuristic interpretation and the modeling issues related to (1.2) we refer the interested
reader to [15, 18].

The paper [5] introduced suitable notions (namely, Lagrangian and Eulerian) of
solutions to the mean-field limit of (1.2) showing convergence of the particle model to
the limit description by means of stability estimates in the Wasserstein metric arising
from the well-posedness theory of ODEs in Banach spaces [16, 21, 23].

While sharing some common features, the dynamics described by (1.1) and (1.2)
show a relevant difference in the structures of the velocity fields in the right-hand sides.
Indeed, in our setting, it is natural to postulate that the velocity of the agents is also
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1430 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

depending on the behavior of the ones around them, at least in a small neighborhood.
Such a feature is not present in the first equation in (1.2), whereas it is encoded in our
model by considering a velocity field vΨ depending on the global state of the system.
Beside this main distinction, the right-hand sides of the equations for λi are more
general than those for σi since we do not need any quadratic dependence on λi but
only that some structural assumptions be satisfied. These are in particular fulfilled
by the operators in (1.2), as we discuss in Proposition 5.8.

The novel contribution of this work is in providing well-posedness and mean-
field analysis for our particle system (1.1) by suitably adapting the tools from [5] to
our case. In doing this, we will pursue a more abstract point of view than the one
considered in [5], by focusing on the structural assumptions on the velocity field vΨ

and on the operator TΨ that guarantee the well-posedness of the mean-field analysis.
However, we will show in sections 4 and 5 that velocities and transition rates modeled
by interaction kernels as those considered in (1.1) and (1.2) (in this last case, with
the difference that we pointed out before) also fit in the setting that we propose in
section 3. Thus, we can retrieve an even more general version of the results of [2] as
a by-product of our analysis (see Theorem 4.8, where an explicit dependence on the
space variable x of the transition rates is also allowed).

In the last part of this introduction, we briefly sketch the mathematical framework
in which we formulate our results for the benefit of the interested reader. The general
assumptions on vΨ and TΨ are presented at the beginning of section 3; see (v1)–(v3)
and (T0)–(T3) below. The dependence of vΨ on the global status of the system calls
for a locally Lipschitz dependence both on the status variable (x, λ) (in a suitable
topology) and on Ψ with respect to the Wasserstein distance between probability
measures, which is customary for the mean-field analysis of transport equations with
nonlocal vector fields; see, e.g., [6, 25, 29, 39, 43], also [14] in connection with optimal
control problems. Furthermore, the sublinearity condition (v3) guarantees long-time
existence of the solution. Concerning the operator TΨ, it must comply with analogous
local Lipschitz continuity conditions and sublinearity conditions; see (T1)–(T2) below;
in addition, we require that

• constants belong to the kernel of TΨ;
• there exists δ > 0 such that TΨ(x, λ) + δλ > 0.

The two conditions above (see (T0) and (T3) below for a precise statement) ensure
that the velocities λ̇i’s lie on the tangent plane to the probabilities on {F,L} and
that the positivity of the measures are preserved, respectively. Altogether, conditions
(v1)–(v3) and (T0)–(T3) allow us to show that the particle model, which we can
rewrite in the form

(1.3) ẏi =

(
ẋi
λ̇i

)
=

(
vΨN (xi, λi)
TΨN (xi, λi)

)
=: bΨN (yi),

is well-posed (see Proposition 3.3).
We subsequently show that in the limit as N → ∞ the empirical measures ΨN

converge to a continuous path of probability measures Ψt that solves the continuity-
type equation

(1.4) ∂tΨt + div(bΨtΨt) = 0

in the space of probability measures on the product space Y = Rd × P(U).
A key point of the proof is that the solutions to (1.4), which are defined via

duality with test functions (Eulerian solutions; see Definition 3.4), can be equivalently
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MEAN-FIELD OF MULTILABEL DYNAMICS WITH SWITCHING 1431

characterized as Lagrangian solutions satisfying the fixed point equation

(1.5) Ψt = YΨ(t, 0, ·)#Ψ for every t > 0,

where Y(t, 0, ·) is the transition map (see Definition 3.7) associated with the ODE (1.3)
(with Ψ in place of ΨN ), Ψ is a given initial distribution of agents and probability on
the labels, and the symbol # denotes the push-forward measure (see Definition 2.1).

In section 4 we also retrieve and extend the main result of [2] as a special case of
our analysis. We associate with a solution to (1.4) the followers and leaders distribu-
tions
(1.6)

µFΨ(B) :=

∫
B×P({F,L})

λ({F}) dΨ(x, λ), µLΨ(B) :=

∫
B×P({F,L})

λ({L})) dΨ(x, λ),

for each Borel set B ⊂ Rd. If the vector field vΨ has the special structure (1.1a) and
under suitable structural assumptions on the transition rates αF and αL (see (4.7)
below), using the definition of Eulerian solution, we are able to show that µFΨ and µLΨ
are indeed the unique solutions to the system

{
∂tµ

F
t = −div

(
(KF ? µFt +KL ? µLt )µFt

)
− αF (x, µFt , µ

L
t )µFt + αL(x, µFt , µ

L
t )µLt ,

∂tµ
L
t = −div

(
(KF ? µFt +KL ? µLt )µLt

)
+ αF (x, µFt , µ

L
t )µFt − αL(x, µFt , µ

L
t )µLt

(1.7)

considered in [2]. Notice that, as discussed in Remark 4.6, rewriting (3.28) as a system
of equations in µF and µL is not possible for a velocity field explicitly depending on
λ such as

vΨN (xi, λi)

= λi({F})

(
1

N

N∑
j=1

KFF (xi − xj)λj({F}) +
1

N

N∑
j=1

KLF (xi − xj)λj({L})

)

+ λi({L})

(
1

N

N∑
j=1

KFL(xi − xj)λj({F}) +
1

N

N∑
j=1

KLL(xi − xj)λj({L})

)

considered for instance in [24]. In the presence of exchange rates, the correct mean-
field description of the above particle system is given by (3.28) in the product space
Rd × P1({F,L}).

In subsection 5.1 we consider the case U = {1, . . . ,H} and prove that the results of
the leader-follower dynamics can be generalized to the discrete setting of an arbitrary
finite number H > 2 of populations. In particular, an existence result for a system of
the kind (see (5.13) below)

∂tµ
h
t = −div

((∑
k∈U

Kk ? µkt

)
µht

)
−αhh(x, µ1

t , . . . , µ
H
t )µht +

∑
k 6=h

αkh(x, µ1
t , . . . , µ

H
t )µkt

for h, k = 1, . . . ,H, is proved. In the system above, our assumptions (T0) and (T3)
amount to requiring that the transition rates αhk build, for fixed x and µ1

t , . . . , µ
H
t ,

a so-called Q-matrix, whose use is customary in the theory of Markov chains (see
Remark 5.7). We also remark that the situation we consider is, however, more general,
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1432 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

as we may allow for a possibly nonlinear dependence of αhk on the space variable and
of the state of the system.

The paper is organized as follows. In section 2, we recall the basic notions of
measure theory that will be needed in the following, and prove a corollary of a theorem
by Brezis [16, section I.3, Theorem 1.4, Corollary 1.1] on the well-posedness of ODEs
in Banach spaces. In section 3 we introduce our abstract model and we prove our
main result, Theorem 3.5, on the mean-field limit of the dynamics. Section 4 is
devoted to the special case of U = {F,L}, modeling the leader-follower dynamics.
We apply the abstract results to this case and recover the results of [2], extending
them to the case of x-dependent transition rates. Finally, subsection 5.1 we extend
the results of section 4 to any finite numbers of labels, whereas in subsection 5.2 we
discuss some explicit examples of velocity fields vΨ and transition operators TΨ which
are encompassed by our setting in the case of a continuum of labels, and we compare
them with those considered in [5].

2. Preliminaries.

2.1. Basic notation. If (X, dX) is a metric space, we denote by M(X) the
space of signed Borel measures in X with finite total variation; byM+(X) and P(X)
the convex subsets of nonnegative measures and probability measures, respectively.
The notation Pc(X) will be used for measures having compact support in X. For
µ ∈ M(X), |µ| denotes the total variation of µ. If we denote by C0(X) the space
of continuous functions vanishing at the boundary of X, and by Cb(X) the space
of bounded continuous functions, the weak∗ and narrow convergence in M(X) are
defined by the convergence of the duality products∫

X

φ dµh →
∫
X

φ dµ , h→∞,

for each φ ∈ C0(X) and φ ∈ Cb(X), respectively.
Whenever X = Rd, d ≥ 1, it remains understood that it is endowed with the

Euclidean norm (and induced distance), which shall be simply denoted by | · |.
For a Lipschitz function f : X → R we denote by

Lip(f) := sup
x,y∈X
x6=y

|f(x)− f(y)|
dX(x, y)

the Lipschitz constant. The notations Lip(X) and Lipb(X) will be used for the spaces
of Lipschitz and bounded Lipschitz functions on X, respectively. Both are normed
spaces with the norm ‖f‖ := ‖f‖∞ + Lip(f), where ‖·‖∞ denoted the supremum
norm.

In a complete and separable metric space (X, dX), we shall use the Kantorovich–
Rubinstein distance W1 in the class P(X), defined as

W1(µ, ν) := sup

{∫
X

ϕdµ−
∫
X

ϕdν : ϕ ∈ Lipb(X), Lip(ϕ) 6 1

}
or, equivalently (thanks to the Kantorovich duality), as

W1(µ, ν) := inf

{∫
X×X

dX(x, y) dΠ(x, y) : Π(A×X) = µ(A), Π(X ×B) = ν(B)

}
,
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involving couplings Π of µ and ν. Notice that W1(µ, ν) is finite if µ and ν belong to
the space

P1(X) :=

{
µ ∈ P(X) :

∫
X

dX(x, x̄) dµ(x) < +∞ for some x̄ ∈ X
}

and that (P1(X),W1) is complete if (X, dX) is complete. For a positive measure
µ ∈M+(E), for E being a Banach space, we define the first moment m1(µ) as

m1(µ) :=

∫
E

‖x‖E dµ .

Notice that, for a probability measure µ, finiteness of the integral above is equivalent
to µ ∈ P1(E), whenever E is endowed with the distance induced by the norm ‖·‖.

We now recall the definition of push-forward measure.

Definition 2.1. Let µ ∈ M+(X) and f : X → Z a µ-measurable function be
given. The push-forward measure f#µ ∈ M+(Z) is defined by f#µ(B) = µ(f−1(B))
for any Borel set B ⊂ Z. The push-forward measures has the same total mass as µ,
namely, µ(X) = f#µ(Z). It also holds the change of variables formula∫

Z

g df#µ =

∫
X

g ◦ f dµ

whenever either one of the integrals is well defined.

For E being a Banach space, the notation C1
b (E) will be used to denote the

subspace of Cb(E) of functions having bounded continuous Fréchet differential at
each point. The notation Dφ(·) will be used to denote the Fréchet differential. In the
case of a function φ : [0, T ] × E → R, the symbol ∂t will be used to denote partial
differentiation with respect to t, while D will only stand for differentiation with respect
to the variables in E.

2.2. Functional setting. The space of labels U will be assumed to be a compact
metric space. The state variable of the system is y := (x, λ) ∈ Rd × P(U) =: Y . The
component x ∈ Rd describes the location of an agent in space, whereas the component
λ ∈ P(U) describes the distribution of labels of the agent. A probability distribution
Ψ ∈ P(Y ) denotes a distribution of agents with labels.

To define the functional setting for the dynamics, we need to consider the free
space

(2.1) F(U) := span(P(U))
‖·‖BL ⊂ (Lip(U))′ ,

which is also called in the literature the Arens–Eells space; see [8, 10] and [44, Chap-
ter 3]. The closure in (2.1) is taken with respect to the bounded Lipschitz norm ‖·‖BL,
which is defined, for µ ∈ (Lip(U))′, by

‖µ‖BL := sup
{
〈µ, ϕ〉 : ϕ ∈ Lip(U), ‖ϕ‖Lip 6 1

}
.

With the free space F(U) at hand, we define Y := Rd ×F(U) and the norm ‖·‖Y by

(2.2) ‖y‖Y = ‖(x, λ)‖Y := |x|+ ‖λ‖BL.

For a given R > 0, we denote by BR the closed ball of radius R in Rd and by BYR
the ball of radius R in Y , namely, BYR = {y ∈ Y : ‖y‖Y 6 R}, and observe that it
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1434 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

is a compact set, since Y is locally compact by our assumptions on U . The Banach
space structure of Y ⊃ Y allows us to define the first moment m1(Ψ) for a probability
measure Ψ ∈ P(Y ) as

m1(Ψ) :=

∫
Y

‖y‖Y dΨ

so that the space P1(Y ) can be equivalently characterized as

P1(Y ) = {Ψ ∈ P(Y ) : m1(Ψ) < +∞}.

We will sometimes use the notation P(K) to denote probability measures with support
contained on a given compact subset K ⊂ Y . Notice that trivially we have P(K) ⊂
P1(Y ).

2.3. Well-posedness of ODEs in Banach spaces. We recall here a theorem
by Brezis [16, section I.3, Theorem 1.4, Corollary 1.1] on the well-posedness of ODEs
in Banach spaces.

Theorem 2.2. Let (E, ‖ · ‖E) be a Banach space, C a closed convex subset of E,
and let A(t, ·) : C → E, t ∈ [0, T ], be a family of operators satisfying the following
properties:

(i) there exists a constant L > 0 such that for every c1, c2 ∈ C and t ∈ [0, T ]

(2.3) ‖A(t, c1)−A(t, c2)‖E ≤ L‖c1 − c2‖E ;

(ii) for every c ∈ C the map t 7→ A(t, c) is continuous in [0, T ];
(iii) for every R > 0 there exists θ > 0 such that

(2.4) c ∈ C, ‖c‖E ≤ R ⇒ c+ θA(t, c) ∈ C.

Then for every c̄ ∈ C there exists a unique curve c : [0, T ]→ C of class C1 satisfying
ct ∈ C for all t ∈ [0, T ] and

(2.5)
d

dt
ct = A(t, ct) in [0, T ], c0 = c̄.

Moreover, if c1, c2 are the solutions starting from the initial data c̄1, c̄2 ∈ C, respec-
tively, we have

(2.6) ‖c1t − c2t‖E ≤ eLt‖c̄1 − c̄2‖E for every t ∈ [0, T ].

For our purposes, we need the following generalization where assumption (i) in
Theorem 2.2 is weakened to a local Lipschitz continuity condition, provided we addi-
tionally assume at most linear growth of the operator A.

Corollary 2.3. Let hypotheses (ii) and (iii) of Theorem 2.2 hold for a family of
operators A(t, ·) : C → E, t ∈ [0, T ]. Assume, in addition, that

(i′) for every R > 0 there exists a constant LR > 0 such that for every c1, c2 ∈
C ∩BR and t ∈ [0, T ],

(2.7) ‖A(t, c1)−A(t, c2)‖E ≤ LR‖c1 − c2‖E ;

(i′′) there exists M > 0 such that for every c ∈ C, there holds

(2.8) ‖A(t, c)‖E 6M(1 + ‖c‖E).
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Then for every c̄ ∈ C there exists a unique curve c : [0, T ]→ C of class C1 satisfying
ct ∈ C for all t ∈ [0, T ] and

(2.9)
d

dt
ct = A(t, ct) in [0, T ], c0 = c̄.

Moreover, if c1, c2 are the solutions starting from the initial data c̄1, c̄2 ∈ C ∩ BR,
respectively, there exists a constant L = L(M,R, T ) > 0 such that

(2.10) ‖c1t − c2t‖E ≤ eLt‖c̄1 − c̄2‖E for every t ∈ [0, T ].

Proof. Let us fix the initial datum c̄ ∈ C, and let us choose R̄ := (‖c̄‖E+MT )eMT .
Consider a smooth function with compact support χ : R+ → [0, 1] such that χ(r) = 1
for every r 6 R̄ and set B(t, c) := χ(‖c‖E)A(t, c). Then one can see that B satisfies
hypotheses (i) and (ii) of Theorem 2.2. To see that hypothesis (iii) is also satisfied,
it suffices to notice that, by convexity and since 0 6 χ 6 1, c + θχ(‖c‖E)A(t, c) ∈ C
whenever c + θA(t, c) ∈ C. Therefore there exists a unique solution t 7→ c(t) of class
C1 of

(2.11)
d

dt
ct = B(t, ct) in [0, T ], c0 = c̄.

Using again that 0 6 χ 6 1 and (2.8), one can see that

(2.12) ‖ct‖E 6 ‖c̄‖E +MT +M

∫ T

0

‖cs‖E ds,

hence, Gronwall’s lemma implies that ‖ct‖E 6 R̄ for every t ∈ [0, T ]. With this, ct
solves (2.9). A similar argument shows that any other solution t 7→ ĉt to (2.9) must
satisfy ‖ĉt‖E 6 R̄ for every t ∈ [0, T ]. Thus, uniqueness of solutions for (2.9) follows
from the uniqueness of solutions to (2.11). A similar argument also yields (2.10).

3. The abstract model. The state of our system is described pairs y := (x, λ).
The element x ∈ Rd denotes the position of an agent, whereas the element λ ∈
P(U) denotes a (probability) distribution over the space U , which we assume to be a
compact metric space, which can be interpreted as a space of strategies (as in [5], in
which case an element of P(U) is a mixed strategy) or as a space of labels (as in [2],
where the case U = {leader, follower} was considered). A distribution of states will
be described by an element Λ ∈ P(Y ), where Y := Rd ×P(U). We will be concerned
with the evolution of Λ, given an initial Λ0, determined by the laws of evolution of x
and λ, which are going to be discussed below.

For y = (x, λ) ∈ Y and Ψ ∈ P1(Y ), we define a vector field bΨ : Y → Y through

(3.1) bΨ(y) :=

(
vΨ(y)
TΨ(y)

)
.

The first component of bΨ is a velocity field in Rd determined by the global state of
the system Ψ; the second component is expressed in terms of the adjoint T ∗(x,Ψ) of
an operator T (x,Ψ) which sees the location of the agents and the global state of the
system around them. In order to state the regularity assumptions that we make on
bΨ, we will discuss separately the assumptions on vΨ and on TΨ.
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1436 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

We assume that the velocity field vΨ : Y → Rd satisfies the following conditions:
(v1) for every R > 0, for every Ψ ∈ P(BYR ), vΨ ∈ Lip(BYR ;Rd) uniformly with

respect to Ψ, namely, there exists a constant Lv,R > 0 such that

(3.2) |vΨ(y1)− vΨ(y2)| 6 Lv,R‖y1 − y2‖Y ;

(v2) for every R > 0, for every Ψ ∈ P(BYR ), there exists a constant Lv,R > 0 such
that for every y ∈ BYR and for every Ψ1,Ψ2 ∈ P(BYR )

(3.3) |vΨ1(y)− vΨ2(y)| 6 Lv,RW1(Ψ1,Ψ2);

(v3) there exists Mv > 0 such that for every y ∈ Y and for every Ψ ∈ P1(Y ) there
holds

(3.4) |vΨ(y)| 6Mv

(
1 + ‖y‖Y +m1(Ψ)

)
.

We now describe the assumptions on T . For Ψ ∈ P1(Y ), let TΨ : Y → F(U) be
an operator such that

(T0) for every (y,Ψ) ∈ Y × P1(Y ), constants are in the kernel of TΨ(y), that is,

(3.5) 〈TΨ(y), 1〉F(U),Lip(U) = 0;

(T1) for every (y,Ψ) ∈ Y × P1(Y ), there exists a constant MT > 0 such that

(3.6) ‖TΨ(y)‖BL 6MT
(
1 + |x|+m1(Ψ)

)
;

(T2) for every R > 0 there exists LT ,R > 0 such that, for every (y1,Ψ1), (y2,Ψ2) ∈
BYR × P(BYR ),

‖TΨ1(y1)− TΨ2(y2)‖BL 6 LT ,R
(
‖y1 − y2‖Y +W1(Ψ1,Ψ2)

)
;(3.7)

(T3) for every R > 0 there exists δR > 0 such that for every (y,Ψ) ∈ BYR ×P1(Y )
we have

(3.8) TΨ(y) + δRλ > 0.

Proposition 3.1. For y ∈ Y and Ψ ∈ P1(Y ), define bΨ(y) as in (3.1). Assume
that vΨ : Y → Rd satisfies (v1)–(v3) and TΨ : Y → F(U) satisfies (T0)–(T3). Then

(i) for every R > 0, for every Ψ ∈ P(BYR ), and for every y1, y2 ∈ BYR , there
exists LR > 0 such that

(3.9) ‖bΨ(y1)− bΨ(y2)‖Y 6 LR‖y1 − y2‖Y ;

(ii) for every R > 0, for every Ψ1,Ψ2 ∈ P(BYR ), and for every y ∈ BYR , there
exists LR > 0 such that

(3.10) ‖bΨ1(y)− bΨ2(y)‖Y 6 LRW1(Ψ1,Ψ2);

(iii) for every R > 0, there exists θ > 0 such that for every y ∈ BYR and for every
Ψ ∈ P(BYR )

(3.11) y + θbΨ(y) ∈ Y ;
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(iv) there exists M > 0 such that for every y ∈ Y and for every Ψ ∈ P1(Y ) there
holds

(3.12) ‖bΨ(y)‖Y 6M
(
1 + ‖y‖Y +m1(Ψ)

)
.

Proof. Property (i) is a consequence of (3.2) and (3.7); property (ii) follows from
(3.3) and (3.7). Observing that for all y = (x, λ) ∈ Y we have that ‖λ‖BL 6 1,
we obtain (3.12) from (3.4) and (3.6). Finally, to prove (iii), since Rd is convex, we
simply have to show that for every R > 0, there exists θ > 0 such that for every
y = (x, λ) ∈ BYR and for every Ψ ∈ P(BYR )

(3.13) λ+ θTΨ(y)λ ∈ P(U).

From (3.8), we have that, for θ = 1/δR, 〈λ + θTΨ(y), f〉F(U),Lip(U) > 0, for all f ∈
Lip(U), f > 0. Since for all positive functionals ζ ∈ (Lip(U))′ it holds∣∣〈ζ, f〉(Lip(U))′,Lip(U)

∣∣ 6 ‖f‖∞〈ζ, 1〉
for all f ∈ Lip(U), and since Lip(U) is dense in C(U) we have that λ + θTΨ(y) can
be extended to a positive linear functional in (C(U))′. Therefore, by the Riesz repre-
sentation theorem, λ+ θTΨ(y) ∈M+(U). Now, by (T0), 〈λ+ θTΨ(y), 1〉F(U),Lip(U) =
〈λ, f〉 = 1 for all λ ∈ P(U), which implies (3.13) and we conclude the proof.

We conclude this subsection by providing an explicit example of operators satis-
fying (T0)–(T3) which will be used in our examples of sections 4 and 5. The following
lemma is easily proved.

Lemma 3.2. Let Q(x,Ψ) ∈ L(Lip(U); Lip(U)) satisfy
(Q0) for every (x,Ψ) ∈ Rd × P1(Y ), constants are in the kernel of Q(x,Ψ), that

is,

(3.14) Q(x,Ψ)1 = 0;

(Q1) for every (x,Ψ) ∈ Rd × P1(Y ), there exists a constant MQ > 0 such that the
operator norm satisfies

(3.15) ‖Q(x,Ψ)‖L(Lip(U);Lip(U)) 6MQ
(
1 + |x|+m1(Ψ)

)
;

(Q2) for every R > 0 there exists LQ,R > 0 such that, for every (x1,Ψ1), (x2,Ψ2) ∈
BR × P(BYR ),
(3.16)
‖Q(x1,Ψ1)−Q(x2,Ψ2)‖L(Lip(U);Lip(U)) 6 LQ,R

(
|x1 − x2|+W1(Ψ1,Ψ2)

)
;

(Q3) for every R > 0 there exists δR > 0 such that for every (x,Ψ) ∈ BR ×P1(Y )
we have

(3.17) Q(x,Ψ) + δRI > 0.

Then the adjoint operator Q∗(x,Ψ) maps P(U) into F(U) and TΨ(y) := Q∗(x,Ψ)λ
satisfies (T0)–(T3) above.

Proof. By (3.17) we have Q∗(x,Ψ)λ + δRλ > 0 as an element of (Lip(U))′. By
(3.14) 〈Q∗(x,Ψ)λ, 1〉Lip(U)′,Lip(U) = 〈λ,Q(x,Ψ)1〉 = 0. Observe that these are exactly
(T0) and (T3) once we prove that TΨ(y) ∈ F(U) for all (y,Ψ) ∈ Y × P1(Y ). To see
this, we argue as in the proof of Proposition 3.1 to obtain thatQ∗(x,Ψ)λ+δRλ ∈ P(U)
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1438 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

for all λ ∈ P(U). Hence, TΨ(y) = (Q∗(x,Ψ)λ + δRλ) − δRλ is an element of F(U)
and (T0) and (T3) hold true.

It remains to see that (T1) and (T2) hold. By the definition of the operator norm,
we have

‖Q∗(x,Ψ)‖L(F(U);F(U)) := sup
{
‖Q∗(x,Ψ)µ‖BL : µ ∈ F(U), ‖µ‖BL 6 1

}
.

For (x1,Ψ1), (x2,Ψ2) ∈ BR × P(BYR ), we have

‖Q∗(x1,Ψ1)−Q∗(x2,Ψ2)‖L(F(U);F(U))

= sup
{
‖(Q∗(x1,Ψ1)−Q∗(x2,Ψ2))µ‖BL : µ ∈ F(U), ‖µ‖BL 6 1

}
= sup

{
sup

{
〈(Q∗(x1,Ψ1)−Q∗(x2,Ψ2))µ, ϕ〉 : ‖ϕ‖Lip 6 1

}
: µ ∈ F(U), ‖µ‖BL 6 1

}
= sup

{
sup

{
〈µ, (Q(x1,Ψ1)−Q(x2,Ψ2))ϕ〉 : ‖ϕ‖Lip 6 1

}
: µ ∈ F(U), ‖µ‖BL 6 1

}
6 sup

{
sup

{
‖µ‖BL‖(Q(x1,Ψ1)−Q(x2,Ψ2))ϕ‖Lip : ‖ϕ‖Lip 6 1

}
: µ ∈ F(U), ‖µ‖BL 6 1

}
6 sup

{
‖(Q(x1,Ψ1)−Q(x2,Ψ2))ϕ‖Lip : ‖ϕ‖Lip 6 1

}
6 ‖Q(x1,Ψ1)−Q(x2,Ψ2)‖L(Lip(U);Lip(U)),

so that (S2) gives

(3.18) ‖Q∗(x1,Ψ1)−Q∗(x2,Ψ2)‖L(F(U);F(U)) 6 LQ,R
(
|x1 − x2|+W1(Ψ1,Ψ2)

)
.

A similar argument, taking (S1) into account, gives

‖Q∗(x,Ψ)‖L(F(U);F(U)) 6MQ
(
1 + |x|+m1(Ψ)

)
for every (x,Ψ) ∈ Rd × P1(Y ). Since ‖λ‖BL 6 1 for all λ ∈ P(U), we deduce (T1).
Writing

TΨ1(y1)− TΨ2(y2) = Q∗(x1,Ψ1)(λ1 − λ2) + (Q∗(x1,Ψ1)−Q∗(x2,Ψ2))λ2

and using (3.18), we get (T2).

3.1. The discrete problem and statement of the main result. We consider
a particle system of N agents evolving according to

(3.19)

{
ẋit = vΛN

t
(xit, λ

i
t),

λ̇it = TΛN
t

(xit, λ
i
t)

for i = 1, . . . , N , t ∈ [0, T ],

where xit ∈ Rd, λit ∈ P(U) for each i ∈ {1, . . . , N}, and

(3.20) ΛNt :=
1

N

N∑
i=1

δ(xi
t,λ

i
t)

is the empirical measure associated with the system. Recalling the definition of b in
(3.1), the evolution (3.19) can be written in compact form as

(3.21) ẏit = bΛN
t

(yit) for i = 1, . . . , N , t ∈ [0, T ].

We first discuss the well-posedness of system (3.19) for every choice of an initial datum
ȳi = (x̄i, λ̄i), for i = 1, . . . , N .
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Proposition 3.3. Assume that for every y ∈ Y and Ψ ∈ P1(Y ) the velocity
vΨ : Y → Rd satisfies (v1)–(v3) and the operator TΨ : Y → F(U) satisfies (T0)–(T3).
Then, for every choice of ȳi ∈ Y , i = 1, . . . , N , the system (3.21) has a unique solution
in [0, T ].

Proof. We introduce the vector-valued variable y := (y1, . . . , yN ) ∈ Y N ⊂ Y
N

,
which we endow with the norm

(3.22) ‖y‖
Y

N :=
1

N

N∑
i=1

‖yi‖Y ,

and the associated empirical measure ΛN := 1
N

∑N
i=1 δyi , which belongs to P(BYR )

whenever y ∈ (BYR )N . Consider the map bN : Y N → Y
N

whose components are
defined through

(3.23) bNi (y) := bΛN (yi).

Then the Cauchy problem associated with (3.21) can be written as

(3.24)

{
ẏt = bN (yt),

y0 = ȳ.

In order to apply Corollary 2.3 to the system above, we first notice that assumption
(ii) in Theorem 2.2 is automatically satisfied since the system is autonomous. To

check the other assumptions, we fix a ball BY
N

R and notice that BY
N

R ⊂ (BYR )N .
Applying (3.11) with Ψ = ΛN to each component yi of y, we get that assumption

(iii) of Theorem 2.2 is satisfied.

We now show that assumption (i′) holds. Fix y1,y2 ∈ BY
N

R ⊂ (BYR )N , and let
ΛN1 ,Λ

N
2 be the associated empirical measures. Notice that

(3.25) W1(ΛN1 ,Λ
N
2 ) 6

CU
N

N∑
i=1

‖yi1 − yi2‖Y = CU‖y1 − y2‖Y N ,

where CU depends on the compact set U . With this, by the triangle inequality, (3.9),
and (3.10), we estimate

‖bN (y1)− bN (y2)‖
Y

N

=
1

N

N∑
i=1

‖bΛN
1

(yi1)− bΛN
2

(yi2)‖Y

6 LRW1(ΛN1 ,Λ
N
2 ) +

LR
N

N∑
i=1

‖yi1 − yi2‖Y 6 LR(1 + CU )‖y1 − y2‖Y N ,

(3.26)

which yields (2.7) up to renaming the constant. To see that also (2.8) and, therefore,
assumption (i′′), holds, we apply (3.12) and obtain, upon noticing that m1(ΛN ) =
‖y‖

Y
N ,

‖bN (y)‖
Y

N =
1

N

N∑
i=1

‖bΛN (yi)‖Y

6
M

N

N∑
i=1

(
1 + ‖yi‖Y +m1(ΛN )

)
= M

(
1 + 2‖y‖

Y
N

)
.

(3.27)

Therefore we can apply Corollary 2.3, which proves the statement.
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We are now in a position to state the main result of our paper, concerning the
mean-field limit as N → ∞ of the solutions (y1

t , . . . , y
N
t ) to (3.21) or, equivalently,

the limiting behavior of the associated empirical measures ΛNt . In order to do so, we
first need to recall the concept of Eulerian solution to the continuity equation.

Definition 3.4 (Eulerian solution). Let Λ ∈ C0([0, T ]; (P1(Y ),W1)) and let
Λ̄ ∈ Pc(Y ) be a given initial datum. We say that Λ is an Eulerian solution to the
initial value problem for the equation

(3.28) ∂tΛt + div(bΛt
Λt) = 0

starting from Λ̄ if and only if Λ0 = Λ̄ and, for every φ ∈ C1
b ([0, T ]× Y ),

(3.29)∫
Y

φ(t, y) dΛt(y)−
∫
Y

φ(0, y) dΛ0(y) =

∫ t

0

∫
Y

(
∂tφ(s, y)+Dφ(s, y) ·bΛs(y)

)
dΛs(y)ds,

where Dφ(s, y) is the Fréchet differential of φ in the y variable.

The main result of our paper is the following theorem, stating the existence of a
unique Eulerian solution to (3.28) and its characterization as the mean-field limit of
solutions to the discrete problem (3.21).

Theorem 3.5. Let r > 0 and Λ̄ ∈ P(BYr ) be a given initial datum. Then
(i) there exists a unique Eulerian solution t 7→ Λt to (3.28) starting from Λ̄;

(ii) if Λ̄N = 1
N

∑N
i=1 δȳN,i is a sequence of atomic measures in P(BYr ) such that

lim
N→∞

W1(Λ̄N , Λ̄) = 0

and, for fixed N , ΛNt are the empirical measures associated with the unique
solution to (3.21) with initial datum ȳN,i, we have

lim
N→∞

W1(ΛNt ,Λt) = 0 uniformly with respect to t ∈ [0, T ].

The proof of Theorem 3.5 will be based on a fixed point argument and on the
notion of Lagrangian solution, which are going to be introduced in the next subsection.

3.2. Lagrangian solutions. We start by proving an auxiliary well-posedness
result for an ODE in Y of the form

(3.30) ẏt = bΨt
(yt), y0 = ȳ,

where [0, T ] 3 t 7→ Ψt ∈ P1(Y ) is a given continuous curve and ȳ ∈ Y .

Proposition 3.6. Assume that for every y ∈ Y and Ψ ∈ P1(Y ) the velocity
vΨ : Y → Rd satisfies (v1)–(v3) and the operator TΨ : Y → F(U) satisfies (T0)–(T3).
Let Ψ ∈ C0([0, T ]; (P1(Y ),W1)) and assume that there exists R > 0 such that, in
addition, Ψt ∈ P(BYR ) for all t ∈ [0, T ]. Then, for every choice of ȳ ∈ Y , the ODE
(3.30) has a unique solution.

Proof. We set b(t, y) := bΨt(y) according to (3.1). Since t 7→ Ψt is continuous,
using (3.10) we get that, for any fixed y ∈ Y , b(·, y) is continuous, which is condi-
tion (ii) in Corollary 2.3. Condition (iii) of Corollary 2.3 is a direct consequence of
(3.11). Furthermore, (3.9) and (3.12) yield (2.7) and (2.8), respectively. The proof is
concluded by Corollary 2.3.
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In view of the previous result, the following definition is justified.

Definition 3.7 (transition map). The transition map YΨ(t, s, ȳ) associated with
the ODE (3.30), replacing the initial condition by ys = ȳ, is defined through

YΨ(t, s, ȳ) = yt,

where t 7→ yt is the unique solution to (3.30) .

We can now proceed to defining the notion of Lagrangian solution to (3.28).

Definition 3.8 (Lagrangian solutions). Let Λ ∈ C0([0, T ]; (P1(Y ),W1)) and let
Λ̄ ∈ Pc(Y ) be a given initial datum. We say that Λ is a Lagrangian solution to the
initial value problem for (3.28) starting from Λ̄ if and only if it satisfies the fixed point
condition

(3.31) Λt = YΛ(t, 0, ·)#Λ̄ for every 0 6 t 6 T ,

where YΛ(t, s, y) are the transition maps associated with the ODE (3.30).

Remark 3.9. It follows from Definition 2.1 that Lagrangian solutions are also
Eulerian solutions.

Remark 3.10. For a fixed N ∈ N, let ΛNt be the empirical measures associated
with the unique solution to (3.21) with initial datum ȳi, i = 1, . . . , N . If we now set

Λ̄N := 1
N

∑N
i=1 δȳi , by Definition 3.7 there holds

(3.32) ΛNt = YΛN (t, 0, ·)#Λ̄N for every 0 6 t 6 T .

Hence, ΛN is a Lagrangian and Eulerian solution to (3.28) starting from Λ̄N .

We now want to show that an infinite-dimensional converse of Proposition 3.6
holds, proving that indeed, in our case, every Eulerian solution is also a Lagrangian
solution. This stems out of a general abstract principle known as the superposition
principle in the version introduced in [5] (see also [7, Theorem 8.2.1] and [9, The-
orem 7.1]). In the statement below, the evaluation map evt is defined, at a given
t ∈ [0, T ], by

evt(γ) := γ(t) for all γ ∈ C([0, T ];E) ;

we also use the notion of cylindrical functions, which are defined in the following way.
We say that φ ∈ C1

b (E) is a cylindrical function if there exist a function ϕ ∈ C1
b (RN )

and z′1, . . . , z
′
N ∈ E′ such that

φ(y) = ϕ(〈y, z′1〉, 〈y, z′2〉, . . . , 〈y, z′N 〉),

where 〈·, ·〉 denotes the duality map between E and E′.

Theorem 3.11 (superposition principle). Let (E, ‖ · ‖E) be a separable Banach
space, let b : (0, T )× E → E be a Borel vector field, and let µt ∈ P(E), t ∈ [0, T ], be
a continuous curve with

(3.33)

∫ T

0

∫
E

‖bt‖E dµtdt < +∞.

If
d

dt
µt + div(btµt) = 0
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1442 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

in duality with cylindrical functions φ ∈ C1
b (E),2 then there exists η ∈ P(C([0, T ];E))

concentrated on absolutely continuous solutions to the ODE ẏ = bt(y) and with
(evt)#η = µt for all t ∈ [0, T ].

Proof. See [5, Theorem 5.2] for the proof.

Combining the abstract result Theorem 3.11 with the uniqueness granted by
Proposition 3.6, we can prove the announced equivalence result. Notice that the
proof has an intermediate step, since in order to apply Proposition 3.6 we must first
ensure that an Eulerian solution Λt has (equi)compact support for all t. We are able to
deduce this from Theorem 3.11 and the assumption that the initial datum Λ̄ ∈ Pc(Y ).

Theorem 3.12. Let Λ ∈ C0([0, T ]; (P1(Y ),W1)) and let Λ̄ ∈ Pc(Y ) be a given
initial datum. Assume that Λ is an Eulerian solution to the initial value problem for
∂tΛt + div(bΛt

Λt) = 0 (see (3.28)) starting from Λ̄, in the sense of (3.29), then there
exists R > 0 such that Λt ∈ P(BYR ) for all t ∈ [0, T ] and

Λt = YΛ(t, 0, ·)#Λ̄ for every 0 6 t 6 T ,

where YΛ(t, s, y) are the transition maps associated with the ODE (3.30).

Proof. Since Λ ∈ C0([0, T ]; (P1(Y ),W1)), the map

(3.34) t 7→ m1(Λt) =

∫
Y

‖y‖Y dΛt(y)

is continuous and, hence, bounded, in [0, T ]. Set bt(y) := bΛt(y) for y ∈ Y , and extend
it to zero on Y \ Y . Using (3.12), we have∫ T

0

∫
Y

‖bt‖Y dΛt(y)dt =

∫ T

0

∫
Y

‖bt‖Y dΛt(y)dt

6
∫ T

0

∫
Y

M
(
1 + ‖y‖Y +m1(Λt)

)
dΛt(y)dt

6 TM

(
1 + 2 max

t∈[0,T ]
m1(Λt)

)
< +∞.

(3.35)

Hence, we can apply Theorem 3.11 with E = Y and µt = Λt, obtaining that Λt =
(evt)#η for a suitable η ∈ P(C([0, T ];Y )) concentrated on absolutely continuous
solutions to ODE

(3.36) ẏ = bΛt
(y) in [0, T ].

Now, using (3.12) again, we have

(3.37) ‖bΛt
(y)‖Y ≤M

(
1 + max

t∈[0,T ]
m1(Λt) + ‖y‖Y

)
≤MΛ (1 + ‖y‖Y ) ,

where we set MΛ := M
(
1 + maxt∈[0,T ]m1(Λt)

)
. The equality Λ̄ = Λ0 = (ev0)#η,

which reads ∫
P(C([0,T ];Y ))

φ(γ(0)) dη(γ) =

∫
Y

φ(y) dΛ̄(y)

2By this we mean that the definition of weak solutions to the continuity equation has only to be
satisfied for test functions that are cylindrical.
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for each φ ∈ Cb(Y ), implies that η is concentrated on the set of solutions to (3.36) sat-
isfying y(0) ∈ BYr , where r is such that supp Λ̄ ⊂ BYr . With (3.37) and the Grönwall
inequality, each of these solutions must satisfy y(t) ∈ BYR , where R is explictly given
by

R := Rr,M,Λ,T = (r +MΛT )eMΛT .

From the equality Λt = (evt)#η we then deduce that Λt ∈ P1(BYR ) for all t ∈ [0, T ].
We can therefore apply Proposition 3.6 and exploit the uniqueness of the solution to
the Cauchy problem (3.30) to deduce the representation

γ(t) = YΛ(t, 0, γ(0))

with γ(0) ∈ BYr , for each continuous path γ ∈ suppη. With the equality Λt =
(evt)#η, this gives∫

Y

φ(y) dΛt(y) =

∫
P(C([0,T ];Y ))

φ(YΛ(t, 0, γ(0))) dη(γ) =

∫
Y

φ(YΛ(t, 0, y)) dΛ̄(y)

for each φ ∈ Cb(Y ), which implies the conclusion.

3.3. Proof of Theorem 3.5. As a preliminary step towards the proof, we need
the following lemma, ensuring that the size of the support of a Lagrangian solution
in the sense of (3.31) can be a priori estimated from the data of the problem.

Lemma 3.13. Assume that for every y ∈ Y and Ψ ∈ P1(Y ) the velocity vΨ : Y →
Rd satisfies (v1)–(v3) and the operator TΨ : Y → F(U) satisfies (T0)–(T3). Let
Λ ∈ C0([0, T ]; (P1(Y ),W1)) and let Λ̄ ∈ Pc(Y ) be a given initial datum. Fix r > 0
such that Λ̄ has support in BYr , and let M be the constant given by (3.12). Assume
that Λ is a Lagrangian solution to the initial value problem for (3.28) starting from
Λ̄ in the sense of (3.31). Then, for R = (r +MT )e2MT we have

Λt ∈ P1(BYR ) for all t ∈ [0, T ] .

Proof. For r, R as in the statement, it suffices to show that we have

(3.38) max
y∈BY

r

‖YΛi(t, 0, y)‖Ȳ ≤ R

for all t ∈ [0, T ]. Indeed, if this holds the statement immediately follows by (3.31)
and elementary properties of the push-forward measure, taking into account that Λ̄
has support in BYr . To prove the above claim, we first observe that by the definition
of Lagrangian solutions and the fact that Λ̄ ∈ P(BYr ) we immediately have

(3.39) m1(Λt) ≤ max
y∈BY

r

‖YΛ(t, 0, y)‖Ȳ

for all t ∈ [0, T ]. We now set f(s) = maxy∈BY
r
‖YΛ(s, 0, y)‖Ȳ . Then, one has by

definition of the transition map, (3.12), and (3.39) that for every choice of y ∈ BYr

‖YΛ(t, 0, y)‖Ȳ ≤ r+M

∫ t

0

(1+‖YΛ(s, 0, y)‖Ȳ +m1(Λs)) ds ≤ r+M

∫ t

0

(1+2f(s)) ds

which implies by the Gronwall inequality f(t) ≤ (r + Mt)e2Mt for all t, confirming
(3.38).
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Proof of Theorem 3.5. The proof goes through a finite-dimensional approxima-
tion and involves three steps.

Step 1: Stability of Lagrangian solutions. We fix r > 0, two initial data Λ̄1,
Λ̄2 ∈ P(BYr ), and assume that two Lagrangian solutions Λ1

t , Λ2
t , starting from Λ̄1 and

Λ̄2, respectively, exist. We fix R = (r+MT )e2MT and the corresponding contant LR
provided by (3.9)–(3.10). We claim that

(3.40) W1(Λ1
t ,Λ

2
t ) ≤ eLRt+eLRt−1W1(Λ̄1, Λ̄2) for all t ∈ [0, T ] .

To prove this claim, we fix y1 and y2 ∈ BYr and observe that

(3.41) ‖YΛi(t, 0, yi)‖Ȳ ≤ R

for all t ∈ [0, T ] and i = 1, 2. This can be proved along similar lines as in the proof
of (3.39). With (3.41) and (3.9)–(3.10), the solutions y1(t) and y2(t) to the ODEs
ẏi = bΛi(yi) with initial data y1 and y2, respectively, satisfy

d

dt
‖y1 − y2‖(t) 6 ‖bΛ1(y1(t))− bΛ1(y2(t))‖+ ‖bΛ1(y2(t))− bΛ2(y2(t))‖

6 LR‖y1 − y2‖(t) + LRW1(Λ1
t ,Λ

2
t ) .

This gives, by means of a comparison argument, that

‖y1(t)− y2(t)‖ 6 eLRt‖y1 − y2‖+ LR

∫ t

0

eLR(t−τ)W1(Λ1
τ ,Λ

2
τ ) dτ ;

equivalently,

(3.42) ‖YΛ1(t, 0, y1)−YΛ2(t, 0, y2)‖ 6 eLRt‖y1−y2‖+LR
∫ t

0

eLR(t−τ)W1(Λ1
τ ,Λ

2
τ ) dτ

for all t ∈ [0, T ] and y1 and y2 ∈ BYr .
Now, let Π be an optimal coupling between Λ̄1 and Λ̄2. Then clearly, by the def-

inition of Lagrangian solutions, (YΛ1(t, 0, y1),YΛ2(t, 0, y2))#Π is a coupling between
Λ1
t and Λ2

t . Therefore

W1(Λ1
t ,Λ

2
t ) 6

∫
Y×Y
‖YΛ1(t, 0, y1)−YΛ2(t, 0, y2)‖ dΠ(y1, y2)

=

∫
BY

r ×BY
r

‖YΛ1(t, 0, y1)−YΛ2(t, 0, y2)‖ dΠ(y1, y2) ,

where we also used that Λ̄1, Λ̄2 ∈ P(BYr ). Hence, using (3.42) we get

W1(Λ1
t ,Λ

2
t ) 6 eLRt

∫
BY

r ×BY
r

‖y1 − y2‖ dΠ(y1, y2) + LR

∫ t

0

eLR(t−τ)W1(Λ1
τ ,Λ

2
τ ) dτ

= eLRtW1(Λ̄1, Λ̄2) + LR

∫ t

0

eLR(t−τ)W1(Λ1
τ ,Λ

2
τ ) dτ .

With this and the Grönwall inequality, we get (3.40).
Step 2: Existence and approximation of Lagrangian solutions. We start by fixing

a sequence of atomic measures Λ̄N ∈ P(BYr ) such that

(3.43) lim
N→∞

W1(Λ̄N , Λ̄) = 0 .
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Such a sequence can be for instance constructed as follows: choose ȳi(ω) ∈ Y in-
dependent and identically distributed, with law Λ̄, so that the random measures
Λ̄N (ω) := 1

N

∑N
i=1 δȳi(ω) almost surely converge in P1(Y ) to Λ̄, and choose a realiza-

tion ω such that this convergence takes place. Now, let ΛNt be the empirical measures
associated with the unique solution to (3.21) with initial datum ȳi, i = 1, . . . , N . As
noticed in (3.32), ΛNt are Lagrangian solutions to (3.28) starting from Λ̄N . Hence,
(3.40) provides a constant C := C(M, r, T ) such that

W1(ΛNt ,Λ
M
t ) ≤ CW1(Λ̄N , Λ̄M )

for all t ∈ [0, T ] and N , M ∈ N. It follows that ΛNt ∈ C([0, T ]; (P1(BYR ),W1)) is a
Cauchy sequence. Let then Λt ∈ C([0, T ]; (P1(BYR ),W1)) be the limit of the sequence
ΛNt .

For a given ȳ ∈ BYr , consider now the solutions yN (t) and y(t) to the ODEs
ẏN = bΛN (yN ) and ẏ = bΛ(y), respectively, with initial datum ȳ. Let R′ ≥ R be
an upper bound3 for maxt∈[0,T ]‖y(t)‖Ȳ , which can be taken independent of ȳ ∈ BYr .
With (3.9)–(3.10) we obtain

d

dt
‖yN − y‖(t) 6 ‖bΛN (yN )− bΛ(yN )‖+ ‖bΛ(yN )− bΛ(y)‖

6 LR′‖yN − y‖+ LRW1(ΛNt ,Λt) .

Again by comparison, we deduce that

‖YΛN (t, 0, ȳ)−YΛ(t, 0, ȳ)‖ 6 LR

∫ t

0

eLR′ (t−τ)W1(ΛNτ ,Λτ ) dτ

which entails the uniform convergence of YΛN (·, 0, ·) to YΛ(·, 0, ·) in [0, T ]×BYr . For
each t ∈ [0, T ] this implies, together with (3.43) and the fact that YΛ(t, 0, ·) is a
Lipschitz map on BYr , that

ΛNt = YΛN (t, 0, ·)#Λ̄N → YΛ(t, 0, ·)#Λ̄

in P1(Y ), which gives (3.31).
Step 3: Uniqueness and conclusion. Uniqueness of Lagrangian solutions, given the

initial datum, follows now from (3.40). Existence and uniqueness of Eulerian solutions
is now a consequence of Remark 3.9, and Theorem 3.12, respectively. The same
argument used in the second step of this proof gives also part (ii) of the statement.

4. A leader-follower dynamics. We want to discuss the application of our
results to the relevant scenario of two interacting populations, one consisting of leaders
and the other one of followers, with a switching rate between the two. In this setting,
the set U consists of two elements, that is, U := {F,L} and is endowed with a two-
valued distance

0 = dist(F, F ) = dist(L,L) , 1 = dist(F,L) = dist(L,F ) .

The space Lip({F,L}) is a two-dimensional linear space spanned by the two indicator
functions 1F and 1L; accordingly, the space F({F,L}) is the two-dimensional space of

3Observe that at this point of the proof we cannot a priori exclude that R′ > R, since we still do
not know that Λt is a Lagrangian solution, hence we cannot apply (3.41) (which holds instead for
ΛN ).
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signed Borel measures on the discrete set {F,L}, whose generic element ξ is completely
described by the two values ξF := ξ({F}) and ξL := ξ({L}).

Throughout this section, we will restrict our attention to transition operators T
which act linearly on ξ of the type considered in Lemma 3.2. A simple characterization
of operators of this kind complying with our set of assumptions (T0)–(T3) is given in
the following proposition.

Proposition 4.1. Let U := {F,L} and TΨ : Y → F({F,L}) be of the form
TΨ(y) = Q∗(x,Ψ)λ for Q(x,Ψ) ∈ L(Lip({F,L}); Lip({F,L})). Then TΨ satisfies
(T0)–(T3) if and only if there exist two functions αF , αL : Rd × P1(Y ) → [0,+∞)
such that

(α0) for every (x,Ψ) ∈ Rd × P1(Y ) and λ ∈ P1({F,L}) it holds that

(Q∗(x,Ψ)λ)F = −αF (x,Ψ)λF + αL(x,Ψ)(1− λF ) ,

(Q∗(x,Ψ)λ)L = αF (x,Ψ)λF − αL(x,Ψ)(1− λF );

(α1) for every (x,Ψ) ∈ Rd × P1(Y ), there exists MQ > 0 such that

0 ≤ α•(x,Ψ) 6MQ
(
1 + |x|+m1(Ψ)

)
for • = F,L;

(α2) for every R > 0 there exists LQ,R > 0 such that, for every (x1,Ψ1), (x2,Ψ2) ∈
BR × P(BYR ),

|α•(x1,Ψ1)− α•(x2,Ψ2)| 6 LQ,R
(
|x1 − x2|+W1(Ψ1,Ψ2)

)
for • = F,L.

Proof. Since Lip({F,L}) is a two-dimensional linear space, we can identify the
operator Q(x,Ψ) with its matrix representation with respect to the canonical basis
{1F , 1L} and endow the space L(Lip({F,L}),Lip({F,L}) with the Frobenius norm
of such a matrix representation. Accordingly, the transpose matrix will be the repre-
sentation of Q∗(x,Ψ) with respect to the canonical basis of F({F,L}) consisting of
the two Dirac masses δF and δL.

For TΨ(y) of the form Q∗(x,Ψ)λ, conditions (T0)–(T3) are equivalent to condi-
tions (S0)–(S3) of Lemma 3.2. Condition (Q0) is equivalent to the fact that

(4.1) Q(x,Ψ) =

(
−αF (x,Ψ) αF (x,Ψ)
αL(x,Ψ) − αL(x,Ψ)

)
with αF , αL : Rd × P1(Y ) → [0,+∞). In turn, this is equivalent to (α0) by a direct
computation. Again by a direct computation, (Q2) is equivalent to (α2), while (Q1)
is equivalent to the inequality

|α•(x,Ψ)| 6MQ (1 + |x|+m1(Ψ)) for • = F,L.

In particular, αF and αL are uniformly bounded for (x,Ψ) ∈ BR×P1(BYR ), hence (Q3)
holds if and only if the nondiagonal elements αF (x,Ψ) and αL(x,Ψ) of the matrix
representation (4.1) are nonnegative. This implies that (Q1) and (Q3) together are
equivalent to (α1), which concludes the proof.

To each element Ψ of P1(Rd × P1({F,L})) we can associate a followers’ and a
leaders’ distribution in a natural way, as we are going to discuss in the next definition.

Definition 4.2. Let Ψ ∈ P1(Rd × P1({F,L})). The followers distribution µFΨ
associated with Ψ is the positive Borel measure on Rd defined by

(4.2a) µFΨ(B) :=

∫
B×P1({F,L})

λF dΨ(x, λ)
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MEAN-FIELD OF MULTILABEL DYNAMICS WITH SWITCHING 1447

for each Borel set B ⊂ Rd. Similarly, the leaders distribution µLΨ associated with Ψ
is the positive Borel measure on Rd defined by

(4.2b) µLΨ(B) :=

∫
B×P1({F,L})

(1− λF ) dΨ(x, λ) .

Both the measures defined above have a simple interpretation. For instance,
µFΨ(B) is the expected value of the number of leaders in a region B for a probabil-
ity distribution Ψ on Rd × P1({F,L}). We also observe that the sum of the two
measures µFΨ and µLΨ is exactly the x-marginal of Ψ(x, λ). From a practical point of
view, the integrals appearing in (4.2) can be computed identifying the metric space
(P1({F,L}),W1) with the one-dimensional symplex [0, 1] endowed with the Euclidean
distance (this is indeed an isometry). We also point out the following inequalities,
whose proof is straightforward:

m1(µFΨ) +m1(µLΨ) ≤ m1(Ψ) for all Ψ ∈ P1(Rd × P1({F,L})) ,
‖µFΨ1

− µFΨ2
‖BL ≤ 2W1(Ψ1,Ψ2) for all Ψ1,Ψ2 ∈ P1(Rd × P1({F,L})) ,

‖µLΨ1
− µLΨ2

‖BL ≤ 2W1(Ψ1,Ψ2) for all Ψ1,Ψ2 ∈ P1(Rd × P1({F,L})) .
(4.3)

Using the previous definition, we can also provide some relevant examples of
velocity fields vΨ complying with assumptions (v1)–(v3).

Proposition 4.3. Let U = {F,L}. For Ψ ∈ P1(Rd × P1({F,L})), consider the
velocity field

(4.4) vΨ(x, λ) := λF
(
KFF ? µFΨ +KLF ? µLΨ

)
+ (1− λF )

(
KFL ? µFΨ +KLL ? µLΨ

)
,

where µFΨ and µLΨ are defined in (4.2) and the interaction kernels Kij : Rd → Rd
satisfy, for i, j ∈ {F,L},

|Kij(x)| ≤M(1 + |x|) for all x ∈ Rd ,
|Kij(x1)−Kij(x2)| ≤ LR |x1 − x2| for all x1, x2 ∈ BR .

Then, vΨ(x, λ) satisfies (v1)–(v3).

Proof. The result follows by a direct computation.

Remark 4.4. The velocity field (4.4) corresponds to a particle model where each
follower experiences a velocity KFF ?µFΨ +KLF ?µLΨ, which combines the action of the
overall followers and leaders distribution. Similarly, each leader is under the action
of the velocity field KFL ? µFΨ +KLL ? µLΨ. Hence, (4.4) is an average velocity of the
system, weigthed by the probability λ that a particle at x has of being a leader or a
follower.

In a similar spirit to the previous proposition, transition rates αF and αL de-
pending on µFΨ and µLΨ can also be considered in our setting. This is for instance the
point of view taken in [2, Assumption (H4) and Appendix A], where some explicit
examples were also provided. Our assumptions are actually more general than those
considered there: in particular, we can allow for an explicit dependence on the space
variable x.

Proposition 4.5. Let U = {F,L} and consider two functions αF , αL : Rd ×
M+(Rd)×M+(Rd)→ [0,+∞) satisfying the following assumptions:
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1448 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

• there exists a constant M such that, for • = F,L,

(4.5) 0 ≤ α•(x, µ, ν) ≤M (1 + |x|+m1(µ) +m1(ν))

for all x ∈ Rd and (µ, ν) ∈M+(Rd)×M+(Rd);
• for all R > 0, there exist a constant LR such that, for • = F,L,

|α•(x1, µ1, ν1)−α•(x2, µ2, ν2)|
≤ LR (|x1 − x2|+ ‖µ1 − µ2‖BL + ‖ν1 − ν2‖BL)

(4.6)

for all x1, x2 ∈ BR and (µ1, ν1), (µ2, ν2) ∈M+(BR)×M+(BR).
For Ψ ∈ P1(Rd × P1({F,L})), define µFΨ and µLΨ as in (4.2). Then, the functions

(4.7) αF (x,Ψ) := αF (x, µFΨ, µ
L
Ψ) and αL(x,Ψ) := αL(x, µFΨ, µ

L
Ψ)

satisfy Assumptions (α0)–(α2) in Proposition 4.1.

Proof. The result follows from (4.5)–(4.6) from the inequalities in (4.3).

The main result of this section is an existence and uniqueness result for the system
of equations considered in [2], which we are going to deduce from Theorem 3.5. By
doing this, we will extend the result in [2, Proposition 3.2] to the case were the
transition rates αF , αL are allowed to explicitly depend on x, which was not considered
there. The equations we consider are, namely,
(4.8){

∂tµ
F
t = −div

(
(KF ? µFt +KL ? µLt )µFt

)
− αF (x, µFt , µ

L
t )µFt + αL(x, µFt , µ

L
t )µLt ,

∂tµ
L
t = −div

(
(KF ? µFt +KL ? µLt )µLt

)
+ αF (x, µFt , µ

L
t )µFt − αL(x, µFt , µ

L
t )µLt

to be solved by two positive Borel measures µF and µL attaining, for t = 0, an initial
datum µ̄F , and µ̄L, respectively, which we assume to have compact support in Rd. As
is customary in these kinds of models, we will assume that the initial total population
is normalized to 1, i.e.,

µ̄F (Rd) + µ̄L(Rd) = 1 .

Remark 4.6. The velocity field in (4.8) corresponds to the choice KFF = KFL =
KF and KLF = KLL = KL in (4.4). The key observation is that, in this case, the
field vΨ(x, λ) shows no explicit dependence on λ and is simply given by

(4.9) vΨ(x) = KF ? µFΨ +KL ? µLΨ .

This will eventually allow us to decouple (3.28) into the simpler system (4.8). Such
an analysis is not possible if more than two different kernels are considered in (4.4).
In that general case, the mean-field limit of the associated particle system must be
formulated in terms of a solution Λ to (3.28), defined in the product space Rd ×
P1({F,L}).

To proceed to the announced result, we need to recall the definition of a solution
to (4.8) which has been considered in [2]. Below, the shortcut Mc(Rd) is used to
denote a positive Borel measure having compact support in Rd.

Definition 4.7 (solution of system (4.8)). Let (µF , µL) ∈ Mc(Rd) ×Mc(Rd)
be given, as well as µF , µL : [0, T ] →Mc(Rd). We say that the couple (µFt , µ

L
t ) is a

solution of system (4.8) with initial datum (µF , µL) when
(i) µF0 = µF and µL0 = µL;
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(ii) for each i ∈ {F,L}, the function t → µit is continuous with respect to the
topology of weak convergence of measures;

(iii) there exists RT > 0 such that
⋃
t∈[0,T ] supp(µit) ⊆ BRT

for every i ∈ {F,L};
(iv) for every ϕ ∈ C1

c (Rd) and i ∈ {F,L} it holds that

d

dt

∫
Rd

ϕ(x)dµit(x) =

∫
Rd

∇ϕ(x) ·

 ∑
j∈{F,L}

(Kj ? µjt )(x)

dµit(x)

−
∫
Rd

ϕ(x)αi(x, µ
F
t , µ

L
t )dµit(x)

+

∫
Rd

ϕ(x)α¬i(x, µ
F
t , µ

L
t )dµ¬it (x)

for almost every t ∈ [0, T ] with

¬i :=

{
L if i = F,

F if i = L.

We can now state the existence and uniqueness result for system (4.8).

Theorem 4.8. Let U = {F,L}. Consider two functions αF , αL : Rd×M+(Rd)×
M+(Rd)→ [0,+∞) satisfying (4.5)–(4.6) and two kernels KF , KL : Rd → Rd with

|KF (x)|+ |KL(x)| ≤M(1 + |x|) for all x ∈ Rd ,
|KF (x1)−KF (x2)|+ |KL(x1)−KL(x2)| ≤ LR |x1 − x2| for all x1, x2 ∈ BR .

(4.10)

For Ψ ∈ P1(Rd × P1({F,L})), define µFΨ and µLΨ as in (4.2). For x ∈ Rd and Ψ ∈
P1(Rd × P1({F,L})), let vΨ(x) and Q(x,Ψ) be given by (4.9) and (4.1) respectively,
and, for TΨ(y) = Q∗(x,Ψ)λ, consider the corresponding velocity field bΨ as in (3.1).

Then, if Λ ∈ C([0, T ];P1(Rd × P1({F,L}),W1) is the unique solution to (3.28)
starting from Λ ∈ Pc(Rd × P1({F,L})), the measures µFt := µFΛt

and µLt := µLΛt
are

the unique solutions to (4.8) with initial data µ̄F = µF
Λ̄

and µ̄L = µL
Λ̄

.

Proof. We start by observing that, under our assumptions on αF , αL, KF , and
KL, the previous results of this section ensure that the field bΨ complies with the
requirements of Theorem 3.5, hence existence and uniqueness of the solution Λ to
(3.28) starting from Λ̄ is guaranteed. We split the proof into two parts, proving first
existence and then uniqueness of the solutions.

Existence. For Λ as above, define µFt := µFΛt
and µLt := µLΛt

. By definition and
Lemma 3.13, conditions (i) and (iii) in Definition 4.7 are satisfied. The continuity
property (ii) is instead a direct consequence of (4.3) and the continuity of Λ as a
function of the time. We therefore only have to check (iv) in Definition 4.7. We
perform the required computation only for µFt , since the one for µLt follows along
similar lines. We take ϕ ∈ C1

c (Rd) and we define, for all (x, λ) ∈ Rd ×F({F,L}), the
test function

φ(x, λ) = λFϕ(x) .

We notice that the (Rd)∗-component of the Fréchet differential of φ at (x, λ) is given
by λFDϕ(x), while the action of the other component is independent of λ by linearity
and is given by

ξ 7→ ϕ(x)ξF .
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1450 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

We apply the definition (3.29) of Eulerian solution to the above test function φ, which
does not depend on t, and we get

d

dt

∫
Rd×P1({F,L})

λFϕ(x) dΛt(x, λ) =

∫
Rd×P1({F,L})

λF∇ϕ(x) · vΛt(x) dΛt(x, λ)

+

∫
Rd×P1({F,L})

ϕ(x) (Q∗(x,Λt)λ)F dΛt(x, λ)

(4.11)

for all t ∈ [0, T ]. We observe now that (4.2a)–(4.2b) are equivalent to the duality
relationships ∫

Rd

ζ(x) dµFΨ(x) =

∫
Rd×P1({F,L})

λF ζ(x) dΨ(x, λ) ,∫
Rd

ζ(x) dµLΨ(x) =

∫
Rd×P1({F,L})

(1− λF )ζ(x) dΨ(x, λ) ,

(4.12)

for all ζ ∈ Cb(Rd). Applying the first one to the functions ϕ(x) and ∇ϕ(x) · vΛt
(x) ∈

Cb(Rd) gives4 ∫
Rd×P1({F,L})

λFϕ(x) dΛt(x, λ) =

∫
Rd

ϕ(x) dµFt (x) ,∫
Rd×P1({F,L})

λF∇ϕ(x) · vΛt
(x) dΛt(x, λ) =

∫
Rd

∇ϕ(x) · vΛt
(x) dµFt (x) .

(4.13)

With Proposition 4.1, (4.13), and applying (4.12) to the functions−ϕ(x)αF (x, µFt , µ
L
t )

and ϕ(x)αL(x, µFt , µ
L
t ), respectively, we get∫

Rd×P1({F,L})
ϕ(x) (Q∗(x,Λt)λ)F dΛt(x, λ)

= −
∫
Rd

ϕ(x)αF (x, µFt , µ
L
t )dµFt (x) +

∫
Rd

ϕ(x)αL(x, µFt , µ
L
t )dµLt (x) .

Hence, also using (4.13) and the explicit expression (4.9) of the field vΛt(x), (4.11) is
equivalent to equality (iv) in Definition 4.7 for i = F , as required. This proves the
existence of a solution to (4.8).

Uniqueness. The proof is divided into two steps.
Uniqueness—Step 1: Continuous dependence for an auxiliary equation. For a

given Z > 0 we fix the class of Carathédory vector fields

VZ := {v ∈ L∞([0, T ],Lip(Rd)) : ‖v‖L∞([0,T ],Lip(Rd)) ≤ Z}

and we denote as usual by Yv(t, s, ·) the associated transition maps, which satisfy the
equalities

(4.14) Yv(s, s, x) = x,
d

dt
Yv(t, s, x) = vt(Yv(t, s, x))

4Here, it is crucial that the velocity field vΛt (x) only depends on x.
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for every 0 ≤ s ≤ t ≤ T and x ∈ Rd. From these, we can deduce the Grönwall-type
estimates

|Yv(t, s, x1)−Yv(t, s, x2)| ≤ eZ(t−s)|x1 − x2|,
|Yv(t, s, x)−Yw(t, s, x)| ≤ (t− s)eZ(t−s) sup

s∈[0,t]

‖ws − vs‖Cb(Rd)
(4.15)

for every 0 ≤ s ≤ t ≤ T , x, x1, x2 ∈ Rd and v, w ∈ VZ . For v ∈ VZ and a given
narrowly continuous family ξt of signed measures satisfying |ξt| ≤ R for all t ∈ [0, T ],
we consider the inhomogeneous equation

(4.16) ∂tµt + div(vtµt) = ξt .

We claim that, for a given initial datum µ̄ ∈ M(Rd), the unique solution of (4.16)
starting from µ̄ is given by the variation of constants formula

(4.17) µt = Yv(t, 0, ·)#µ̄+

∫ t

0

Yv(t, s, ·)#ξs ds .

A direct computation using (4.14) proves indeed that the above formula provides a
solution to (4.16), while uniqueness follows by taking the difference of two solutions
and using the comparison principle [7, Proposition 8.1.7] for the continuity equation.

Now, if σt is another narrowly continous family of signed measures, using (4.15)
for all test functions ϕ with |ϕ| ≤ 1 and Lip(ϕ) ≤ 1 we have∣∣∣∣∫ t

0

∫
Rd

ϕ(Yv(t, s, x))d(ξs − σs) ds

∣∣∣∣
≤
(∫ t

0

eZ(t−s)ds

)
sup
s∈[0,t]

‖ξs − σs‖BL ≤ t CT,Z sup
s∈[0,t]

‖ξs − σs‖BL .

With this, (4.15), and (4.17), we also deduce that, if ν solves (4.16) for another
velocity field w ∈ Vz, another narrowly continuous family σt with |σt| ≤ R, and the
same initial datum µ̄, the following estimate holds true:

(4.18) ‖µt − νt‖BL ≤ t Cµ̄,T,R,Z

(
sup
s∈[0,t]

‖ws − vs‖Cb(Rd) + sup
s∈[0,t]

‖ξs − σs‖BL

)
,

where the constant Cµ̄,T,R,Z is given by

Cµ̄,T,R,Z := |µ̄|eZT + (1 +RT )CT,Z .

Uniqueness—Step 2: Conclusion. Consider two solutions (µFt , µ
L
t ) and (νFt , ν

L
t )

of (4.8) starting from the same initial datum (µ̄F , µ̄L). Observe that the equation
preserves the total mass, that is,

µFt (Rd) + µLt (Rd) = νFt (Rd) + νLt (Rd) = 1

for all t ∈ [0, T ]. This can be rewritten as

(4.19) |µFt |+ |µLt | = |νFt |+ |νLt | = 1 ,

since all the above measures are positive. Now, on the one hand, µFt solves (4.16)
with vt = KF ? µFt + KL ? µLt and ξt = −αF (·, µFt , µLt )µFt + αL(·, µFt , µLt )µLt . On
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1452 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

the other hand, νFt solves (4.16) with vt replaced by wt = KF ? νFt + KL ? νLt and
σt = −αF (·, νFt , νLt )νFt + αL(·, νFt , νLt )νLt in place of ξt. Since µFt , µLt , νFt , and νLt
have compact support contained in a fixed ball BRT

by Definition 4.7, we can assume
(up to multiplying vt and wt by a suitable cutoff function not affecting (4.16)) that
v belongs to VZ for a constant Z only depending on T , RT , and the constant M in
(4.10). Using (4.5), (4.6), and (4.19), we also get the estimates

|ξt| ≤ 2M(1 + 2RT ), |σt| ≤ 2M(1 + 2RT ),

‖σt − ξt‖BL ≤ (M(1 + 2RT ) + 2LRT
)
(
‖µFt − νFt ‖BL + ‖µLt − νLt ‖BL

)
.

In a similar way, using (4.10) we obtain

‖vt − wt‖Cb(Rd) ≤ (M(1 + 2RT ) + L2RT
)
(
‖µFt − νFt ‖BL + ‖µLt − νLt ‖BL

)
.

Combining the previous inequalities with (4.18) and (4.19), we get that there exists
a constant C, only depending on T , RT , and M , such that

‖µFτ − νFτ ‖BL ≤ τ C

(
sup
s∈[0,τ ]

‖µFτ − νFτ ‖BL + sup
s∈[0,τ ]

‖µLτ − νLτ ‖BL

)
for all 0 ≤ τ ≤ t ≤ T . A similar estimate also holds for ‖µLτ − νLτ ‖BL. Taking the
supremum in the left-hand side and summing up the resulting inequalities we obtain

sup
s∈[0,t]

‖µFt − νFt ‖BL + sup
s∈[0,t]

‖µLt − νLt ‖BL

≤ 2t C

(
sup
s∈[0,t]

‖µFt − νFt ‖BL + sup
s∈[0,t]

‖µLt − νLt ‖BL

)

for all 0 ≤ t ≤ T . This implies that µFt = νFt , as well as µLt = νLt for all 0 ≤ t ≤ 1
2C .

As C only depends on T , RT , and M , iterating the argument a finite number of times
yields uniqueness on all [0, T ].

Remark 4.9. For all choices of the inital data µ̄F and µ̄L whose sum is a proba-
bility measure µ̄ with compact support, we can construct Λ̄ ∈ Pc(Y ) so that µF

Λ̄
= µ̄F

and µL
Λ̄

= µ̄L. This can be done, for instance, as follows: if gF (x) is the Radon–

Nikodym derivative of µ̄F with respect to µ̄, we can define, for µ̄-a.e. x ∈ Rd, the
measure λx ∈ P1({F,L}) via λx := gF (x)δF + (1 − gF (x))δL. Then, the measure Λ̄,
defined by duality through∫

Y

φ(y) dΛ̄ :=

∫
Rd

φ(x, λx) dµ̄(x)

for all φ ∈ Cb(Y ), satisfies the claim. Hence, Theorem 4.8 is a full existence result for
system (4.8).

To conclude the section, we observe that combining the above remark with Theo-
rems 3.5 and 4.8 we obtain a mean-field derivation of system (4.8) which extends the
results of [2, section 4].

5. Further applications. In this section we present two situations which fit in
the theory presented in section 3 and are suitable to describe possible applications.
In subsection 5.1 we present the generalization of the results in section 4 to the case
of a discrete and finite label space U ; in subsection 5.2 we focus on a continuum of
labels and compare it with the results of [5].
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5.1. Discrete and finite spaces of labels U . In this case, we will identify the
discrete space of labels U = {u1, . . . , uH} with the set of the indices of the labels, so
that our model will be U = {1, . . . ,H}. We will endow U with the Euclidean distance
(restricted to U), namely,

(5.1) dist(h, k) = |h− k| for h, k ∈ U .

Then the space Lip(U) is an H-dimensional space spanned by the indicator functions
1h for h ∈ {1, . . . , N}. Consequently, the free space F(U) is the space of signed Borel
measures on U whose generic element ξ is characterized by the values ξh := ξ({h}).

Also in this section we will focus on transition operators which act linearly on
λ. Analogously to Proposition 4.1, we have the following characterization of the
operators Q satisfying assumptions (Q0)–(Q3).

Proposition 5.1. Let U = {1, . . . ,H} and TΨ : Y → F(U) be of the form
TΨ(y) = Q∗(x,Ψ)λ, for Q(x,Ψ) ∈ L(Lip(U); Lip(U)). Then TΨ satisfies (T0)–(T3)
if and only if there exist H2 functions αhk : Rd × P1(U)→ [0,+∞) such that

(ᾱ0) for every (x,Ψ) ∈ Rd × P1(Y ) and λ ∈ P1(U) it holds

(Q∗(x,Ψ)λ)h = −αhh(x,Ψ)λh +
∑
k 6=h

αkh(x,Ψ)λk for all h ∈ U

with

(5.2) αhh(x,Ψ) =
∑
k 6=h

αhk(x,Ψ) for all h ∈ U ;

(ᾱ1) for every (x,Ψ) ∈ Rd × P1(Y ), there exists MQ > 0 such that

0 ≤ αhk(x,Ψ) 6MQ
(
1 + |x|+m1(Ψ)

)
for all h, k ∈ U ;

(ᾱ2) for every R > 0 there exists LQ,R > 0 such that, for every (x1,Ψ1), (x2,Ψ2) ∈
BR × P(BYR ),

|αhk(x1,Ψ1)−αhk(x2,Ψ2)| 6 LQ,R
(
|x1−x2|+W1(Ψ1,Ψ2)

)
for h, k ∈ U .

Proof. The proof is analogous to that of Proposition 4.1.

We notice that a matrix representation of the operator Q analogous to that in
(4.1) holds:

(5.3) Q(x,Ψ) =


−α11(x,Ψ) α12(x,Ψ) · · · α1H(x,Ψ)
α21(x,Ψ) −α22(x,Ψ) · · · α2H(x,Ψ)

...
...

. . .
...

αH1(x,Ψ) αH2(x,Ψ) · · · −αHH(x,Ψ)

 ,

where, as a consequence of (5.2), the sum of the elements on each row must give zero.
In this discrete setting, the operator Q∗(x,Ψ) has a matrix representation given by
the transpose matrix of that representing Q(x,Ψ), so that

(5.4) Q∗(x,Ψ) =


−α11(x,Ψ) α21(x,Ψ) · · · αH1(x,Ψ)
α12(x,Ψ) −α22(x,Ψ) · · · αH2(x,Ψ)

...
...

. . .
...

α1H(x,Ψ) α2H(x,Ψ) · · · −αHH(x,Ψ)


and condition (5.2) implies that the sum of the elements on each column must vanish.

Definition 4.2 is adapted to the following definition.
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1454 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

Definition 5.2. Let Ψ ∈ P1(Rd×P1(U)) The distribution µhΨ of the agents with
label h ∈ U associated with Ψ is the positive Borel measure on Rd defined by

(5.5) µhΨ(B) :=

∫
B×P1(U)

λh dΨ(x, λ)

for each Borel set B ⊂ Rd.

Also in this case, upon choosing suitable interaction kernels, the measures µhΨ
defined in (5.5) can be used to construct velocity fields (of the type in (4.4)) vΨ

satisfying (v1)–(v3).

Proposition 5.3. Let U = {1, . . . ,H}. For Ψ ∈ P1(Rd × P1(U)), consider the
velocity field

(5.6) vΨ(x, λ) :=
∑
h,k∈U

λk
(
Khk ? µhΨ

)
,

where µhΨ, for h ∈ U , are defined in (5.5) and the interaction kernels Khk : Rd → Rd,
for h, k ∈ U , satisfy

|Khk(x)| ≤M(1 + |x|) for all x ∈ Rd ,
|Khk(x1)−Khk(x2)| ≤ LR |x1 − x2| for all x1, x2 ∈ BR .

Then, vΨ(x, λ) satisfies (v1)–(v3).

Proof. The result follows by a direct computation.

Remark 4.4 applies in this case as well, so that the velocity field vΨ defined in (5.3)
can be interpreted as an average velocity of the system, weighted by the probability
that a particle at x has of having label k.

Proposition 4.5 concerning transition rates αh’s depending on the µhΨ’s and ex-
plicitly on the space variable x is generalized to the following.

Proposition 5.4. Let U = {1, . . . ,H} and consider H2 functions αhk : Rd ×
(M+(Rd))H → [0,+∞) for h, k ∈ U , satisfying the following assumptions:

• there exists a constant M such that, for all h, k ∈ U ,

(5.7) 0 6 αhk(x, µ1, . . . , µH) 6M

(
1 + |x|+

∑
l∈U

m1(µl)

)

for all x ∈ Rd and (µ1, . . . , µH) ∈
(
M+(Rd)

)H
;

• for all R > 0, there exist a constant LR such that, for all h, k ∈ U ,

|αhk(x1, µ
1
1, . . . , µ

H
1 )−αhk(x2, µ

1
2, . . . , µ

H
2 )|

≤ LR

(
|x1 − x2|+

∑
l∈U

‖µl1 − µl2‖BL

)
(5.8)

for all x1, x2 ∈ BR, and (µ1
1, . . . , µ

H
1 ), (µ1

2, . . . , µ
H
2 ) ∈ (M+(BR))H .

For Ψ ∈ P1(Rd × P1(U)), define µhΨ as in (5.5), for h ∈ U . Then, the functions

(5.9) αhk(x,Ψ) := αhk(x, µ1
Ψ, . . . , µ

H
Ψ ) for h, k ∈ U

satisfy assumptions (ᾱ0)–(ᾱ2) in Proposition 5.1.
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Proof. The result follows from (5.7) and (5.8) by means of the following inequal-
ities: ∑

l∈U

m1(µlΨ) ≤ m1(Ψ) for all Ψ ∈ P1(Rd × P1(U)),

‖µhΨ1
− µhΨ2

‖BL ≤ 2W1(Ψ1,Ψ2) for all Ψ1,Ψ2 ∈ P1(Rd × P1(U)), h ∈ U,
(5.10)

which are a straightforward generalization of those in (4.3).

Theorem 4.8 can be generalized to the case of a finite discrete space of labels
U = {1, . . . ,H}. To obtain system (4.8) in the current context, we have to assume
that the interaction kernels Khk : Rd → Rd for h, k ∈ U introduced in Proposition 5.3
are such that

(5.11) Khk = Kh for all h ∈ U

for H kernels Kh : Rd → Rd. In this case, analogously to the case with two labels,
the velocity field vΨ defined in (5.6) does not depend on λ anymore and has the form

(5.12) vΨ(x) =
∑
h∈U

Kh ? µhΨ,

where the µhΨ’s are defined in (5.5). Then, system (4.8) becomes a set of H equations
(5.13)

∂tµ
h
t = −div

((∑
k∈U

Kk ? µkt

)
µht

)
−αhh(x, µ1

t , . . . , µ
H
t )µht +

∑
k 6=h

αkh(x, µ1
t , . . . , µ

H
t )µkt ,

to be solved for Borel measures µh such that, at the initial time t = 0, µh0 = µ̄h for
h ∈ U , where µ̄1, . . . , µ̄H are given Borel measures satisfying

(5.14)
∑
h∈U

µ̄h(Rd) = 1.

We give the following definition.

Definition 5.5 (solution to system (5.13)). Let (µ̄1, . . . , µ̄H) ∈ (Mc(Rd))H be
given such that (5.14) is satisfied, as well as µ1, . . . , µH : [0, T ] → Mc(Rd). We say
that (µ1

t , . . . , µ
H
t ) is a solution to system (5.13) with initial datum (µ̄1, . . . , µ̄H) when

(i) µh0 = µ̄h for each h ∈ U ;
(ii) for each h ∈ U , the function t→ µht is continuous with respect to the topology

of weak convergence of measures;
(iii) there exists RT > 0 such that

⋃
t∈[0,T ] supp(µht ) ⊆ BRT

for every h ∈ U ;

(iv) for every ϕ ∈ C1
c (Rd) and h ∈ U it holds that

d

dt

∫
Rd

ϕ(x) dµht (x) =

∫
Rd

∇ϕ(x) ·

(∑
k∈U

(Kk ? µkt )(x)

)
dµht (x)

−
∫
Rd

ϕ(x)αhh(x, µ1
t , . . . , µ

H
t ) dµht (x)

+

∫
Rd

ϕ(x)
∑
k 6=h

αkh(x, µ1
t , . . . , µ

H
t ) dµkt (x)

for almost every t ∈ [0, T ].
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We are now in a position to prove the most important result of this section,
namely, how a solution to (5.13) follows from Theorem 3.5.

Theorem 5.6. Let U = {1, . . . ,H}. Consider functions αhk : Rd×(M+(Rd))H →
[0,+∞) satisfying (5.7) and (5.8) and H kernels Kh : Rd → Rd with∑

h∈U

|Kh(x)| ≤M(1 + |x|) for all x ∈ Rd,∑
h∈U

|Kh(x1)−Kh(x2)| ≤ LR |x1 − x2| for all x1, x2 ∈ BR .

For Ψ ∈ P1(Rd × P1(U)), define the µhΨ’s as in (5.5). For x ∈ Rd and Ψ ∈
P1(Rd × P1(U)), let vΨ(x) and Q(x,Ψ) be given by (5.12) and (5.3), respectively,
and, for TΨ(y) = Q∗(x,Ψ)λ, consider the corresponding velocity field bΨ as in (3.1).

Then, if Λ ∈ C([0, T ];P1(Rd×P1(U),W1)) is the unique solution to (3.28) start-
ing from Λ ∈ Pc(Rd × P1(U)), the measures µht := µhΛt

for h ∈ U , are the unique

solutions to (5.13) with initial data µ̄h = µh
Λ̄

, for h ∈ U .

Proof. The proof is analogous to that of Theorem 4.8.

It is useful to recall the notion of Q-matrix from the literature of Markov chains
(see, e.g., [37, Chapter 2]). Let Q be an H × H matrix; the element qhk represents
the transition rate from state h to k. Such a matrix is called a Q-matrix if satisfies
the following conditions:

(q1) qhk > 0, for all h, k ∈ U, h 6= k;
(q2)

∑
k∈U qhk = 0 for all h ∈ U .

It is customary, in the literature on Markov chains, to complement these conditions
by

(q0) 0 6 −qhh < +∞ for all h ∈ U ,
even though condition (q0) is a consequence of (q1) and (q2).

Remark 5.7. It is easy to see that the matrix in (5.3), representing the operator
Q(x,Ψ) for all (x,Ψ) ∈ Rd×P1(Y ) is a Q-matrix; indeed, condition (5.2) is equivalent
to (q2) and (ᾱ1) is equivalent to (q1).

For (x,Ψ) ∈ Rd × P1(Rd × P1(U)), and for fixed initial conditions (x0, λ0) ∈ Y ,
the dynamics described by the vector field bΨ defined in (3.1) is

(5.15)

(
ẋ

λ̇

)
= bΨ(x, λ) =

(
vΨ(x)
Q∗(x,Ψ)λ

)
,

(
x
λ

)
(0) =

(
x0

λ0

)
.

Concerning the second equation, λ̇ = Q∗(x,Ψ)λ, this is a linear equation in the space
of measures, which can be easily integrated to give

(5.16) λ(t) = λt = St(x,Ψ)λ0 with St(x,Ψ) := etQ(x,Ψ).

A classical result in the theory of Markov chains, [37, Theorem 2.1.2] grants that
the fact that Q(x,Ψ) satisfies (q1)–(q2) is equivalent to the matrix St(x,Ψ) being a
stochastic matrix for all times t > 0, namely, a matrix S ∈ RH×H that satisfies

(s1) 0 6 Skh < +∞ for all h, k ∈ U ;
(s2)

∑
h∈U Skh = 1 for all k ∈ U .

We remark that the explicit solution given by (5.16) is available only for fixed (x,Ψ),
so that the matrix (5.3) is constant and its exponential can be computed. This would
restrict the dynamics to constant solutions x(t) = x0 for all t and to a constant
distribution Ψ ∈ P(Y ).
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5.2. A continuum of labels. We now turn to the case in which U is a com-
pact metric space, as in the general theory developed in section 3, and that it is a
continuum. We will shortly present some possible expressions of the velocity field bΨ
defined in (3.1) in which both components feature a two-player game that determines
the evolution.

Let ȳ ∈ Y and let K : Y ×Y → Rd×F(U) be an interaction kernel such that, for
Ψ ∈ P(Y ),

(5.17) bΨ(y) =

∫
Y

K(y, y′) dΨ(y′).

Our aim is to study system (3.30) where the evolution is driven by the field bΨ
defined in (5.17). Recalling (3.1), let Kx : Y × Y → Rd and Kλ : Y × Y → F(U) be
the components of K. Then (5.17) gives

(5.18) vΨ(y) =

∫
Y

Kx(y, y′) dΨ(y′), and TΨ(y) =

∫
Y

Kλ(y, y′) dΨ(y′).

We furthermore assume that each of Kx and Kλ accounts for an averaging over all
the strategies in U . To this aim, let V : (Rd × U)2 → Rd be such that

(5.19) Kx(y, y′) =

∫
U

∫
U

V (x, u, x′, u′) dλ′(u′)dλ(u).

The interpretation of the field V is the following: the quantity

V (x, u, x′, u′) ∈ Rd

gives the direction that the payer at x should follow if it has label/strategy u when
playing a game against a player at x′ with label/strategy u′. Keeping the structure
(3.30), (5.18), and (5.19) in mind, the full law of motion for the variable x is given by

(5.20) ẋ = vΨ(y) =

∫
U

∫
Y

∫
U

V (x, u, x′, u′) dλ′(u′)dΨ(x′, λ′)dλ(u),

which can be interpreted in the following way: the player at x with label/strategy u
plays a game with all the other players at x′ with their labels/strategies u′ and the
velocity ẋt is determined by averaging over all the possible strategies of the opponent
(the integral with respect to dλ′(u′)), over all the possible distributions of opponents
with their distributions of strategies (the integral with respect to dΛ(x′, λ′)), and
finally over all the possible strategies that x have at their disposal (the integral with
respect to dλ(u)).

We present two difference choices of TΨ complying with our set of assumptions
(T0)–(T3). The first one will be a natural generalization of the operators considered
in the discrete setting of section 4, while the second one will be exactly the transition
operators considered in [5] for the replicator equation.

In the former case, for (x,Ψ) ∈ Rd × P1(U) define the linear operator Q(x,Ψ):
Lip(U)→ Lip(U) by

(5.21) (Q(x,Ψ)f)(u) :=

∫
Y

∫
U

J(x, u, x′, u′)f(u′) dλ′(u′)dΨ(x′, λ′)−g(x,Ψ)(u)f(u),

and set TΨ(y) = Q∗(x,Ψ)λ. In (5.21), J : (Rd×U)2 → R, and the function g(x,Ψ) ∈
C(U) can be interpreted as a global departure rate from u.
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In the latter case, define

TΨ(y) :=

(∫
Y

∫
U

J(x, u, x′, u′) dλ′(u′)dΨ(x′, λ′)

−
∫
U

∫
Y

∫
U

J(x,w, x′, u′) dλ′(u′)dΨ(x′, λ′)dλ(w)

)
λ,

(5.22)

which, up to the change in notation adapted to our purposes, is exactly the continuous
analogue of the second equation in (1.2) considered in [5].

In the following proposition, we summarize the assumptions on V , J , and g, so
that (v1)–(v3) and (T0)–(T3) are satisfied.

Proposition 5.8. Let Ψ ∈ P1(Y ), let V : (Rd × U)2 → Rd, J : (Rd × U)2 → R,
and g(·,Ψ) ∈ C(U) be such that

(V1) V is locally Lipschitz with respect to all of its variables;
(V2) V is sublinear in the spatial variables, namely, there exists CV > 0 such that

|V (x, u, x′, u′)| 6 CV (1 + |x|+ |x′|) for all (x, u), (x′u′) ∈ (Rd × U)2;

(J1) J is locally Lipschitz with respect to all of its variables;
(J2) J is sublinear in the spatial variables, namely, there exists CJ > 0 such that

|J(x, u, x′, u′)| 6 CJ(1 + |x|+ |x′|) for all (x, u), (x′u′) ∈ (Rd × U)2;

(g) for (x,Ψ) ∈ Rd × P1(Y ),

(5.23) g(x,Ψ)(u) =

∫
Y

∫
U

J(x, u, x′, u′) dλ′(u′)dΨ(x′, λ′).

Then
(i) the field vΨ : Y → Rd given by(5.18) via (5.19) satisfies (v1)–(v3);
(ii) the operator TΨ : Y → F(U) given by (5.21) satisfies (T0)–(T3) and is repre-

sented as in (5.18) by means of Kλ : Y ×Y → F(U) such that, for f ∈ Lip(U),

(5.24) 〈Kλ(y, y′), f〉 =

∫
U

∫
U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dλ(u);

(iii) the operator TΨ : Y → F(U) given by (5.22) satisfies (T0)–(T3) and is repre-
sented as in (5.18), by means of Kλ : Y × Y → F(U) given by
(5.25)

Kλ(y, y′) =

(∫
U

J(x, ·, x′, u′) dλ′(u′)−
∫
U×U

J(x,w, x′, u′) dλ′(u′)dλ(w)

)
λ.

Proof. (i) Let R > 0 be fixed and let LV,R be the Lipschitz constant of V on (BR×
U)2. Properties (v1)–(v2) are obtained from (V1) by standard estimates keeping the
definition of the BL norm and the structure (5.18)–(5.19) into account; the constant
Lv,R of (v1)–(v2) is determined by LV,R and diamU . Property (v3) follows from (V1)
and (V2) and the constant Mv of (v3) is determined by CV .

(ii) Analogously to (i), let LJ,R be the Lipschitz constant of J on (BR×U)2. Prop-
erty (T2) is obtained from (J1) by standard estimates keeping the definition of the BL
norm and the structure (5.21) into account; the constant LT ,R of (T2) is determined
by LJ,R and diamU . Property (T1) is obtained also using (J2), and the constant
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MT of (T1) is determined by CJ . Property (T3) follows from the boundedness of
J(·, ·, x′, u′) and g(·,Ψ) on BR × U and U , respectively.

Finally, a simple computation shows that (g) and (T0) are equivalent, so that,
using (5.23), we obtain the following expression for (5.21):

(5.26) (Q(x,Ψ)f)(u) =

∫
Y

∫
U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dΨ(x′, λ′),

for f ∈ Lip(U). Recalling, from (3.1) and (3.30), that λ̇ = Q∗(x,Ψ)λ, for f ∈ Lip(U)
we have, using (5.18),

〈λ̇, f〉 = 〈Q∗(x,Ψ)λ, f〉 = 〈λ,Q(x,Ψ)f〉

=

〈
λ,

∫
Y

∫
U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dΨ(x′, λ′)

〉
=

∫
U

∫
Y

∫
U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dΨ(x′, λ′)dλ(u)

=

∫
Y

[ ∫
U

∫
U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dλ(u)

]
dΨ(x′, λ′),

which is (5.24).
(iii) A direct computation shows that TΨ is of the form (5.18) for Kλ given by

(5.25). For fixed y′ ∈ Y we now have

〈Kλ(·, y′), 1〉F(U),Lip(U)

=

∫
U×U

J(x, u, x′, u′) dλ′(u′)dλ(u)−
∫
U×U

J(x,w, x′, u′) dλ′(u′)dλ(w) = 0 ,

which clearly implies (T0). Arguing as in [5, Proposition 3.5] we can prove that, given
R > 0, for θ sufficiently small, one has

λ+ θKλ(y, y′) ≥ 0

whenever y = (x, λ) and y′ = (x, λ′) ∈ BYR , which implies (T3). Property (T1)
can be deduced from (J2), similarly to the derivation in (ii). (T2) is equivalent
to Lipschitz estimates on J which can be deduced, again, arguing exactly as in [5,
Proposition 3.5].

Remark 5.9. Let us assume that the hypotheses of Proposition 5.8 hold; the ODE
in (3.30), written componentwise, reads

(5.27)

(
ẋ

λ̇

)
=

(
vΨ(y)
TΨ(y)

)

for y = (x, λ) ∈ Y = Rd × P(U) and Ψ ∈ P1(Y ).
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A comparison with [5] is in order. In [5, equations (1.3), (1.4), and (1.8)] the
ODE studied is (keeping the notations of [5])

(5.28)

(
ẋ
σ̇

)
=

(
a(y)

∆Σ,yσ

)
,

where y = (x, σ) ∈ C := Rd × P(U) and Σ ∈ P1(C). The right-hand sides are

a(y) =

∫
U

e(x, u) dσ(u),

∆Σ,yσ =

(∫
C

∫
U

J(x, u, x′, u′) dσ′(u′)dΣ(x′, σ′)

−
∫
U

∫
C

∫
U

J(x,w, x′, u′) dσ′(u′)dΣ(x′, σ′)dσ(w)

)
σ,

(5.29)

where e : Rd×U → Rd and J : (Rd×U)2 → R. The equation for σ in (5.28) is known
in the literature of evolutionary games as the replicator equation (see, e.g., [30]).

We notice that the theory developed in section 3 includes the case in (5.29), but
it also allows us to deal with a broader class of velocity fields that includes agent
interaction. Indeed, the velocity field a : C → Rd in (5.29) is linear in the mixed
strategy σ and depends only on the position x of the agent; it depends neither on
the global distribution Σ of the system nor on any interaction between the agents.
The velocity field vΨ : Y → Rd in (5.20), instead, additionally takes into account the
global distribution Ψ of the system as well as the interaction between players through
the kernel V .
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