
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Input-dependent edge-cloud mapping of recurrent neural networks inference / Jahier Pagliari, D.; Chiaro, R.; Chen, Y.;
Vinco, S.; Macii, E.; Poncino, M.. - ELETTRONICO. - 2020:(2020), pp. 1-6. (Intervento presentato al  convegno 57th
ACM/IEEE Design Automation Conference, DAC 2020 tenutosi a usa nel 2020) [10.1109/DAC18072.2020.9218595].

Original

Input-dependent edge-cloud mapping of recurrent neural networks inference

Publisher:

Published
DOI:10.1109/DAC18072.2020.9218595

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2850700 since: 2020-11-09T11:54:15Z

Institute of Electrical and Electronics Engineers Inc.



Input-Dependent Edge-Cloud Mapping of
Recurrent Neural Networks Inference

Daniele Jahier Pagliari∗, Roberta Chiaro∗, Yukai Chen∗, Sara Vinco∗, Enrico Macii† and Massimo Poncino∗
∗Department of Control and Computer Engineering, †Interuniversity Department of Regional and Urban Studies and Planning

Politecnico di Torino, Turin, Italy
Email: firstname.lastname@polito.it

Abstract—Given the computational complexity of Recurrent
Neural Networks (RNNs) inference, IoT and mobile devices
typically offload this task to the cloud. However, the execution
time and energy consumption of RNN inference strongly depends
on the length of the processed input. Therefore, considering also
communication costs, it may be more convenient to process short
input sequences locally and only offload long ones to the cloud. In
this paper, we propose a low-overhead runtime tool that performs
this choice automatically. Results based on real edge and cloud
devices show that our method is able to simultaneously reduce
the total execution time and energy consumption of the system
compared to solutions that run RNN inference fully locally or
fully in the cloud.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) are a type of Deep
Neural Network (DNN) that has become state-of-the-art for
advanced sequence analysis tasks, e.g. speech recognition,
neural machine translation, sentiment analysis, etc [1]. The
major leap in accuracy provided by these networks comes at
the cost of high computational complexity for training and
inference [2]. Currently, the standard approach is to run both
tasks in cloud servers equipped with GPUs and multi-core
CPUs. However, while training is often a one-time task and
can therefore be left in the cloud, several benefits in terms
of responsiveness, energy efficiency and security could derive
from executing inference (fully or partially) in edge nodes,
such as mobile or IoT devices [2]–[14].

Many researchers have proposed low-cost, fast and energy-
efficient hardware accelerators that enable the complete exe-
cution of DNN inference at the edge [2]–[7]. While initially
focusing mostly on Convolutional Neural Networks (CNNs),
research on DNN acceleration has recently started to consider
also RNNs [6], [7]. However, most mobile and IoT systems
cannot afford dedicated inference hardware and must rely on
general purpose embedded CPUs. With these devices, running
the entire inference at the edge might be sub-optimal or even
unfeasible due to performance and energy limitations [14].
Indeed, researchers have shown that, in these cases, the energy-
and latency-optimal solution is often obtained splitting the
computation between the edge node and the cloud [12]–
[15]. By performing part of the inference locally and the
rest remotely, the best compromise can be found between the
time and energy consumed by the edge node’s computation

subsystem, and those consumed in transmitting intermediate
data to the cloud.

Existing methods for edge-cloud inference mapping perform
input independent design choices, i.e. the optimal selection
among edge and cloud processing is performed independently
of the considered input datum. However, recent research on
DNN inference has shown that input dependent optimizations,
both at the hardware and algorithm levels, can yield superior
energy, latency, and accuracy results [8]–[11]. The rationale
behind these approaches is that not all inputs are equally
difficult to process from a computational standpoint. This
is particularly true for RNNs, whose computational burden
strongly depends on the length of the input sequence [10].

In this work, we propose a framework that applies input
dependent optimizations to the problem of edge-cloud map-
ping of RNN inference. To the best of our knowledge, ours is
the first work addressing this problem for RNNs. Our method
decides at runtime whether to perform inference locally or
in the cloud, depending on the length of the processed input
sequence, and on the current status of the system (e.g. network
latency). Results based on real edge and cloud devices show
that our method can simultaneously reduce the total inference
time and energy consumption by up to 20-40% compared to
a fully local and a fully remote solution.

II. BACKGROUND AND RELATED WORK

A. Recurrent Neural Network Inference

RNNs differ from standard feed-forward deep neural net-
works (such as CNNs) because of the presence of feedback,
which allows them to process sequences of data and learn
temporal relationships among inputs.

Figure 1a shows a conceptual block diagram of one of the
most popular RNN variants, called Long Short Term Memory
(LSTM). When processing the i-th input of a sequence, the
green block (called cell) performs a fixed set of matrix-vector
multiplications and non-linear operations (hyperbolic tangent
and sigmoid function evaluations). This produces two outputs,
the cell state (ci) and the hidden state (hi), that are then fed-
back to the network at step i+1. Readers can refer to [1] for
more details on RNN/LSTMs, omitted here for sake of space.

In practice, when performing inference on an input sequence
of length N , the cell is unrolled (i.e. replicated) N times, as
shown in Figure 1b for N = 4. Each copy of the cell performs



the same operations and shares the same weight matrices,
learned during training. The final outputs (h4 and c4 in the
figure) encode a representation of the input sequence and are
typically fed to a classifier, such as a fully-connected NN.

x1 x2 x3

LSTM LSTM LSTM LSTM

x4

h0 h1 h2 h3 h4 

c0 c1 c2 c3 c4 
xi

LSTM
hi-1 

ci-1 

hi 

ci 

a) Conceptual LSTM b) Example of unroll for N = 4
Fig. 1. Example of LSTM unrolling.

Figure 1b suggests that the computational complexity for
inference in a RNN/LSTM grows linearly with N . Moreover,
although each LSTM block performs a highly-parallel matrix-
vector multiplication kernel, parallelism among different un-
rolled replicas is limited, as a given replica cannot start until
the outputs from the previous step are ready [6], [7]1.

Given these considerations, inference execution time in
RNNs can also be expected to grow linearly with respect
to input length. Moreover, as each replica performs exactly
the same operations, the power consumption of the hardware
performing inference can be reasonably assumed constant
throughout the process, especially for a single-task system (e.g.
a smart sensor): consequently, energy consumption should also
grow linearly with N . These dependencies will be confirmed
by the measurements performed in Section III-A and III-B,
and form the basis for our input-dependent optimization.

B. Methods for Collaborative Edge-Cloud Inference

Several papers have proposed approaches to split DNN
inference between edge and cloud for latency or energy
minimization (so-called collaborative inference). The work
in [12] proposes a 3-level hierarchical framework focusing
on applications that process data from multiple sources. In
this framework, smart sensors, intermediate edge gateways and
cloud servers each perform a partial inference step on their
locally available data, leveraging results from the previous
levels and forwarding theirs to the next levels. Thanks to this
hierarchy, the amount of data transmitted on the network is
reduced, positively impacting latency and energy consumption,
at the cost of a possible decrease in accuracy.

In [13] the authors present a similar approach, but rather
than splitting a task into multiple partial classifications, the
architecture of a single NN is modified so that the first layers
only process data from a single sensor, and can be executed
at the edge. Subsequent layers aggregate layer outputs from
multiple sensors and are executed in the cloud. This solution
simplifies the design of the NN with respect to [12], enabling
end-to-end training with standard back-propagation.

The authors of [14] focus on applications with a single data
source and propose to perform CNN-based inference at the
edge only up to a certain layer, and to complete it in the

1The same analysis also applies to most variations of this basic architecture
proposed in literature (e.g. bi-directional RNNs/LSTMs), and to different
kinds of cells (e.g. Gated Recurrent Units). Therefore, although the rest of
the paper focuses on LSTM networks, our solution also applies to other types
of RNNs, and we will use the terms RNN and LSTM interchangeably.

cloud. Thanks to the feature size compression of intermediate
layers, they show that this partial local processing may reduce
the total time/energy cost (including transmission), compared
to a fully local/remote inference. A runtime environment is
proposed to determine the optimal split-layer depending on
the network conditions and on the load of the cloud server.

In [15], the authors apply the same type of layer-wise
splitting for CNNs, but modify the network architecture to
make it more partitioning-friendly, adding a so-called bot-
tleneck layer. The first part of this layer, called reduction
unit, compresses its inputs (e.g. through JPEG), while the
following restoration unit decompresses them. At training
time, this compression/decompression is approximated by an
identity function, thus allowing standard back-propagation of
gradients. At inference time, reduction is performed at the
edge while restoration takes place in the cloud, allowing the
transmission of compressed data to reduce energy and latency.

All these works perform input independent design choices.
For example, the optimal split-layer in [14] is decided at
runtime, based on the current status of the system (e.g.
network speed, etc.) but independently from the considered
input datum. This is motivated by the substantial independence
on input values of the processing complexity in feed-forward
NNs. However, the analysis of Section II-A demonstrates that
RNNs require a completely different decision policy.

III. PROPOSED METHOD

A block-diagram of our framework is shown in Figure 2.
We propose to add a simple runtime (called mapping engine)
on the edge node, in charge of deciding whether to perform
a RNN inference on the node itself or in a cloud server. We
assume that both the edge node and the server maintain a local
copy of the same RNN model and of its trained weights, so
that they can both execute a complete inference when needed.
In general, the two devices can use different inference engines,
such as the light-weight ARM-NN for the edge node, and the
more flexible TensorFlow for the cloud.

Regression ModelsContextInput Sequence

Mapping Engine

Local Inference Engine (e.g. ARM-NN)

Edge Node Cloud Server

Remote Inference Engine (e.g. Tensorflow)

Network (e.g. 3G)

x1 x2

LSTM LSTM

x1 x2 x3

LSTM LSTM LSTM LSTM

x4

Fig. 2. Conceptual scheme of the proposed framework.

The mapping engine takes three inputs, i.e.:

• The input sequence to be processed by the RNN.
• A set of regression models to forecast the inference

execution time on the edge node and on the cloud server,
as well as the energy consumption of the edge node.



• Context information, such as the status of the network
link (e.g. 3/4G or WiFi) connecting edge and cloud.

Using this information, the mapping engine selects whether
to perform inference locally or on the cloud for that input, with
the goal of minimizing an objective function. Importantly, for
a given input, inference is always entirely executed either in
the edge node or in the cloud, and never partitioned between
the two devices. This is because, as explained below, input
data sizes for RNNs are typically much smaller than for CNNs,
hence the “data compression” benefit deriving from partitioned
inference (see Section II-B) would be minimal.

As in previous literature [14], [15], we consider the edge
node as the only target for energy minimization, and ne-
glect cloud consumption. However, contrary to most previous
works, we do not optimize either the total execution time of
the system (Ttot) or the energy consumption of the edge device
(Eedge) individually. Rather, we consider the more general
case of a combination of the two metrics, i.e. we search for:

min
D

(Ttot(D,N,C) + w · Eedge(D,N,C)) (1)

where D is the selected device (edge or cloud), N is the
input length, C is the context information and w is a user-
defined parameter. Evidently, w = 0 corresponds to pure
execution time minimization whereas w →∞ is pure energy
minimization. If both Ttot and Eedge are normalized (e.g. with
respect to the execution of a sentence of length N = 1 on the
edge device), w can be interpreted as the “importance” given
to energy with respect to time.

The main features of our framework are described in the
following sections.

A. Edge and Cloud Execution Time Modeling

The proposed runtime uses an estimate of edge and cloud
execution times in order to determine where to run the
inference. Such estimate can only be built by characterization,
as it is device and NN-dependent. In particular, based on the
analysis of Section II-A, we use two linear regression models
to approximate the dependency between the input length N
and the edge/cloud execution time.

Figure 3 shows the results of this characterization for
two different RNNs (detailed in Section IV) and for two
example devices. As an edge device (red dots and curves) we
consider an ARM Cortex A-53@1.2GHz, 1GB RAM, Linux
OS, whereas as a cloud device we use a NVIDIA Titan XP
GPU on a server-class platform, i.e. 32-thread Intel Xeon E5-
2630@2.40GHz, 128GB RAM, Linux OS. Each dot in the
figure represents the mean execution time over 1000 inferences
for a given input length. Shaded areas around the dots (hardly
visible for the cloud device) define the standard deviation of
the execution time, showing the low variability of the results.
Solid lines are the linear fits of the data, whose scores are
reported in the caption.

When inference is performed on the edge, the total execu-
tion time of the system is simply estimated as:

Ttot(D = edge,N,C) = Tedge(N) (2)

0 2 4 6 8 10 12 14 16 18
Input Length

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E[
. T

Lm
e 

[s
]

Edge
Cloud

Network latency 
(150ms)

(a) CoVe [16]

20 40 60
Input Length

0.02

0.04

0.06

0.08

E[
. T

Lm
e 

[s
]

Edge
Cloud

Network latency 
(50ms)

(b) IMDB [17]
Fig. 3. Execution time versus input length for two RNNs. Points and colored
areas represent means and standard deviation intervals over 1000 inferences.
Lines are linear regression fits. CoVe regression scores: edge MSE = 9.32 ·
10−6, R2 = 0.999, cloud MSE = 7.69 · 10−8, R2 = 0.991. IMDB
regression scores: edge MSE = 2.37 · 10−7, R2 = 0.999, cloud MSE =
4.25 · 10−9, R2 = 0.998.

where Tedge is the output of the (red) linear regression
model. Estimating cloud execution time is less straightforward,
as besides computation, communication also has an impact.
Therefore, total execution time can be modeled as:

Ttot(D = cloud,N,C) = Ttx(N,C) + Tcloud(N) (3)

where Ttx is the total communication time and Tcloud(N) is
the inference time on the cloud server. In turn:

Ttx(N,C) = Trt(C) +
S(N)

B(C)
(4)

where Trt is the round-trip network latency, S is the size
in bytes of the transmitted sequence and B is the network
bandwidth. RNN inputs are typically encoded with a few
Bytes per element, thus leading to S values in the order of
100s of Bytes [1]. Therefore, communication time tends to
be dominated by Trt [18]. As an example, assuming that 100
Bytes are transmitted on a 3G link with B = 1Mbps, the
fractional term in (4) becomes 0.8ms. Assuming a typical
value of Trt of 150ms [18], this is ≈200x larger than the
transmission time. Therefore, for most RNN applications,
Ttx will be bound by network latency, which is virtually
independent of the input size.

To visualize this effect, we offset the blue curves in Figure 3
by two different Trt values for the two RNNs. The slope of the
curve (measuring inference time as a function of input size)
is much smaller than for the edge device due to the higher
performance of the cloud platform, but the dependence is still
almost perfectly linear, as shown by the scores in caption.

Overall, Figure 3 serves as a motivation for the proposed
runtime, at least in the case of pure execution time optimiza-
tion, i.e. w = 0 in (1): indeed, for short input sequences (left
of the dashed black line in the two graphs) edge processing is
faster, whereas cloud offloading becomes preferable for longer
ones. The figure also shows that, depending on the target
RNN and dataset, inference execution times (y axes) and input
length ranges (x axes) may vary significantly, leading to very
different trade-offs, even for the same edge/cloud devices.

B. Edge Energy Modeling

Similarly to execution time, we measure power consumption
on the edge device to validate the assumptions of Section II-A.



We sample the power consumption of the same edge device
used for Figure 3 with a digital multimeter (HP 34401A) and
a period of 1s, running 1000 inferences per each value of
N . Figure 4 reports the results of these measurements. The
graphs show the power increment in percentage with respect
to the baseline consumption of the system, measured when the
CPU is idle, with unused peripherals disabled. Power values in
Watts are reported in the caption. Despite some fluctuations,
the average power remains approximately constant, as shown
by the small MSE obtained by the constant fits.

0 10 20 30
Input Length

30

40

50

60

70

80

Po
we

r I
nc

re
as

e 
[%

]

(a) CoVe [16]

25 50 75 100
Input Length

30

35

40

45

50

55

60

65

70
Po

we
r I

nc
re

as
e 

[%
]

(b) IMDB [17]
Fig. 4. Power consumption versus input length for two RNNs. Points and
colored areas represent means and standard deviation intervals over 1000
inferences. The solid line is the best constant fit of the data. Baseline power:
1.81W, CoVe average increment: 1.00W, MSE = 0.44 · 10−3W, IMDB
average increment: 0.91W, MSE = 0.15 · 10−3W.

Given Figure 4, our runtime uses the following model to
predict energy consumption when inference is run at the edge:

Eedge(D = edge,N,C) = Pedge · Tedge(N) (5)

where Pedge is the constant power increment measured as
described above. To model the power consumed in commu-
nication (Ptx) we use the results of [15], where power is
estimated as a linear function of the transmission bandwidth,
with different parameters depending on the connection type
(3G, 4G or WiFi). Therefore, energy consumption (of the edge
device) when inference is run in the cloud is estimated as:

Eedge(D = cloud,N,C) = Ptx(C) · Ttx(N,C)· (6)

C. Online Adaptation

The exact break-even value of N for which cloud processing
becomes more convenient than edge processing in terms of
time, energy or a combination of the two, clearly depends on
the state of the system, and in particular on the time-varying
status of the network (especially Trt). In order to adapt our
runtime’s decisions to variations in the network connection,
we use two different mechanisms.

First, the Trt estimate is updated every time the runtime de-
cides to perform an inference in the cloud, adding timestamps
to the transmitted/received input sequence. Second, whenever
the latest cloud inference took place too far in time (e.g. more
than 1 minute ago), the edge node pings the cloud server to
update its Trt estimate. To see why this second mechanism is
needed, consider the case of pure execution time optimization
(w = 0). With reference to Figure 3, a momentary large
increase in Trt would shift the blue curve so high that the
break-even point would move towards input sizes that never

occur in practice, and therefore our runtime would start to
always select edge processing. Consequently, the timestamp
mechanism would never take place, and the runtime would
not notice any future decrease of Trt.

In this work, although we account for random execution
time and power fluctuations, we assume the mean inference
time for a given N and the mean CPU power consumption
in the edge node are constant. However, our framework can
be extended to support load and power variations (e.g. due to
other processes) as another type of context information. This
extension will be object of our future work.

IV. EXPERIMENTAL RESULTS

We test the proposed methodology on the edge and cloud
platforms described in Section III, i.e. ARM Cortex A-53 and
Intel Xeon + NVIDIA Titan XP respectively. We experiment
on two RNNs and three datasets (described later) using
TensorFlow as inference engine. Our method has no direct
competitor, since all previous solutions for collaborative edge-
cloud intelligence only target feed-forward NNs. Thus, we
compare against the two trivial solutions, i.e. running inference
fully in the edge or in the cloud.

In all experiments, we measure computation times and
power (Tedge, Tcloud and Pedge) on the real devices. To model
the impact of communication, we use a Python-based simula-
tor, as opposed to actually transmitting data on the network, in
order to be able to assess the impact of different predictable
network conditions on the effectiveness of our methodology.
The simulator receives as input a network connection profile,
formatted as a time series of latency/bandwidth pairs. Clearly,
this profile can also be filled with real network data, as we do
in Section IV-D, to mimic a realistic (unpredictable) network.

We perform a sequence of inferences, using our mapping
engine to select the device (edge or cloud) that minimizes (1)
for each input. The impact of this selection is then evaluated by
measuring the real time and energy values for each sentence
on the selected device. This allows to evaluate the impact of
inference time/power variability and of regression errors on
the effectiveness of the proposed runtime. We also account
for the fact that network information can be outdated, as it
is only updated when cloud inference is selected or every
minute through a ping. We conservatively assume that pings
are executed sequentially with respect to inferences on the
edge and we account for their contribution on total time and
energy. Notice that the time overhead of the runtime itself
(< 1ms per inference on the target edge device) is negligible,
even compared to the execution of 1-input sequences.

A. Execution Time Optimization

In this section, we consider pure execution time optimiza-
tion, i.e. we set w = 0 in (1). We then assess the effectiveness
of our method for different values of the network latency Trt,
which is one of the most important parameters that determine
the selection between edge and cloud. In a first experiment,
we consider the “CoVe” network [16], a 2-layer LSTM used
to process sequences for a variety of NLP tasks. Specifically,



we use two of the datasets considered in [16], i.e. SNLI
(entailment) and SQuAD (question answering). The edge and
cloud regression models used in our mapping engine for this
network correspond to Figures 3a and 4a. Figures 5a and 5b
show the results of using our framework to map the inference
of 100k random sentences from each dataset. The graphs
show the reduction of the total inference time with respect
to edge-only and cloud-only solutions, for different values of
Trt (assumed fixed for the entire simulation).

0.0 0.1 0.2 0.3
Network Latency [s]

0

20

40

60

80

Pe
rc

en
ta

ge
 [%

]

Ex. Time Reduction vs All-Edge Ex. Time Reduction vs All-Cloud

0.0 0.1 0.2 0.3
Network Latency [s]

0

20

40

60

80

Pe
rc

en
ta

ge
 [%

]

(a) CoVe + SNLI

0.0 0.1 0.2 0.3
Network Latency [s]

0

20

40

60

80

Pe
rc

en
ta

ge
 [%

]

(b) CoVe + SQuAD

0.000 0.025 0.050 0.075 0.100
Network Latency [s]

0

20

40

60

80

Pe
rc

en
ta

ge
 [%

]

(c) IMDB
Fig. 5. Total execution time reduction versus “all edge” and “all cloud”
solutions for the RNNs in [16] and [17]. Results for different (fixed) network
latencies; bandwidth fixed at 1Mbps.

As expected, for small latency values our runtime offloads
all inferences to the cloud and performs exactly as a cloud-only
solution, being thus much faster than a edge-only solution. As
latency increases, however, inferences corresponding to the
shortest input sequences start to be executed locally, saving
time with respect to a cloud-only approach. For instance,
for a 200ms latency our framework outperforms both edge-
and cloud-only solutions by ≈ 19% and 10%, respectively.
Clearly, when latency increases even more, our strategy tends
to coincide with the edge-only case.

Comparing Figures 5a and 5b also shows the impact of the
dataset on our optimization. In fact, SQuAD inputs have a
smaller median length compared to SNLI (Nmedian = 9 vs
12), hence the mapping engine can exploit edge processing
more often, thus obtaining a larger saving vs the cloud-only
approach for a given Trt.

Figure 5c, instead, shows the impact of the network size.
This graph refers to the smaller (1-layer) LSTM from [17],
trained on the IMDB dataset for sentiment classification.
Regression models for this NN are depicted in Figures 3b and
4b. The graph is obtained running inference on all sentences
of the dataset with N < 100. While the dependency on Trt is
very similar to Figures 5a and 5b, the absolute latency values
for which edge processing starts to become convenient are
significantly smaller. Indeed, the smaller network size makes
edge inference faster. Therefore, local processing of short input
sequences becomes convenient even for smaller Trt values.
Although not shown for sake of space, a similar effect would
be obtained by having a different ratio of computational power
between edge and cloud devices, e.g., by using using a faster
edge node equipped with an embedded GPU or a dedicated
accelerator.

In conclusion, the range of network latency for which our
method yields benefits compared to both trivial solutions varies

significantly depending on the RNN and dataset, as well as on
the relative speeds of the edge/cloud devices.

Due to regression errors, execution time variability and
outdated network status information, our runtime may some-
time make wrong decisions on where to allocate inference,
especially for input sequence lengths around the break-even
point. To evaluate this error, we have measured the difference
in execution time between the mapping performed by our
runtime and an “oracle” policy that always takes the correct
decision. On average, this difference is 0.41%, 0.50% and
0.32% for the experiments of Figure 5.

B. Energy Optimization

In this experiment, we assess the effectiveness of our
framework when the main objective is energy minimization.
To this end, we repeat the same experiments of Section IV-A,
but setting w = 1000 in (1). For transmission power, we use
the 3G model of [15], as this type of connection is still the
most common for IoT devices. Results are shown in Figure 6.

0.0 0.1 0.2 0.3
Network Latency [s]

0

20

40

60

80

Pe
rc

en
ta

ge
 [%

]

Energy Reduction vs All-Edge Energy Reduction vs All-Cloud

0.0 0.1 0.2 0.3
Network Latency [s]

0

20

40

60

80
Pe

rc
en

ta
ge

 [%
]

(a) CoVe + SNLI

0.0 0.1 0.2 0.3
Network Latency [s]

0

20

40

60

80

Pe
rc

en
ta

ge
 [%

]
(b) CoVe + SQuAD

0.000 0.025 0.050 0.075 0.100
Network Latency [s]

0

20

40

60

80

Pe
rc

en
ta

ge
 [%

]

(c) IMDB

Fig. 6. Energy reduction versus “all edge” and “all cloud” solutions for the
for the RNNs in [16] and [17]. Results for different (fixed) network latencies;
bandwidth fixed at 1Mbps.

As shown, energy reduction trends with respect to Trt

are very similar to the case of time minimization. This is
because, for a fixed network bandwidth, transmission power
computed with the model of [15] is a constant, similarly to
computation power. In particular, with the parameters used in
this experiment and a fixed bandwidth of 1Mbps, we obtain
Ptx ≈ 1.9W, whereas Pedge ≈ 1W (from Figure 4). Therefore,
minimizing energy reduces to minimizing the time spent
actively computing/transmitting, with the difference that the
least consuming operation (i.e. local computation) is selected
more often by the mapping engine. As a consequence, the
benefits with respect to a solution that always transmits (i.e. the
cloud-only approach) increase. The average energy overheads
compared to an oracle policy are 0.06%, 0.07% and 0.32%
for this experiment.

C. Combined Optimization

Energy and time minimization can be combined in the
proposed runtime by using intermediate values of w in (1). To
show the effect of this parameter, we run multiple inferences
on the CoVe network with the SNLI dataset, varying w from
0.1 to 100 (on a logarithmic scale), while setting fixed network
latency and bandwidth values (200ms and 1Mbps). The results
of this experiment are shown in Figure 7.



10−1 100 101 102

Energy Weight (w)

0

5

10

15

Pe
rc

en
ta

ge
 [%

]

(a) Ex. Time

10−1 100 101 102

Energy Weight (w)

0

10

20

30

Pe
rc

en
ta

ge
 [%

]

(b) Energy

Fig. 7. Total execution time and energy reduction versus “all edge” and “all
cloud” solutions for CoVe on the SNLI dataset. Results for different values
of the objective function parameter w. Network latency and bandwidth fixed
at 0.2s and 1Mbps. Same legend of Figures 5 and 6.

For small values of w the mapping engine favors execution
time reduction (20% w.r.t edge and 10% w.r.t. cloud) at the
expense of energy, which actually increases with respect to
an edge-only solution (left of Figure 7b). In other words,
the mapping engine decides to transmit long input sequences
to the cloud for fast processing, even if this is less efficient
than computing locally. As w increases, however, the energy
benefits do as well, whereas time benefits progressively reduce.
Notice that, for many intermediate points, our system yields
simultaneous benefits in both quantities.

D. Online Adaptation

The advantage of our framework is even more evident when
the connection status changes over time, as the runtime can
adapt and dynamically change the selected device for a given
input length. We show this through two additional experiments
on the CoVe network.

First, we generate an artificial time-varying network profile,
keeping the bandwidth fixed at 1Mbps and increasing the
latency from 100ms to 200ms at about 1/3 of the simulation
and from 200ms to 300ms at 2/3. This controlled profile allows
us to make considerations on the adaptability of our solution.

Second, we use the method in [19] to mimic real Trt

values using data from RIPE Atlas, an open source database
of Internet measurements. Specifically, we use a record of
ping times among two random nodes in the database, selected
simply because they yielded a time-varying Trt profile. We use
a 3-hour-long Trt record to cover the entire time required for
running 100k inferences on SNLI/SQuAD, even with the two
trivial approaches (edge-only and cloud-only). In this time-
span the measured Trt varies between 100ms and 245ms.

In these experiments, the energy weight in (1) is set to w =
1 to obtain a balanced reduction of both energy and time. The
results are reported in Table I, and the exact parameters of the
RIPE Atlas query are listed in the caption.

For the artificial Trt profile, our method achieves significant
speed-ups and energy reductions with respect to the two trivial
solutions, as both are strongly sub-optimal at different times:
initially, offloading to cloud is convenient due to the small
latency, whereas at the end of the simulation the cloud solution
suffers from long delays and consequently also consumes
significantly more. In contrast, our method adapts to the
current network status and selects the best approach at all
times. Although results on the RIPE Atlas profile are slightly

less good (due to the less dramatic variation of Trt in the
selected interval), trends are very similar, demonstrating the
effectiveness of our optimization in a realistic scenario.

TABLE I
RESULTS FOR VARIABLE NETWORK LATENCY. RIPE ATLAS MEAS. ID:
1437285, PROBE ID: 6222, DATE AND TIME: MAY 3RD 2018, 3-6 P.M.

Profile Dataset Ex. Time Reduction [%] Energy Reduction [%]
vs Edge vs Cloud vs Edge vs Cloud

Artificial SNLI 23.43 14.81 11.25 37.90
SQUAD 13.78 24.30 4.94 47.88

RIPE Atlas SNLI 16.33 8.02 5.28 33.90
SQUAD 5.16 16.58 1.67 45.43

V. CONCLUSIONS

We proposed a novel runtime framework to perform collab-
orative RNN inference between edge and cloud. Our method
selects the optimal device on which to perform inference based
on a characterization of the NN, on the length of the input to
be processed and on the current status of the communication
network. In the future, we plan to test our runtime on faster
edge devices (e.g. a smartphone with an integrated GPU). We
also plan to extend our runtime to react to variations in the
cloud server load.

REFERENCES

[1] I. Goodfellow et al, Deep Learning, MIT Press, 2016.
[2] V. Sze et al, “Efficient Processing of Deep Neural Networks: A Tutorial

and Survey,” Proc. of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.
[3] Y. H. Chen et al, “Eyeriss: An Energy-Efficient Reconfigurable Accelera-

tor for Deep Convolutional Neural Networks,” IEEE JSSC, vol. 52, no. 1,
pp. 127–138, 2017.

[4] B. Moons et al, “Envision: A 0.26-to-10TOPS/W subword-parallel
dynamic-voltage-accuracy-frequency-scalable Convolutional Neural Net-
work processor in 28nm FDSOI,” in IEEE ISSCC, feb 2017, pp. 246–247.

[5] D. Jahier Pagliari and M. Poncino, “Application-Driven Synthesis of
Energy-Efficient Reconfigurable-Precision Operators,” in IEEE ISCAS
2018, pp. 1–5.

[6] J. Kung et al, “Peregrine: A Flexible Hardware Accelerator for LSTM
with Limited Synaptic Connection Patterns,” in DAC 2019, pp. 209:1–
209:6.

[7] S. Cao et al, “Efficient and Effective Sparse LSTM on FPGA with Bank-
Balanced Sparsity,” in FPGA 2019, pp. 63–72.

[8] H. Tann et al, “Runtime configurable deep neural networks for energy-
accuracy trade-off,” in CODES ’16 2016, pp. 1–10.

[9] D. Jahier Pagliari et al, “Dynamic Bit-width Reconfiguration for Energy-
Efficient Deep Learning Hardware,” in ISLPED 2018, pp. 47:1—-47:6.

[10] D. Jahier Pagliari et al, “Dynamic Beam Width Tuning for Energy-
Efficient Recurrent Neural Networks,” in GLSVLSI 2019, pp. 69–74.

[11] B. Taylor et al, “Adaptive Deep Learning Model Selection on Embedded
Systems,” in LCTES 2018, pp. 31–43.

[12] H. Yin et al, “A Hierarchical Inference Model for Internet-of-Things,”
IEEE TMSCS, vol. 4, no. 3, pp. 260–271, 2018.

[13] A. Thomas et al, “Hierarchical and Distributed Machine Learning
Inference Beyond the Edge,” in ICNSC 2019, pp. 1004–1009.

[14] Y. Kang et al, “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge,” in ASPLOS 2017, pp. 615–629.

[15] A. E. Eshratifar et al, “BottleNet: A Deep Learning Architecture for
Intelligent Mobile Cloud Computing Services,” CoRR, vol. abs/1902.0,
2019.

[16] B. McCann et al, “Learned in translation: Contextualized word vectors,”
CoRR, vol. abs/1708.00107, 2017.

[17] https://github.com/keras-team/keras
[18] M.-R. Ra et al, “Odessa: Enabling Interactive Perception Applications

on Mobile Devices,” in MobiSys 2011, pp. 43–56.
[19] M. Mouchet et al, “Statistical Characterization of Round-Trip Times

with Nonparametric Hidden Markov Models”, in IEEE IM, 2019, pp.
43–48.


