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Introduction

A binary operation is a calculus that combines two elements to obtain another elements. It seems
quite simple for numbers, because we usually imagine it as a simple sum or product. However, also
in the case of numbers, a binary operation can be extremely fascinating if we consider it  in a
generalized form. Here the reader can find several examples of generalized sums for different sets
of numbers (Fibonacci, Mersenne, Fermat, q-numbers, repunits and many other numbers). These
sets can form groupoid which possess different binary operators. As we will see at the end of this
exposition of cases, the most relevant finding is that different integer sequences can have the same
binary  operator  and  that,  consequently,  can  be  used  as  different  representations  of  the  same
groupoid. 

Keywords:  Groupoid Representations,  Integer Sequences,  Binary Operators,  Generalized Sums,
Generalized Entropies, Tsallis Entropy, q-Calculus, Abelian Groups, Fermat Numbers, Mersenne
Numbers, Triangular Numbers, Repunits, Oblong Numbers

In mathematics, a binary operation is a calculation that combines two elements to obtain another
element. In particular, this operation acts on a set in a manner that its two domains and its codomain
are  the  same  set.  Examples  of  binary  operations  include  the  familiar  arithmetic  operations  of
addition and multiplication. Let us note that binary operations are the keystone of most algebraic
structures: semigroups, monoids, groups, rings, fields, and vector spaces. 

Here the reader can find several examples of binary operations applied to numbers. The binary
operations proposed are generalizations of the sum, them the reader can find them named also as
"generalized  sums".  Only one  example  is  devoted to  a  multiplication,  and it  is  concerning the
Fibonacci Numbers.

The discussion is a collection of articles written by the author. Here the list of their arguments.

1) The additive group of q-integers (page 6) - The q-integers, that we can find in the q-calculus, are
forming an additive group having a generalized sum, which is  similar to sum of the Tsallis  q-
entropy of two independent systems. 

2) The group of the Fibonacci numbers (page 12)  - These numbers are forming a group. Each
number is represented by a 2x2 symmetric matrix and the operation of the group is the product of
matrices. This approach allows to define the nega-Fibonacci numbers by means of the inverse of the
Fibonacci matrices. 
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3)  The generalized  sum of  the  symmetric  q-integers  (page  16)  -  As  in  (1),  we show that  the
symmetric q-integers of the q-calculus have a generalized sum which is also the generalized sum
that we can find in the κ-calculus.  

4) Generalized Sums Based on Transcendental Functions (page 19) - In this work, we proposed the
generalized  sums  that  we  can  obtain  from transcendental  functions.  The  generalized  sums  are
operations which widespread the addition of real numbers. Using these sums, we will see that we
can form some Abelian groups. The study is based on the generalized sums proposed previously.
The main aim of the paper is that of popularizing the existence of groups having as their operation a
generalized sum.

5) A generalized sum of the Mersenne Numbers (page 32) - We discussed these numbers to give an
example of a generalized sum. Using this sum, a recurrence relation was given too.

6) The q-integers and the Mersenne numbers (page 35) - Here we show that the q-integers, the q-
analogue of the integers that we can find in the q-calculus, are forming an additive group having a
generalized  sum  similar  to  the  sum  of  the  Tsallis  q-entropies  of  independent  systems.  The
symmetric form of q-integers will be studied too. These numbers are linked to the Kaniadakis  κ-
calculus. A discussion is devoted to the link of the q-integers to the Mersenne numbers. 

7) The group of the Fermat Numbers (page 45) - In this work we discussed the group that we can
obtain if we consider the Fermat numbers with a generalized sum.

8) The generalized sums of Mersenne, Fermat, Cullen and Woodall (page 48) - Here we discussed
Cullen and Woodall numbers, which are similar to Mersenne and Fermat numbers. The generalized
sums are given for them. Recursive relations are given accordingly. 

9) A recursive formula for Thabit numbers (page 54) - An operation of addition of these numbers is
proposed. A recursive relation is given accordingly.

10) Repunits  (page 57) -   An operation of addition of these numbers is  proposed. A recursive
formula is given accordingly. Symmetric repunits are also defined.

11) Composition Operations of Generalized Entropies Applied to the Study of Numbers (page 60) -
Article in international journal.

12) Binary Operators of the Groupoids of OEIS A093112 and A093069 Numbers (Carol and Kynea
Numbers) (page 66) - Here we discuss the binary operators of the sets made by the OEIS sequences
of  integers  A093112  and  A093069,  also  called  Carol  and  Kynea  numbers.  We  see  that  these
numbers are linked, through the binary operators, to the Mersenne and Fermat integers.

13) A Binary Operator Generated by Homographic  (page 69) - In this  work we discussed the
binary operator that we can generated by homographic function. By means of this operator, that we
can see as a generalized sum, we can create a group.

14) Groupoids of OEIS A002378 and A016754 Numbers (oblong and odd square numbers) (page
72) - Here we discuss the binary operators of the sets made by the OEIS sequences of integers
A002378 and A016754. A002378 are defined as oblong numbers. 

15) Groupoid of OEIS A001844 Numbers (centered square numbers) (page 75) - Here we discuss
the binary operator of the set made by the OEIS sequence of integers A001844, defined as centered
square numbers. This binary operator can be used to have a groupoid. Actually, neutral and opposite
elements can be defined too, and a possible group for these numbers can be given.

16) Giuseppe Peano e i numeri di Mersenne (page 78) - Si mostra come un problema dei "Giochi Di
Aritmetica E Problemi Interessanti", di Giuseppe Peano, ci porti ai numeri di Mersenne.

17) Discussion of the groupoid of Proth numbers (OEIS A080075) (page 82) - Here we show that
the set of Proth numbers is a groupoid. The binary operaton between the elements of the sets is
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given as a generalized compositon. 

18) Groupoid of OEIS A003154 Numbers (star numbers or centered dodecagonal numbers) (page
84)  -  It  is  discussed   the  binary  operators  of  the  set  made  by the  OEIS sequence  of  integers
A003154, defined as star numbers or centered dodecagonal numbers. The binary operators can be
used to have groupoids.

19) The groupoid of the Triangular Numbers and the generation of related integer sequences (page
87) - Here we discuss the binary operators of the set made by the triangular numbers, sequence
A000217, in the On-Line Encyclopedia of Integer Sequences (OEIS). As we will see, by means of
these binary operators we can obtain related integer sequences. Here we propose some of them. The
sequences, except one, are given in OEIS.

20)  The  groupoids  of  Mersenne,  Fermat,  Cullen,  Woodall  and  other  Numbers  and  their
representations  by  means  of  integer  sequences  (page  92)  -  Previous  works  have  discussed  the
groupoids  related  to  the  integer  sequences  of  Mersenne,  Fermat,  Cullen,  Woodall  and  other
numbers. These groupoid possess different binary operators. As we can easily see, other integer
sequences can have the same binary operators, and therefore can be used to represent the related
groupoids. Using the On-Line Encyclopedia of Integer Sequences (OEIS), we can also identify the
properties  of  these  representations  of  groupoids.  At  the  same  time,  we  can  also  find  integer
sequences not given in OEIS and probably not yet studied.

21) Some Groupoids and their Representations by Means of Integer Sequences (page 101). Article 
in international journal. 
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Introduction  Many mathematicians have contributed to the calculus that today is known as

the  q-calculus  [1-6].  As  a  consequence,  it  is  known  as  “quantum  calculus,”  “time-scale

calculus” or “calculus of partitions” too [5].  Moreover,  it  is expressed by means of different

notations or,  as told in  [5],  by different  “dialects”.  Here we will  use the approach and the

notation given in the book by Kac and Cheung [6]. 

The aim of this work is that of  showing the following.  The q-integers are forming a group

having a generalized sum, which is similar to sum of the Tsallis q-entropy of two independent

systems. Let us start from the definition of the q-integers. 

In the q-calculus, the q-difference is simply given by: 

dq f=f (qx )−f ( x )

From this difference, the q-derivative is given as:

Dq f=
f (qx )−f ( x )
qx−x

The q-derivative reduces to the Newton’s derivative in the limit q→1 . 

Let us consider the function f (x )=xn . If we calculate its q-derivative, we obtain:

(1) Dq x
n=

(qx )n−xn

qx−x
=q

n−1
q−1

xn−1



Comparing the ordinary  calculus,  which is  giving ( xn) '=nxn−1 ,  to  Equation (1),  we can

define the “q-integer” [n ]  by:

            

(2) [n]=q
n−1
q−1

=1+q+q2+.. .+qn−1

Therefore Equation (1) turns out to be:

Dq x
n=[n ] xn−1

As a consequence,  the  n-th q-derivative of  f (x )=xn ,  which is obtained by repeating  n

times the q-derivative, generates the  q-factorial:

[n ] !=[ n ][n−1 ]. . .[3 ] [2 ][ 1]

Form the q-factorials, we can define q-binomial coefficients:

  

[n ]!
[m ] ![ n−m ]!

This means that  we can use the usual  Taylor  formula,  replacing the derivatives by the q-

derivatives and the factorials by q-factorials (in a previous work, we have discussed the q-

exponential and q-trigonometric functions [7]). Then, in the q-calculus, the q-integer [n ] acts

as the integer in the ordinary calculus.

We known that the set of integers Z, which consists of the numbers ..., −4, −3, −2, −1, 0, 1, 2,

3, 4, ...,  having as operation the addition, is a group. Therefore, let  us consider the set of q-

integers given by (2) and investigate its group. In particular, we have to determine its operation

of addition.

Let us remember that a group is a set A having an operation • which is combining the elements

of  A. That is, the operation combines any two elements  a,b  to form another element of the

group denoted a•b.  To qualify (A,•) as a group, the set and operation must satisfy the following

requirements.  Closure:  For  all  a,b  in  A,  the  result  of  the  operation  a•b  is  also  in  A.

Associativity:  For all  a,b and c in A, it holds (a•b)•c = a•(b•c).  Identity element: An element e

exists in A, such that for all elements a in A, it is e•a = a•e = a. Inverse element: For each a in

A, there exists an element b in A such that a•b = b•a = e, where e is the identity (the notation is

inherited from the multiplicative operation).



A further requirement is the commutativity: For all a,b in A, a•b = b•a.  In this case, the group is

known as an Abelian group. 

Therefore, to qualify a group as an Abelian group,  the set and operation must  satisfy five

requirements  which  are  known  as  the  Abelian  group  axioms.  A  group  having  a  not

commutative operation is called a "non-abelian group" or "non-commutative group". For an

Abelian group, one may choose to denote the group operation by +  and the identity element

by 0 (neutral element) and the inverse element as −a  (opposite element). In this case, the

group is called an additive group. 

First, we have to define the operation of addition. It is not the sum that we use for the integers,

but it is a generalized sum which obeys the axioms of the group.

Let us start from the q-integer  [m+n ] :

[m+n ]=q
m+n−1
q−1

= 1
q−1

(qmqn−1+qm−qm)= 1
q−1

(qm(qn−1)+qm−1)

[m+n ]= 1
q−1

(qm(qn−1)+(qm−1)+(qn−1)+(1−qn))= 1
q−1

((qm−1)(qn−1)+(qm−1)+(qn−1))

Therefore, we have: 

(3) [m+n ]=[m ]+[n]+(q−1)[m ][n]

Then, we can define the generalized “sum” of the group as: 

(4) [m]⊕[n]=[m ]+[n ]+(q−1)[m] [n ]

(for other examples of generalized sums see [8]):

If we use (4) as the sum, we have the closure of it,  because the result of the sum is a q-

integer. Moreover, this sum is commutative. 

The neutral element is:

(5) [0]=q
0−1
q−1

=0

Let us determine the opposite element [o] , so that:

 [o]⊕[n]=0

0=[0]=[o]⊕[n]=[o ]+[n]+(q−1)[o ][n]



−[n]=[o ]+(q−1)[o] [n]

(6) [o]=−
[n]

1+(q−1)[n]
=− qn−1

(q−1)qn
=q

−n−1
q−1

=[−n]

The opposite element of q-integer [n] is the q-integer of  −n , that is [−n] .

Let us discuss the associativity of the sum.

It is necessary to have:

[m]⊕([n]⊕[l ])=([m ]⊕[n])⊕[l ]

Let us calculate:

[m]⊕([n]⊕[l ])=[m]⊕([n]+[l ]+(q−1) [n] [l ])

[m]⊕([n]⊕[l ])=[m]+[n]+[l ]+(q−1)[n ][ l]+(q−1)[m] [n ]+(q−1)[m] [l ]+(q−1)2[m ][n] [l ]

And also:

([m ]⊕[n])⊕[l ]=([m ]+[n]+(q−1)[m ][n])⊕[l ]

([m ]⊕[n])⊕[l ]=[m ]+[n]+(q−1)[m ][n]+[ l ]+(q−1)[m] [l ]+(q−1)[n ][ l]+(q−1)2[m ][n] [l ]

It is also easy to see that:

[m]⊕[n]⊕[ l ]=[m+n+ l ]

As we have shown, the five axioms of an Abelian group are satisfied. In this manner, using the

generalized sum given by (4), we have the Abelian group of the q-integers. Let us also note

that the generalized sum (4) is similar to the sum that we find in the approach to entropy

proposed by Constantino Tsallis. 

In 1948 [9], Claude  Shannon defined the entropy  S of a discrete random variable Ξ as the

expected  value  of  the  information  content: S=∑i
p i I i =−∑i

pi logb p i [10].  In  this

expression, I is the information content of Ξ, the probability of i-event is pi  and b is the base

of the used logarithm. Common values of the base are 2, the Euler’s number e, and 10. 

Constantino Tsallis generalized the Shannon entropy in the following manner [11]: 



Sq=
1
q−1(1−∑i pi

q)

Given two independent systems A and B, for which the joint probability density satisfies:

p(A ,B)=p(A) p(B)

the Tsallis entropy gives:

(7) Sq (A ,B)=Sq(A)+Sq(B)+(1−q)Sq (A)Sq (B)

The  parameter (1−q) ,  in  a  certain  manner,  measures  the  departure  from the  ordinary

additivity, which is recovered in the limit q→1 .

Actually the group on which is based the Tsallis entropy, and therefore Equation (7), is known

as the “multiplicative group” [6,12-13]. As stressed in [14], the use of a group structure allows

to determine a class of generalized entropies. Let us note the group of the q-integers, with

addition (4), can be considered a “multiplicative group” too. 

Let  us  conclude  telling  that  the  main  result  of  the  work  here  proposed  is  the  link  to  the

multiplicative group and the Tsallis entropy. The group of the n-integers had been studied in

[15,16] too, but in these articles, a quite different expression for the generalized sum had been

proposed.  It  is  given as the “quantum sum”  [x ]⊕[ y ]=[x ]+qx [ y ] ,  where the link to the

Tsallis calculus is less evident.
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The  Fibonacci  numbers  are  a  sequence  of  integers  characterized  by  the  fact  that  every

number, after the first  two, is the sum of the two preceding ones. Therefore, we have the

sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …. and so on. 

The recurrence relation is given by:

Fn=Fn−1+Fn−2

with F0=0 , F1=1 . Then F2=1 , F3=2 , F4=3 , etc.

The item of Wikipedia, about the Fibonacci numbers [1], gives them also in the form: 

(Fn+2Fn+1)=(1 1
1 0)(Fn+1Fn )=M(Fn+1Fn )

However, we find also in [1] the matrices:  

(1)    M n=M⋯M⏟
n

=(Fn+1 Fn
Fn Fn−1)

Therefore, we have: M 0=(1 0
0 1) , M 1=(1 1

1 0) , M 2=(2 1
1 0) , M 3=(3 2

2 1) , etc. 

Let us consider the group of these symmetric matrices and discuss it.



Let us remember that a group is a set A having an operation • which is combining the elements

of  A. That is, the operation combines any two elements  a,b  to form another element of the

group  denoted  a•b.   To  qualify  (A,•)  as  a  group,  the  set  and  operation  must  satisfy  the

following requirements.  Closure:  For all  a,b in  A, the result of the operation  a•b is also in  A.

Associativity:  For all  a,b and c in A, it holds (a•b)•c = a•(b•c).  Identity element: An element e

exists in A, such that for all elements a in A, it is e•a = a•e = a. Inverse element: For each a in

A, there exists an element b in A such that a•b = b•a = e, where e is the identity (the notation is

inherited from the multiplicative operation). A further requirement is the commutativity: For all

a,b in A, a•b = b•a.  In this case, the group is known as an Abelian group. 

For the set of the matrices (1), the operation is the product of the matrices. Is it commutative?

The answer is positive.

M nMm=(Fn+1 Fn
Fn Fn−1)(

Fm+1 Fm
Fm Fm−1

)=((Fn+1Fm+1+FnFm) (Fn+1Fm+Fn Fm−1)
(Fn Fm+1+Fn−1 Fm) (FnFm+Fn−1Fm−1))

Being Fm+1=Fm+Fm−1 and Fn+1=Fn+Fn−1 , we can see that the product gives a 

symmetric matrix:

M nMm=( (Fn+1 Fm+1+Fn Fm) (FnFm+Fn−1Fm+Fn Fm−1)
(FnFm+Fn Fm−1+Fn−1Fm) (FnFm+Fn−1 Fm−1) )

And also:

M nMm=((Fn+1Fm+1+FnFm) (Fm+1Fn+Fm Fn−1)
(Fn+1Fm+FnFm−1) (FnFm+Fn−1 Fm−1))  (2)

The same for:

MmM n=(Fm+ 1 Fm
Fm Fm−1

)(Fn+1 Fn
Fn Fn−1)=((Fm+1Fn+1+FmFn) (Fm+1Fn+Fm Fn−1)

(Fm Fn+1+Fm−1Fn) (FmFn+Fm−1 Fn−1))  (3)

From (2) and (3):

MmM n=M nMm

We can tell  that the product of two Fibonacci  symmetric matrices A and B is a symmetric

matrix, because A and B commute. 

Let us consider the matrices again:

M n=(1 1
1 0)

n

=(Fn+1 Fn
Fn Fn−1)  

and evaluate the determinant, to obtain the Cassini identity.



Because the determinant of a matrix product of square matrices equals the product of their

determinants, we have:

 (−1)n=Fn+1Fn−1−Fn
2 (4)

(4) is the Cassini’s Identity.

Let us discuss the closure. It means that, if we have any product of two Fibonacci matrices, we

have another Fibonacci matrix. Actually:

MmM n=Mm+n=(Fm+n+1 Fm+ n

Fm+n Fm+n−1
)=((Fm+1 Fn+1+Fm Fn) (Fm+1Fn+Fm Fn−1)

(Fm Fn+1+Fm−1 Fn) (Fm Fn+Fm−1Fn−1))  (5)

From (5) we have other relations among Fibonacci numbers.

The identity element is: M 0=(1 0
0 1) .

The inverse element is obtained in the following manner:

(M n)−1M n=(a b
c d)(Fn+1 Fn

Fn Fn−1)=M 0

Therefore:

a=
Fn−1

Fn+1Fn−1−Fn
2 b=

Fn
−Fn+1 Fn−1+Fn

2 c=
Fn

−Fn+1Fn−1+Fn
2 d=

Fn+1
Fn+1Fn−1−Fn

2

Let us calculate some inverses:

(M 1)−1=(0 1
1 −1) (M 2)−1=( 1 −1

−1 2 ) (M 3)−1=(−1 2
2 3) (M 4)−1=( 2 −3

−3 5 ) etc.

So we can easily see that we have here the “negaFibonacci” numbers: 0, 1, -1, 2, -3, 5, -8, 13, 

-21 , … etc. In [1], these numbers are given as:

F−n=(−1)n+1 Fn



From [1], it seems that these numbers were defined by Ref.2 (in fact, I was not able to find a 

copy of the article mentioned by Wikipedia). 

If we use the matrices, the negaFibonacci are the inverse of them.

Let us conclude considering the associativity, that is (MmM n)M k=Mm(M nM k)

(MmM n)M k=Mm+nM k=Mm+n+k

Mm(M nM k )=MmM n+k=Mm+n+k

Here we have seen that the numbers of Fibonacci, represented by 2x2 symmetric matrices,

are forming a group. The operation of the group is the product of matrices. The negaFibonacci

numbers are defined by means of the inverse of the Fibonacci matrices. 
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Introduction  In a previous work [1], we have discussed the group of the q-integers as defined

by q-calculus. In the notation given in the book by Kac and Cheung [2],  the q-integers are: 

(1) [n]= q
n−1
q−1

=1+ q+ q2+ . . .+ qn−1 .

In [1],  we defined the generalized sum of the group as: 

(2) [m]⊕[n]=[m ]+[n ]+(q−1)[m] [n ]

As a consequence,  we have that the q-integers (1) with operation (2) form a multiplicative

group. The generalized sum (2) is similar to the generalized sum that we find for the Tsallis

entropies of independent systems [3].

In the q-calculus [2], it is also defined the symmetric q-integer in the following form (here we

use a notation different from that given in the Ref.2):

(3) [n]s=
qn−q−n

q−q−1

Repeating the approach used in [1], we can determine the group of the symmetric q-integers. 

Let us start from the q-integer [m+ n ]s , which is according to (3):                                            

[m+ n ]s=
qm+ n−q−(m+ n)

q−q−1



and try to find it as  a generalized sum  of  the q-integers [m]s and [n]s .

By writing q=exp( log q) ,  the q-integer turns out into a hyperbolic sine: 

(4) [n]s=
qn−q−n

q−q−1 = e
n logq−e−nlog q

q−q−1 =2
sinh (n log q)

(q−q−1)

Apart from a numerical factor, this is the form of the generalized numbers proposed by G.

Kaniadakis in his k-calculus [4-8]. 

From (4), we can write also:

1
2
(q−q−1) [n ]s=sinh (n log q)

Therefore:

 [m+n ]s=
qm+n−q−(m+n)

q−q−1 =2
sinh((m+n) logq)

(q−q−1)

Using the properties: 

sinh(x+ y )=sinh xcosh y+cosh x sinh x  ; cosh x=√1+sinh 2 x

we obtain:

[m+n ]s=
2

(q−q−1)
[sinh(m log q)cosh (n log q)+sinh(n log q)cosh (m log q)]

[m+n ]s=[m]s cosh(n log q)+[n]scosh (m log q)

[m+n ]s=[m]s√1+sinh2(n log q)+[n]s√1+sinh2(m log q)

Let us define: k=(q−q−1)/2  and then: k [n]s=sinh (n log q) .

As a consequence we have the generalized sum of the symmetric q-integers as:

(5) [m]s⊕[n ]s=[m]s√1+k 2[n]s2+[n]s√1+k2[m ]s
2



Let us conclude stressing that (5) is also the generalized sum proposed by G. Kaniadakis in

the framework of a calculus [5-8], the details of which are given in [8]. By means of  (5), we can

repeat the approach given in Ref.1 and study of the group of the symmetric q-integers. 
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Introduction

A calculus  exists,  developed  in  the  framework  of  a  generalized  statistics  proposed  by  Giorgio

Kaniadakis  [1-5],  which  is  based  on  deformed  exponential  and  logarithmic  functions.   All  the

theoretical foundations and mathematical formulas of it are given in [5]. This calculus, also known as

k-calculus, has produced a series of remarkable results concerning statistics applied to many physical

systems and models (see references in [5]). At the same time, it has also given new perspectives in the

development economic and econometric methods [6,7]. 

As explained in [5],  the  k-calculus turns out to be a continuous one-parameter deformation of the

calculus  based  on the  Euler  exponential  function.  Here,  we will  use  this  calculus  as  a  model  for

discussing some generalized sums based on transcendental functions.  Let us note that the generalized

sums  are  operations  which  widespread  the  addition  of  real  numbers,  and  that  the  transcendental

functions  are   analytic  functions  that  do not  satisfy polynomial  equations,  in  contrast  to  algebraic



functions [8]. It means that a transcendental function cannot be expressed by means of a finite sequence

of algebraic operations such as addition, multiplication, and root extraction. 

Using  generalized  sums,  we  can  show  that  Abelian  groups  exist  related  to  them.  Besides  the

investigation  of  some  groups,  the  paper  is  also  proposing  examples  which  could  be  suitable  for

teaching purposes, in the framework of courses of theoretical physics, relativity and algebra applied to

physics.  However, let us stress that the main aim of the paper is that of popularizing the existence of

groups having as their operation a generalized sum.

The k-sum

In [5], the k-sum is defined in the following manner. Let us consider two elements x and y of reals R,

and a parameter k real too, which is −1<κ <1 . The composition law x⊕ y is given by:

x⊕ y=x √1+κ 2 y2+ y √1+κ 2 x2 (1)

which defines a generalized sum, named k-sum. (R,) forms an Abelian group. 

Let us remember that a group is a set A having an operation • which is combining the elements of A.

That is, the operation combines any two elements  a,b  to form another element of the group denoted

a•b.   To qualify  (A,•)  as  a  group,  the  set  and  operation  must  satisfy  the  following  requirements.

Closure: For all a,b in A, the result of the operation a•b is also in A. Associativity: For all a,b and c in

A, it holds (a•b)•c = a•(b•c). Identity element: An element e exists in A, such that for all elements a in

A, it is e•a = a•e = a. Inverse element: For each a in A, there exists an element b in A such that a•b =

b•a = e, where e is the identity (the notation is inherited from the multiplicative operation).

If a group is Abelian, a further requirement is the commutativity: For all a,b in A, a•b = b•a.  Therefore,

to qualify a group as an Abelian group, the set and operation must satisfy five requirements which are

known as the  Abelian group axioms.  A group having a not commutative operation is called a "non-

abelian group" or "non-commutative group". For an Abelian group, one may choose to denote the

group operation by +  and the identity element by 0 (neutral element) and the inverse element as −a

(opposite element). In this case, the group is called an additive group. 

Let us note that if a function G(x) exists, which is invertible G−1(G(x))=x , we can use it as  a

deformation  generator [3], to generate a consequent algebra [3,9]. We will use the  generator G  to

define the group law Φ(x , y) ,  such as in [10]:

Φ(x , y)=G(G−1(x)+G−1( y ))



or: 

x⊕ y=G(G−1(x )+G−1( y)) .

In this manner the group law is giving the generalized sum of the group.

In the case of the k-sum, the function G is the hyperbolic sine:

x⊕ y= 1κ sinh(arsinh(κ x)+arsinh (κ y )) .

 In [1,3], this sum is used for  relativistic momenta.

The generalized sum from the hyperbolic sine

Actually, the  k-sum is a case of the generalized sum that we can obtain from the properties of the

hyperbolic sine function, defined as: 

arsinh (x)=ln(x+√1+x2)

The domain is the whole real line. We have that [11]:

 arsinh (x)±arsinh( y )=arsinh (x √1+ y2± y √1+ x2) (2)

Therefore, we have a group law: 

Φ(x , y)=sinh(arsinh (x)+arsinh ( y ))

As a consequence,  the sum is: 

x⊕ y=x √1+ y2+ y √1+x2

This is the same as (1), for k = 0. The closure is given by the fact that the result of this operation is on

the real line. The neutral element is 0. The opposite element of x is −x . Also the commutativity is

evident.

To have a group, we need the discussion of the associativity too, showing that (x⊕ y )⊕z=x⊕( y⊕z)

. Let us calculate arsinh ((x⊕ y )⊕z ),arsinh (x⊕( y⊕z)) ; we can easily see that 

arsinh ((x⊕ y )⊕z )=arsinh (x⊕ y)+arsinh(z )=arsinh (x√1+ y2+ y √1+x2)+arsinh (z) ,



 which is giving, according to (2), arsinh (x)+arsinh ( y )+arsinh(z ) . 

The same for: 

arsinh (x⊕( y⊕z))=arsinh (x)+arsinh ( y⊕z )=arsinh (x)+arsinh ( y )+arsinh(z ) .

The generalized integers

Let us calculate some generalized sums in the case of integer numbers. In the case of the sum of 1 and

integer n we have:

1⊕n=√1+n2+n√2

Moreover:

n⊕n=2n√1+n2 .

The generalized sum of integers is a real number. 

To practice with the generalized addition x⊕ y=x √1+ y2+ y √1+x2 , we can do the following. Let us

assume to call 1 as a 1 and calculate: 

α 2=α 1⊕α 1=1⊕1=√2+√2=2√2

α 3=α 1⊕α 2=1⊕1⊕1=2√2√2+√1+8=4+3=7

Then we can calculate:

α 2⊕α 2=4 √2√1+8=12√2      α 1⊕α 3=√50+7√2=12√2

So we have that:

α 4=α 2⊕α 2=α 1⊕α 3=1⊕1⊕1⊕1=12√2

And so on. We can create a group of generalized integers  αn  defined by repeating n times  the sum:

α n=1⊕1⊕1...⊕1⊕1



The group is: (αn,),  where n is a natural integer.

Now, let us assume to call the integer 2 as b 1 and calculate: 

β 2=β 1⊕β 1=2⊕2=2√5+2√5=4√5

As an exercise, we can repeat the previous calculus to obtain another group.

The generalized sum from the hyperbolic tangent

Let us consider the hyperbolic tangent. Its inverse hyperbolic function is defines as: 

artanh (x)=1
2
ln ( 1+x
1−x

)

The domain is the open interval (−1,1) . 

A property of this inverse function is the following [11]:

artanh (x)±artanh ( y )=artanh ( x± y
1±xy

)

Therefore, let us define the generalized sum as:

x⊕ y= x+ y
1+xy (3)

We have a group law: 

Φ(x , y)=tanh(artanh(x )+artanh( y ))

As a consequence, we have the sum defined in (3). This sum is commutative. The neutral element is 0.

The opposite element of x is −x .

Let us discuss the associativity, showing that (x⊕ y )⊕z=x⊕( y⊕z) .  Actually:  

(x⊕ y )⊕z=

x+ y
1+xy

+z

1+( x+ y
1+xy

)z
= x+ y+z+xyz
1+xy+xz+ yz  



x⊕( y⊕z)=

y+z
1+ yz

+x

1+( y+z
1+ yz

) x
= y+ z+x+xyz
1+ yz+ yx+zx

= z+ y+ z+xyz
1+xy+xz+ yz

To show that we have a group ( (−1,1) ,), it is necessary to verify the closure. That is, we have to

see that the result of the generalized sum is in the open interval (−1,1) .

Let us assume  x  > 0 and  y  > 0. We need x⊕ y<1 .  And

therefore:

x+ y
1+xy

<1⇒ x+ y<1+xy

We can see that it is so, by means of  a geometric approach.

Let  us  consider  a  square  having  sides  equal  to  1.  In  this

square, let us consider rectangles  x x 1, 1 x y  and  x x y.  

From the image, we can see immediately that:

  x+ y=x×1+1× y=xy+x (1− y)+ yx+ y (1−x )<1+xy⇒ xy+ x(1− y)+ y (1−x)<1 .

The same happens in the case that  x < 0 and y < 0.  We need again
|x|+|y|
1+|x||y|

<1 , and therefore we

can repeat the previous approach.

In the case that  x > 0 and  y < 0, we can use the following

geometry.  Let us suppose |x|  > |y|. We need to have:

 |x|−|y|
1−|x||y|

<1 .

If  we  look  at  the  image  on  the  left,  we  have  that

|x|−|y|<1−|x||y| , the difference  |x|−|y|  being represented by the pink rectangle. The same is

true in the other case  x < 0 and y > 0. This means that the axiom of the closure is verified and that ((-

1,1),)  is an Abelian group. 



The generalized sum (3) is used by Kaniadakis in Ref.3 for the relativistic velocity, in the following

form:

u1⊕u2=
u1+u2

1+κ 2u1u2

where u1 and u2  are dimensionless velocities. 

Since we are considering the group  ((-1,1),),  we avoid the divergence which we encounter when

y=−1/ x . In fact, in relativity, the dimensionless velocity u=v/c  is less than 1, if we assume  c as

the speed of light.

Another manner to generate (3)

Let us consider another manner to generate the sum (3), using the following function and its inverse: 

    G(x)=1−e
x

1+ex
       G

−1(x)=ln( 1−x
1+x

)

For the chosen function, we need to have −1<x<1 . A group law Φ(x , y) could be:

Φ(x , y)=G(G−1(x)+G−1( y )) .

And therefore: 

x⊕ y=G(G−1(x )+G−1( y))=G( ln(1−x
1+ x

)+ ln( 1− y
1+ y

))=G( ln(1−x
1+x

1− y
1+ y

))=G( lnZ)

G(ln Z)=1−Z
1+Z

= x+ y
1+xy

Therefore we have again the generalized sum (3):

x⊕ y= x+ y
1+xy



A sequence of generalized sums

Let us consider again [10] and also [12]. 

As previously told, we find the group law Φ(x , y)  as Φ(x , y)=G(G−1(x)+G−1( y )) .

For the additive group law is: Φ(x , y)=x+ y . In this case, we can see that G function is: 

G(z)=kz ,G−1(z )=k−1 z . 

Then:                        G(G−1(x)+G−1( y))=G(k−1 x+k−1 y)=k (k−1 x+k−1 y )=x+ y

A multiplicative group law is given by: Φ(x , y)=x+ y+xy . 

In [10], we find that G(z)=ez−1 . We can easily see that G−1(z)=ln(z+1) ,  so that: 

G(G−1 z )=exp [ ln (z+1)]−1=z+1−1=z .

In this manner, we can obtain: G(G−1 x+G−1 y )=exp[ ln(x+1)+ ln( y+1)]−1 and 

exp[ ln( x+1)+ln ( y+1)]−1=exp[ ln((x+1)( y+1))]−1=x+ y+xy+1−1=x+ y+xy

The neutral element is 0 and the opposite element is:

Opposite(x)=− x
1+x

However, we have to avoid x=−1  , and not consider it in the group.

Let us note that the multiplicative group appears in the generalized sum of Tsallis entropy [13]. The

related algebra has been investigated and discussed in detail in [6]. 

Recently, a multi-parametric version of this entropy has been proposed in [14]. This entropy is based on

a rational group law:

Φ(x , y)= x+ y+axy
1+bxy

When b is equal to zero, we find the single-parametric Tsallis entropy.

In [12], we find mentioned the hyperbolic group law too: 



Φ(x , y)= x+ y
1+xy

which was discussed by Kaniadakis in [3], for the addition of velocities in special relativity. Let us

stress that another  hyperbolic group  exists, that having (1) as generalized sum, and given in the  κ-

calculus as the sum of momenta [3]. 

In [12], we find also the Euler group law for elliptic integrals:

 Φ(x , y)= x √1− y
4+ y √1−x4

1+x2 y2
  

So that:                                       ∫
0

x
dt

√1−t 4
+∫
0

y
dt

√1−t 4
= ∫

0

Φ(x , y )
dt

√1−t 4

Let us conclude the discussion proposing two examples of generalized sums based on circular functions

and another example of multiplicative group.

Circular functions

Let us discuss the generalized sums and the group laws, which are based on circular functions sine and

tangent. For the circular sine, we consider the inverse circular functions, having the property [15]:

arcsin (x)±arcsin( y)=arcsin(x √1− y2± y √1−x2) (4)

The group law is: Φ(x , y)=sin(arcsin (x)+arcsin ( y )) .

Again, the generalized sum is:

x⊕ y=x √1− y2+ y√1−x2 (5)

In this case we have −1⩽x , y⩽1 . The group ([-1,1],)  is Abelian. 

The closure is given in the following manner. 

Let us consider (4) and calculate the sine:



 sin(arcsin (x )±arcsin ( y ))=sin (arcsin (x√1− y2± y √1−x2)) . 

This  means  that:  sin(arcsin (x )±arcsin ( y ))=x⊕ y=x√1− y2± y √1−x2 which  is  in  interval

[−1,1] . The neutral element is 0. The opposite element  of x is −x .  Also the commutativity is

evident. 

We have to discuss the associativity too, showing that (x⊕ y )⊕z=x⊕( y⊕z) . 

Again, let us calculate arcsin ((x⊕ y )⊕z ) and  arcsin (x⊕( y⊕z)) , we can easily see: 

arcsin ((x⊕ y )⊕z )=arcsin (x⊕ y )+arcsin(z )=arcsin (x √1− y2+ y √1−x2)+arcsin (z) ,

 which is giving, according to (4), arcsin (x)+arcsin ( y )+arcsin( z) . The same for: 

arcsin (x⊕( y⊕z))=arcsin (x)+arcsin ( y⊕z )=arcsin (x)+arcsin( y )+arcsin (z) .

In the case of the inverse circular tangent, we have the following property to use [15]:

arctan (x)±arctan( y )=arctan ( x± y
1∓xy

)

Therefore, let us define the generalized sum as:

x⊕ y= x+ y
1−xy (6)

This sum is commutative. The neutral element is 0. The opposite element  of x is −x . 

For the associativity, we can show that (x⊕ y )⊕z=x⊕( y⊕z) . Actually: 

(x⊕ y )⊕z=

x+ y
1−xy

+z

1−( x+ y
1−xy

) z
= x+ y+z−xyz
1−xy−xz− yz

x⊕( y⊕z)=

y+z
1− yz

+x

1−( y+ z
1− yz

)x
= y+ z+x−xyz
1− yz− yx−zx

= z+ y+ z−xyz
1−xy−xz− yz



However, let us note that when we consider the sum x⊕ y with y=1/ x , we have a divergence.

This is the same as considering two angles, the sum of which being equal to 90 degrees.

A multiplicative group

Let us conclude considering the following function and its inverse: 

    G(x)=e−2 x(e2x+1)        G
−1(x)=ln( 1

√x−1
)

and investigate a possible  multiplicative group from them. For the chosen function, we need to have

1<x . A group law Φ(x , y) could be:

Φ(x , y)=G(G−1(x)+G−1( y )) .

And therefore we could imagine a generalized sum as: 

x⊕ y=G(G−1(x )+G−1( y))=G( ln( 1

√x−1
)+ ln( 1

√ y−1
))=G( ln( 1

√x−1
1

√ y−1
))=G( ln 1

Z
)

G(ln 1
Z

)=e−2 lnZ (e2 lnZ+1)=( x−1)( y−1)( 1
(x−1)( y−1)

+1)

x⊕ y=2−x− y+ xy=(1−x)+(1− y)+xy (7)

Let  us  consider  the  geometry  on  the  left.  From  the

rectangle  xxy,  we  can  remove  the  colored  rectangles

(x−1)x1, (y−1)x1; the result is greater than 1. So it seems

that have the closure. 

Now,  we  need  to  consider  the  neutral and  opposite

elements.

As we can see from (6), the neutral element is not 0. In fact:

x⊕0=2−x−0+x 0=(1−x )+(1−0)+x 0=2−x≠x

 



Let us use as a neutral element  the integer 2. x⊕2=(1−x)+(1−2)+2 x=1−x−1+2 x=x .

The opposite element of x is defined by  x⊕Opposite(x)=2 . We have:

Opposite(x)= x
x−1 (8)

In this case, the opposite element is greater than 1 and then it is an element of the group.

Therefore, we consider 2 as the neutral element , and the opposite element as given by (8).

To have a group, we need to have the associativity (x⊕ y )⊕z=x⊕( y⊕z)  for the given sum :

x⊕ y=2−x− y+ xy=(1−x)+(1− y)+xy

Let us evaluate:

(x⊕ y )⊕z=2−(x⊕ y )−z+(x⊕ y )z=2−2+x+ y−xy−z+2 z−xz− yz+xyz

(x⊕ y )⊕z=x+ y+ z−xy−xz− yz+xyz (9)

And:

x⊕( y⊕z)=2−x−( y⊕z)+x ( y⊕z )=2−x−(2− y−z+ yz)+ x(2− y−z+ yz)

x⊕( y⊕z)=x+ y+z−xy−xz− yz+ xyz (10)

From (8) and (9), we have the associativity. The commutativity is evident.

As a conclusion, the group having elements in the set  x>1, for the  generator G(x)=e−2 x(e2x+1) ,

has the generalized sum given by x⊕ y=2−x− y+ xy=(1−x)+(1− y)+xy . The neutral element is 2

and the opposite element of x is x /(x−1) .

To conclude, let us note that the same approach can be used for many other transcendental functions,

such as for algebraic functions.
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Of generalized sums of numbers, we have given some examples in previous works [1-3]. Here

we propose the study of the Mersenne Numbers,  using the same approach.  About  these

numbers, a large literature exists (see for instance that given in [4]).  The form of the numbers

is that of a power of two minus 1. Among them we find the Mersenne primes. The numbers are

named after Marin Mersenne (1588 – 1648), a French Minim friar, who studied them in the

early 17th century.

Mersenne numbers are: 

M n=2
n−1

Let us consider them to give an example of generalized sum. We can start from the following

calculus:

. Mm+n=2
m+n−1

Mm+n=2
m+n−1=2m2n−1−2m+2m−2n+2n−1+1=2m(2n−1)−1+2m−2n+1+2n−1

Mm+n=(2m−1)(2n−1)+2m−1+2n−1

Therefore, we can write the following generalized sum:

Mm+n=Mm⊕M n=(2m−1)(2n−1)+(2m−1)+(2n−1)

or:

                                        (1)  Mm+n=Mm⊕M n=Mm+M n+MmM n



Zenodo 10.5281/zenodo.1250048

This is a generalized sum that we find in the case of the multiplicative groups (for the use of

multiplicative groups in statistics and statistical mechanics see [5,6]).

Using (1), for the Mersenne numbers we can imagine the following recursive relation:

M n+1=M n⊕M 1=M n+M 1+M nM 1

That is:

2n+1−1=(2n−1)+(21−1)+(2n−1)(21−1)=2n+2n+1−2n−2+1=2n+1−1

The sum  (1) is associative, so that:

Mm⊕M n⊕M l=Mm+M n+M l+MmM n+M nM l+MmM l+MmM nM l

We cannot have a group of the Mersenne numbers, without considering also the opposites of

them, so that:

0=M n⊕Opposite(M n)

Therefore:

Opposite(M n)=−
M n

M n+1
=M−n

Explicitly: 

Opposite(2n−1)=− (2n−1)
(2n−1)+1

=(−2n+1)
2n

=2−n−1

These numbers are the Mersenne numbers with a negative exponent. So we have:

M nnn=M n⊕M−n=M n+M−n+M nM−n

0=20−1=(2n−1)+(2−n−1)+(2n−1)(2−n−1)=2n+2−n−2+2n2−n−2−n−2n+1=0
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Introduction  Several mathematicians have contributed to a calculus that today is known as

the q-calculus [1-6]. As a consequence of the many contributions, we find that it is known as

“quantum calculus,” or “time-scale calculus”, or “calculus of partitions” too [5]. It is also called

the “calculus without  limits”,  because it  is  equivalent  to the traditional  infinitesimal  calculus

without  the  notion  of  limits.  Besides  being  known  with  different  names,  the  q-calculus  is

expressed by means of different notations or, as told in [5], by different “dialects”. Here we will

use the approach and the notation given in the book by Kac and Cheung [6]. 

The first aim of the work here proposed is that of showing the following fact. The q-integers,

the q-analogue of the integers that we can find in the q-calculus, are forming a group having a

generalized sum which is similar to sum of the Tsallis q-entropies of independent systems.

After, we will see that the symmetric form of q-integers is linked to the Kaniadakis calculus. We

will conclude the discussion considering the Mersenne numbers and their link to the q-integers.

Let us stress that, besides the discussion of the previously mentioned numbers, the general

aim of the paper is that of popularizing the existence of the q-calculus.

The q-integers 

Let us start defining the q-integers.

In the q-calculus, the q-difference is simply given by: 

dq f =f (qx )−f ( x )



From this difference, the q-derivative is given as:

(1) Dq f =
f (qx )−f ( x )

qx−x

The q-derivative reduces to the Newton’s derivative in the limit q→1 . (1) is also known as

the Jackson derivative, after Frank Hilton Jackson (1870 – 1960), the English clergyman and

mathematician who worked at the beginning of the XXth century on the q-calculus.  

Let us consider the function f (x )=xn . If we calculate its q-derivative, we obtain:

(2) Dq xn=
(qx )n−xn

qx−x
=qn−1

q−1
xn−1

Comparing the ordinary calculus, which is giving (xn ) '=n xn−1 , to Equation (2), we can

define the “q-integer”  [n]  by:

            

(3) [n]=qn−1
q−1

=1+q+q2+.. .+qn−1

Therefore Equation (2) turns out to be:

Dq xn=[n ] xn−1

As a consequence,  the  n-th q-derivative of  f (x )=xn ,  which is obtained by repeating  n

times the q-derivative, generates the  q-factorial:

[n ] !=[ n ][n−1 ]. . .[3 ] [2 ][ 1]

Form the q-factorials, we can define q-binomial coefficients:

  

[n ]!
[ m ] ![ n−m ]!

This means that  we can use the usual Taylor  formula,  replacing the derivatives by the q-

derivatives and the factorials by q-factorials (in a previous work, we have discussed the q-

exponential and q-trigonometric functions [7]). Then, in the q-calculus, the q-integer [n] acts as

the integer in the ordinary calculus.



The group of q-integers

We known that the set of integers consisting of the numbers ..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...,

having as operation the addition, is a group. Therefore, let us consider the set of q-integers

given by (3) and investigate its group.  In particular,  we have to determine its operation of

addition.

Let us remember that a group is a set A having an operation • which is combining the elements

of  A. That is, the operation combines any two elements  a,b  to form another element of the

group denoted a•b.  To qualify (A,•) as a group, the set and operation must satisfy the following

requirements.  Closure:  For  all  a,b  in  A,  the  result  of  the  operation  a•b  is  also  in  A.

Associativity:  For all  a,b and c in A, it holds (a•b)•c = a•(b•c). Identity element: An element e

exists in A, such that for all elements a in A, it is e•a = a•e = a. Inverse element: For each a in

A, there exists an element b in A such that a•b = b•a = e, where e is the identity (the notation is

inherited from the multiplicative operation).

A further requirement is the commutativity: For all a,b in A, a•b = b•a.  In this case, the group is

known as an Abelian group. 

Therefore,  to qualify  a group as an Abelian group,  the set  and operation must satisfy five

requirements  which  are  known  as  the  Abelian  group  axioms.  A  group  having  a  non-

commutative operation is called a "non-abelian group" or "non-commutative group". For an

Abelian group, one may choose to denote the group operation by +  and the identity element

by 0 (neutral element) and the inverse element as −a  (opposite element). In this case, the

group is called an additive group. 

First, we have to define the operation of addition. It is not the sum that we use for the integers,

but it is a generalized sum which obeys the axioms of the group.

Let us start from the q-integer [m+n ] :

[m+n ]=qm+n−1
q−1

= 1
q−1

(qm qn−1+qm−qm)= 1
q−1

(qm(qn−1)+qm−1)

[m+n ]= 1
q−1

(qm(qn−1)+(qm−1)+(qn−1)+(1−qn))= 1
q−1

((qm−1)(qn−1)+(qm−1)+(qn−1))

Therefore, we have: 

(4) [m+n ]=[m ]+[n]+(q−1)[m ][n]

Then, we can define the generalized “sum” of the group as: 

(5) [m]⊕[n]=[m ]+[n ]+(q−1)[m] [n ]



(for other examples of generalized sums see [8]).

If we use (5) as the sum, we have the closure of it, because the result of the sum is a q-

integer. Moreover, this sum is commutative. 

The neutral element is:

(6) [0]=q0−1
q−1

=0

Let us determine the opposite element [o] , so that:

 [o]⊕[n]=0

0=[0]=[o]⊕[n]=[o ]+[n]+(q−1)[o ][n]

−[n]=[o ]+(q−1)[o] [n]

(7) [o]=−
[n]

1+(q−1)[n]
=− qn−1

(q−1)qn
=q−n−1

q−1
=[−n]

The opposite element of q-integer [n] is the q-integer of  −n , that is [−n] .

Let us discuss the associativity of the sum.

It is necessary to have:

[m]⊕([n]⊕[l ])=([m ]⊕[n])⊕[l ]

Let us calculate:

[m]⊕([n]⊕[l ])=[m]⊕([n]+[l ]+(q−1) [n] [l ])

[m]⊕([n]⊕[l ])=[m]+[n]+[l ]+(q−1)[n ][ l]+(q−1)[m] [n ]+(q−1)[m] [l ]+(q−1)2[m ][n] [l ]

And also:

([m ]⊕[n])⊕[l ]=([m ]+[n]+(q−1)[m ][n])⊕[l ]

([m ]⊕[n])⊕[l ]=[m ]+[n]+(q−1)[m ][n]+[ l ]+(q−1)[m] [l ]+(q−1)[n ][ l]+(q−1)2[m ][n] [l ]

It is also easy to see that:

[m]⊕[n]⊕[ l ]=[m+n+ l ]



As we have shown, the five axioms of an Abelian group are satisfied. In this manner, using the

generalized sum given by (5), we have the Abelian group of the q-integers. 

The link to Tsallis calculus

Let us also note that the generalized sum (5) is similar to the sum that we find in the approach

to entropy proposed by Constantino Tsallis. 

In 1948 [9], Claude  Shannon defined the entropy  S of a discrete random variable Ξ as the

expected  value  of  the  information  content: S=∑i
p i I i =−∑i

pi logb p i [10].  In  this

expression, I is the information content of Ξ, the probability of i-event is pi  and b is the base

of the used logarithm. Common values of the base are 2, the Euler’s number e, and 10. 

Constantino Tsallis generalized the Shannon entropy in the following manner [11]: 

Sq=
1

q−1(1−∑i

pi
q)

Given two independent systems A and B, for which the joint probability density satisfies:

p( A , B)=p( A) p(B)

the Tsallis entropy gives:

(8) Sq ( A ,B)=Sq(A)+Sq(B)+(1−q)Sq ( A)Sq (B)

The sum of more than two terms of Tsallis entropies is discussed in [12].

The  parameter (1−q) ,  in  a  certain  manner,  measures  the  departure  from the  ordinary

additivity, which is recovered in the limit q→1 . 

Actually the group on which is based the Tsallis entropy, and therefore Equation (8), is known

as the “multiplicative group” [7,13,14]. As stressed in [15], the use of a group structure allows

to determine a class of generalized entropies. Let us note the group of the q-integers, with

addition (5), can be considered a “multiplicative group” too. 

Let us stress that we have a link of the multiplicative group to the Tsallis entropy. The group of

the n-integers had been studied in [16,17] too, but in these articles, a quite different expression

for  the  generalized  sum  had  been  proposed.  It  is  given  as  the  “quantum  sum”

[x ]⊕[ y ]=[x ]+qx [ y ] , where the link to the Tsallis calculus is less evident.



Symmetric q-numbers

In the previous discussion we have considered the group of the q-integers as defined by q-

calculus. In  [6] it is also defined the symmetric q-integer in the following form (here we use a

notation different from that given in the Ref.6):

(9) [n]s=
qn−q−n

q−q−1

Repeating the approach previously given, we can determine the group of the symmetric q-

integers. 

Let us start from the q-integer [m+ n ]s , which is according to (9):                                            

[m+ n ]s=
qm+ n−q−(m+ n)

q−q−1

and try to find it as  a generalized sum  of  the q-integers [m]s and [n]s .

By writing q=exp( log q) ,  the q-integer turns out into a hyperbolic sine: 

(10) [n]s=
qn−q−n

q−q−1 = en logq−e−nlog q

q−q−1 =2
sinh (n log q)

(q−q−1)

Apart from a numerical factor, this is the form of the generalized numbers proposed by G.

Kaniadakis in his k-calculus [18-22]. 

From (10), we can write also:

1
2
(q−q−1) [n ]s=sinh (n log q)

Therefore:

 [m+n ]s=
qm+n−q−(m+n)

q−q−1 =2
sinh((m+n) logq)

(q−q−1)

Using the properties: 

sinh(x+ y )=sinh xcosh y+cosh x sinh x  ; cosh x=√1+sinh2 x

we obtain:



[m+n ]s=
2

(q−q−1)
[sinh(m log q)cosh (n log q)+sinh(n log q)cosh (m log q)]

[m+n ]s=[m]s cosh(n log q)+[n]scosh (m log q)

[m+n ]s=[m]s √1+sinh2(n log q)+[n]s√1+sinh2(m log q)

Let  us define:  k=(q−q−1)/2  and then:  k [n]s=sinh (n log q) .  As  a consequence,  we

have the generalized sum of the symmetric q-integers as:

(11) [m]s⊕[n ]s=[m]s √1+k 2[n]s
2+[n]s √1+k2[m ]s

2

Let  us  stress  that  (11)  is  also  the  generalized  sum  proposed  by  G.  Kaniadakis  in  the

framework of a calculus [19-22], the details of which are given in [22].

By means of  (11), we can repeat the approach given previously for q-numbers (3) and study

of the group of the symmetric q-integers. 

The Mersenne numbers

In the case that q=2 , we have:

[n]=2
n−1
2−1

=2n−1

These are the Mersenne Numbers.  About these numbers, a large literature exists (see for

instance that given in [23]).  Among these numbers we find the Mersenne primes.

The numbers are named after  Marin Mersenne (1588 – 1648),  a French Minim friar,  who

studied them in the early 17th century.

Mersenne numbers are written as [23]: 

M n=2
n−1

Of course, because they are q-integers for q=2 , we have the generalized sum given in (5):

(5’) [m]⊕[n]=[m ]+[n ]+(2−1)[m ][n]=[m ]+[n]+[m] [n]

But we can repeat the calculus as an exercise.



We can start from the number M m+n  and calculate. 

 M m+n=2
m+n−1

M m+n=2
m+n−1=2m2n−1−2m+2m−2n+2n−1+1=2m(2n−1)−1+2m−2n+1+2n−1

M m+n=(2m−1)(2n−1)+2m−1+2n−1

Therefore, we can write the following generalized sum:

M m+n=M m⊕M n=(2m−1)(2n−1)+(2m−1)+(2n−1)

or:

                                        (12)  M m+n=M m⊕M n=M m+M n+ M m M n

(12) is the same as (5’). Let us stress once more that this is a generalized sum that we can find

in the case of the multiplicative groups [8]. 

Using (12), we can imagine for the Mersenne numbers the following recursive relation:

M n+1=M n⊕M 1=M n+M 1+ M n M 1

We can verify as follow:

2n+1−1=(2n−1)+(21−1)+(2n−1)(21−1)=2n+2n+1−2n−2+1=2n+1−1

The sum  (12) is associative, so that:

M m⊕M n⊕M l=M m+M n+M l+M m M n+M n M l+M m M l+M m M n M l

We cannot have a group of the Mersenne numbers, without considering also the opposites of

them, so that:

0=M n⊕Opposite(M n)

Therefore:

Opposite(M n)=−
M n

M n+1
=M−n

Explicitly: 

Opposite(2n−1)=−
(2n−1)

(2n−1)+1
=

(−2n+1)
2n =2−n−1

These numbers are the Mersenne numbers with a negative exponent. So we have:



M n−n=M n⊕M−n=M n+M−n+M n M−n

0=20−1=(2n−1)+(2−n−1)+(2n−1)(2−n−1)=2n+2−n−2+2n2−n−2−n−2n+1=0

Symmetric Mersenne  

Let us consider the symmetric q-integer in the case of q=2 . 

We can define the symmetric Mersenne in the following manner:

(13) M n
s=[n]s=

2n−2−n

2−2−1

By writing 2=exp (log 2) ,  (13)  turns out into a hyperbolic sine: 

(14) M n
s=2

n−2−n

2−2−1
= enlog 2−e−n log2

2−2−1 =2
sinh(n log 2)

(2−2−1)

Again, as previously told, apart from a numerical factor, this is the form of the generalized

numbers proposed by G. Kaniadakis.

Let us define k=(2−2−1)/2 ; we have the generalized sum of the symmetric Mersenne as:

(15) M m
s ⊕M n

s=M m
s √1+k2(M n

s)2+M n
s √1+k 2(M m

s )2

Of course, we have again the generalized sum proposed by G. Kaniadakis.

As a conclusion  we can note that,  by  means of  the generalized  sums,  we have found a

different approach to the Mersenne numbers too. In my opinion, it is also possible that it was

the form of the Mersenne numbers that inspired the Reverend Jackson to modify the usual

derivative into the definition (1) of the q-calculus.
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 In [1] we find that there are two definitions of the Fermat numbers. We have a less common definition

giving a Fermat number as Fn=2
n+1 , which is obtained by setting x=1 in a Fermat polynomial of x,

and the commonly encounter definition Fn=2
2n+1 , which is a subset of the previous assembly of

numbers. Here we will consider numbers Fn=2
n+1  and - as we have recently proposed in [2] for q-

integers and Mersenne numbers - investigate the set of them to find its generalized sum which defines

the operation of the group.

Let us remember that a group is a set A having an operation • which is combining the elements of A.

That is, the operation combines any two elements  a,b  to form another element of the group denoted

a•b.   To  qualify  (A,•)  as  a  group,  the  set  and  operation  must  satisfy  the  following  requirements.

Closure: For all a,b in A, the result of the operation a•b is also in A. Associativity: For all a,b and c in

A, it holds (a•b)•c = a•(b•c). Identity element: An element e exists in A, such that for all elements a in

A, it is e•a = a•e = a. Inverse element: For each a in A, there exists an element b in A such that a•b =

b•a = e, where e is the identity (the notation is inherited from the multiplicative operation). A further

requirement, is the commutativity: For all  a,b in  A,  a•b  = b•a.  In this case, the group is an Abelian

group. For an Abelian group, one may choose to denote the  operation by + , the  identity element

becomes the  neutral element and the inverse element the  opposite element. In this case, the group is

called an additive group. 



 The generalized sum for the Fermat numbers Fn=2
n+1  is:

Fm⊕Fn=2−Fm−Fn+Fm Fn=(1−Fm)+(1−Fn)+FmFn (1)

To have (1), let us evaluate: 

Fm+n=2
m+n+1=Fm⊕Fn=2−Fm−Fn+Fm Fn=2−(2m+1)−(2n+1)+(2m+1)(2n+1)

2m+n+1=2−2m−2n−2+2m2n+2n+2m+1

This gives also the closure of the group.

We can provide a recurrence relation as: Fn+1=2
n+1+1=Fn⊕F1

From (1),  we can see that the neutral element is not 0. We have to use as a neutral element the integer

2, which is F0=2
0+1=2 and then an element of the group. We have:

Fn⊕F0=2−Fn−F0+FnF0=Fn

The opposite element  is defined by  Fn⊕Opposite(Fn)=2 . We have:

Opposite(Fn)=
Fn
Fn−1

=1+2−n=F−n (2)

Then, to have a group we need to add numbers (2) to the set of the Fermat numbers.

Therefore, we consider 2 as the neutral element , and the opposite element as given by (2).

Let us consider three Fermat numbers Fn , Fm , F l ; to have a group we need the associativity of the

generalized  sum,  so  that (Fm⊕Fn)⊕F l=Fm⊕(Fn⊕F l) .  Let  us  call x=Fn , y=Fm , z=F l  and

evaluate:

(x⊕ y )⊕z=2−(x⊕ y )−z+(x⊕ y )z=2−2+x+ y−xy−z+2 z−xz− yz+xyz

(x⊕ y )⊕z=x+ y+ z−xy−xz− yz+xyz (3)

And:

x⊕( y⊕z)=2−x−( y⊕z)+x ( y⊕z )=2−x−(2− y−z+ yz)+ x(2− y−z+ yz)

x⊕( y⊕z)=x+ y+z−xy−xz− yz+ xyz (4)

From (3) and (4), we have the associativity. The commutativity is evident.



We have already considered the generalized sum (1) in a recent work [3].

In  [3],  we  consider  some  functions G(x) ,  having  inverses  so  that G−1(G(x))=x ,  which  are

generators of group law  [4-6]:

Φ(x , y)=G(G−1(x)+G−1( y ))

The group law is giving the generalized sum of the group x⊕ y=G(G−1(x )+G−1( y)) .

In [3] we considered the following generator and inverse:  

    G(x)=e−2 x(e2x+1)        G
−1(x)=ln( 1

√x−1
)  (5)

and investigate a possible group from them. The group law Φ(x , y) gives the generalized sum:

 x⊕ y=G(G−1(x )+G−1( y))=G( ln( 1

√x−1
)+ ln( 1

√ y−1
))=G( ln( 1

√x−1
1

√ y−1
))=G( ln 1

Z
)

G(ln 1
Z

)=e−2 lnZ (e2 lnZ+1)=( x−1)( y−1)( 1
(x−1)( y−1)

+1)

x⊕ y=2−x− y+ xy=(1−x)+(1− y)+xy (6)

And (6) is the generalized sum (1) proposed for the Fermat numbers. 

Let us also note that, if we use (5), we need  x  >1. And this is a condition satisfied by the Fermat

numbers and their opposites (2).
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In two recent papers we have discussed some properties of the Mersenne numbers [1,2] and

of the Fermat numbers [3], using an approach based on the generalized sums [4-8].

In [2], in particular, the generalized sum of the Mersenne numbers and the group based on this

sum is proposed. Mersenne numbers are M n=2
n−1 . These numbers form a group with the

following generalized sum:

(1) Mm+n=Mm⊕M n=Mm+M n+MmM n

Using (1), for the Mersenne numbers we can imagine the following recursive relation:

M n+1=M n⊕M 1=M n+M 1+M nM 1

Being M 1=1 :

M n+1=2M n+1

With a Fortran program, we have  1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 

16383, 32767, 65535,    131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 

16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 

2147483647,  4294967295, 8589934591, 17179869183, 34359738367, 68719476735, 

137438953471,  274877906943,  549755813887, 1099511627775,  2199023255551, 

4398046511103, 8796093022207,  17592186044415,  35184372088831, 70368744177663, 
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140737488355327, 281474976710655,  562949953421311,  1125899906842623, in 

agreement to http://oeis.org/A000225 for the first 32 numbers.

The sum  (1) is associative. The neutral element is M 0=2
0−1=0 and the  opposites of the 

numbers are given by 0=M n⊕Opposite(M n) . 

Opposite(M n)=−
M n

M n+1
=M−n

Explicitly: 

Opposite(2n−1)=2−n−1

These numbers are the Mersenne numbers with a negative exponent. If we use them, we can 

have a group associated to the Mersenne numbers.

Fermat numbers are Fn=2
n+1 [9]. These numbers have the following generalized sum [3]:

(2) Fm⊕Fn=(1−Fm)+(1−Fn)+Fm Fn

Using (2), for the Fermat numbers we can imagine the following recursive relation:

Fn+1=Fn⊕F1=(1−Fn)+(1−F1)+FnF1

Since F1=2
1+1=3 : 

Fn+1=Fn⊕F1=(1−Fn)−2+3Fn=2 Fn−1

 Using a Fortran program we have: 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 

16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609,  

16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 

2147483649, 4294967297, 8589934593, 17179869185, 34359738369, 68719476737,  

137438953473, 274877906945, 549755813889, 1099511627777, 2199023255553,  

4398046511105, 8796093022209, 17592186044417, 35184372088833, 70368744177665,

140737488355329, 281474976710657, 562949953421313, 1125899906842625, in agreement

to http://oeis.org/A000051 for the first 32 numbers.

The sum  (2) is associative. The neutral element is F0=2
0+1=2 and the opposites of the 

numbers are Opposite(Fn)=F−n [3].
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Similar to the Fermat numbers, we have the Cullen numbers. The Woodall numbers are similar

to the Mersenne numbers [8,9]. Let us find the generalized sums of them. 

The Cullen numbers are:  

Cn=2
nn+1

Let us find the generalized sum, as we did in [2,3]:

Cm+n=2
m+n(m+n)+1

Cm+n=2
m2nn+2m2nm+2m−2m+2n−2n+1=2m(2nn+1)+2n(2mm+1)−2n−2m+1

Cm+n=2
mCn+2

nCm−2
n−2m+1=2m(Cn−1)+2

n(Cm−1)+1

Let us write the generalized sum as:

(3) Cm⊕Cn=2
m(Cn−1)+2

n(Cm−1)+1

The neutral element of this sum is C0=2
00+1=1 . Using (3):

Cm⊕C0=2
m(C0−1)+2

0(Cm−1)+1=Cm

We have C1=2
11+1=3 . Recursive relation is:

Cn+1=Cn⊕C1=2
n(C1−1)+2

1(C n−1)+1=2
n+1+2(Cn−1)+1

So we have:  3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377,  

491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, 92274689, 192937985,

402653185, 838860801, 1744830465, 3623878657, 7516192769, 15569256449, 

32212254721, 66571993089, 137438953473, 283467841537, 584115552257,  

1202590842881, 2473901162497, 5085241278465, 10445360463873, 21440476741633, 

43980465111041, in agreement to http://oeis.org/A002064.

Of the Cullen numbers, we can also give another form of the generalized sum (3):

Cm⊕Cn=2
mm
m

(Cn−1)+2
n n
n
(Cm−1)+1+

(Cn−1)
m

−
(Cn−1)
m

+
(Cm−1)
n

−
(Cm−1)
n

Cm⊕Cn=
Cm
m

(Cn−1)+
Cn
n

(Cm−1)+1−
(Cn−1)
m

−
(Cm−1)
n
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(4) Cm⊕Cn=
1
m

(Cm−1)(Cn−1)+
1
n
(Cn−1)(Cm−1)+1

The recursive relation assumes the form:

Cn+1=Cn⊕C1=
1
1
(C1−1)(Cn−1)+

1
n
(Cn−1)(C1−1)+1

Cn+1=Cn⊕C1=2(Cn−1)+
2
n
(Cn−1)+1

In the case that we use the generalized sum (4), we have to remember that when m or n are  

equal to zero, we need to assume (Cm−1) /m=1 , (Cn−1)/n=1 .

In this manner: 

Cm⊕C0=
1
m

(Cm−1)(C 0−1)+(Cm−1)+1=Cm

since C0=1 .

The Woodall numbers are:  

W n=2
nn−1 .

Let us find the generalized sum: 

 Wm+n=2
m+n(m+n)−1

Wm+n=2
m2nn+2m2nm+2m−2m+2n−2n−1=2m(2nn−1)+2n(2mm−1)+2n+2m−1

Wm+n=2
mW n+2

nWm+2
n+2m−1=2m(W n+1)+2

n(Wm+1)−1

Let us write the generalized sum as:

(5) Wm⊕W n=2
m(W n+1)+2

n(W m+1)−1

The neutral element of this sum is W 0=2
00−1=−1 . Using (5):

Wm⊕W 0=2
m(W 0+1)+2

0(W m+1)−1=Wm

We have W 1=2
11−1=1 . The recursive relation is:

W n+1=W n⊕W 1=2
n(W 1+1)+2

1(W n+1)−1=2
n+1+2(W n+1)−1

So we have:   1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 

491519, 1048575, 2228223, 4718591, 9961471, 20971519, 44040191, 92274687, 192937983,
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402653183, 838860799, 1744830463, 3623878655, 7516192767, 15569256447, 

32212254719, 66571993087, 137438953471, 283467841535, 584115552255, 

1202590842879, 2473901162495, 5085241278463, 10445360463871, 21440476741631

 43980465111039, in agreement to http://oeis.org/A003261.

Again, we can give another form of the generalized sum (5):

Wm⊕W n=2
m m
m

(W n+1)+2
n n
n
(Wm+1)−1+

(W n+1)
m

−
(W n+1)
m

+
(W m+1)
n

−
(W m+1)
n

Wm⊕W n=
Wm

m
(W n+1)+

W n

n
(Wm+1)−1+

(W n+1)
m

+
(Wm+1)
n

(6) Wm⊕W n=
1
m

(W m+1)(W n+1)+
1
n
(W n+1)(W m+1)−1

The recursive relation assumes the form:

W n+1=W n⊕W 1=
1
n
(W n+1)(W 1+1)+(W n+1)(W 1+1)−1

W n+1=W n⊕W 1=
2
n
(W n+1)+2(W n+1)−1

In the case that we use the generalized sum (6), we have to remember that when m or n are  

equal to zero, we need to assume (Wm+1)/m=1 , (W n+1)/n=1 .

In this manner: 

Wm⊕W 0=
1
m

(W m+1)(W 0+1)+(W m+1)−1=Wm

since W 0=−1 .
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In recent papers we have discussed some properties of the Mersenne numbers [1,2] and of

the Fermat numbers [3], using an approach based on generalized operations of addition [4-8].

In  [9],  we  have discussed  the Cullen  and  Woodall  numbers  too (for  references on  these

numbers, see [10-13]). Here we consider the Thabit numbers [14]. These numbers are given

as T n=3∗2
n−1 , where the asterisk represents the ordinary multiplication. 

Let us consider the following operation:

T m+n=T m⊕T n
Therefore

T m+n=3∗2
m+n−1=3∗2m+n−1+2n−2n=2n(3∗2m−1)−1+2n=2nTm+2

n−1

Tm+n=2
n 3
3
Tm+2

n−1−
Tm
3

+
Tm
3

=1
3
T mT n+

3
3
2n−1

3
+ 1
3
−1+

Tm
3

So we have:

(1) T m⊕T n=
1
3
T mT n+

1
3
Tm+

1
3
T n−

2
3
=1
3
(Tm+T n+TmT n−2)

Using (1), we can see that the neutral element is T 0=2 , so that:

T m⊕T 0=
1
3
(T m+T 0+TmT 0−2)=

1
3
(3Tm)=T m
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The recursive relation is given accordingly to (1), starting from T1=5 :

T n+1=T n⊕T 1=
1
3
(T n+T 1+T nT1−2)=

1
3
(Tn+5+5T n−2)=

1
3
(6Tn+3)=2T n+1

With a Fortran program (double precision), we have   5, 11, 23, 47, 95, 191, 383, 767, 1535, 

3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 

6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 

1610612735, 3221225471, 6442450943,  12884901887, 25769803775, 51539607551, 

103079215103, 206158430207, 412316860415,   824633720831, 1649267441663, 

3298534883327, 6597069766655, 13194139533311, 26388279066623, 52776558133247, 

105553116266495, 211106232532991,   422212465065983, 844424930131967, 

1688849860263935,  3377699720527871, 6755399441055743. In bold characters, the 

prime numbers as from http://oeis.org/A007505.                         
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As explained in [1],  the term “repunit”  was coined by Beiler  in a book of 1966 [2],  for the

numbers defined as: 

Rn=
10n−1
10−1

The sequence of repunits starts with 1, 11, 111, 1111, 11111, 111111, ... (sequence A002275

in the OEIS, https://oeis.org/A002275). As we can easily see, these numbers are linked to q-

integers and Mersenne numbers [3-7]. A q-integer is defined as [3]: 

[n]=q
n−1
q−1

so we have the Mersenne numbers for q=2. The repunits are the q-integers for q=10 :

[n]q=10=
10n−1
10−1

We can use the same approach for the repunits of that proposed in [4-6].  Let us consider the

following operation (generalized sum):

Rm+n=Rm⊕Rn



Zenodo 10.5281/zenodo.2639620

defined in the following manner:

(1) Rm⊕Rn=Rm+Rn+(10−1)RmRn

This is the addition of the q-units as given in [4,5]. The neutral element for (1) is R0=0 , so 

that: Rm⊕R0=Rm+R0+(10−1)RmR0=Rm . 

The recursive relation for the repunits, given according to (1) and starting from R1=1 , is:

Rm⊕R1=Rm+R1+(10−1)Rm R1

That is: 11, 111, 1111, 11111, 111111, 1111111, 11111111, and so on. 

In  [8], we have discussed the symmetric q-integers, which are defined as [3]:  

[n]s=
qn−q−n

q−q−1

We can define the “symmetric” repunits as:

Rn , s=
10n−10−n

10−10−1
=2

sinh(n ln10)
10−10−1

The sequence is: 1, 10.1, 101.01, 1010.101, 10101.0101, 101010.10101, etc.

In this case, the addition is defined [8]:

Rm, s⊕Rn , s=Rm ,s cosh (n ln 10)+Rn , scosh (m ln 10)

or

Rm, s⊕Rn , s=Rm ,s√1+k2(Rn , s)2+Rn , s√1+k2(Rm,s)2

where k=1
2

(10− 1
10

) . Let us note that R1 ,s=
10−10−1

10−10−1
=1 .

The recursive formula for the symmetric repunits is:

Rn+1 , s=Rn, s⊕R1, s=Rn,s√1+k2+√1+k2(Rn , s)2
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Abstract: The generalized entropies of C. Tsallis and G. Kaniadakis have composition operations, which can be 
applied to the study of numbers. Here we will discuss these composition rules and use them to study some famous 

sequences of numbers (Mersenne, Fermat, Cullen, Woodall and Thabit numbers). We will also consider the 

sequence of the repunits, which can be seen as a specific case of q-integers.  
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Introduction 
In some recent works [1-3], we have discussed the 

generalized entropies of C. Tsallis [4] and G. 

Kaniadakis [5,6], with the aim of applying them to 
image processing and image segmentation. What is 

quite attractive of these entropies is the fact that they 

are non-additive. It means that they are following 

rules of composition, which are different from the 

usual operation of addition. Moreover, these 

composition rules contain indices, which are useful to 

have a specific segmentation of images, or even to 

drive a gray-level image transition among the textures 

of the image [7].  

 

The Tsallis composition rule is defined in [8] as a 

pseudo-additivity. However, as these rules are 
concerning generalized entropies, we could call them 

“generalized sums”.  Actually, I used this locution in 

a discussion about the rules of composition that we 

can obtain from the transcendental functions [9]. The 

approach, given in [9], is using a method based on the 

generators of algebras [10-12]. Here I show that we 

can use the generalized sums, as those that we can 

obtain from Tsallis and Kaniadakis generalized 

statistics, to the study of the sequences of numbers. In 

particular, we will discuss the composition rules that 

can be applied to famous sequences of numbers, such 
as Fermat, Mersenne and Thabit numbers. We will 

also consider the sequence of the repunits, which are 

a specific case of q-integers. 

 

Let us start remembering the composition rules of 

Kaniadakis and Tsallis entropies. 

 

The generalized sum of Kaniadakis statistics 
In [6], a generalized sum is defined in the following 

manner. Let us consider two elements x and y of reals 

R, and a parameter   real too. The composition law  

      is given by: 

 

     √        √                         (1) 

 

which defines a generalized sum,  named  -sum. 

Reals R and operation (1) form an Abelian group.  

 

Let us remember that a group is a set A and an 
operation •. The operation combines any two 

elements a,b to form another element of the group 

denoted a•b. 

 

To qualify (A,•) as a group, the set and operation must 

satisfy the following requirements. Closure: For all 

a,b in A, the result of the operation a•b is also in A. 

Associativity: For all a,b and c in A, it holds (a•b)•c = 

a•(b•c). Identity element: An element e exists in A, 

such that for all elements a in A, it is e•a = a•e = a. 

Inverse element: For each a in A, there exists an 

element b in A such that a•b = b•a = e, where e is the 
identity (the notation is inherited from the 

multiplicative operation).  

 

If a group is Abelian, a further requirement is the 

commutativity. For all a,b in A, a•b = b•a.  Therefore, 

to qualify a group as an Abelian group, the set and 

operation must satisfy five requirements, which are 

known as the Abelian group axioms. A group having 

a not commutative operation is a "non-Abelian group" 

or a "non-commutative group". For an Abelian group, 

one may choose to denote the group operation by + 
and the identity element by 0 (neutral element) and 

the inverse element of      as    (opposite element). 

In this case, the group is called an additive group.  
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We can obtain the operation of a group by means of 

functions. Actually, if a function  ( ) exists, which 

is invertible    ( ( ))   , we can use it as a 

generator, to generate an algebra [10]. In [11], G is 

used to define the group law  (   ), such as: 

 (   ) = (   ( )     ( )).  (   ) is the 

operation    . In the case of the   -sum, the 

function G is the hyperbolic sine, so that [9]: 

 

    
 

 
    (      (  )        (  )). 

 

This operation is used in Kaniadakis generalized 

statistics for the sum of relativistic momenta. 

A property of the hyperbolic sine function is that:  

 

      ( )    (  √    ) 

 

The domain is the whole real line. We have [13]: 

 

      ( )        ( )  

=        ( √      √    ) (2) 

 

Therefore, we have that the group law is given as [9]: 

 (   )      (      ( )        ( )). 
Therefore, the generalized sum is:  

 

     √      √     

 

This is the same as (1), for parameter    = 0. The 

closure is given by the fact that the result of this 

operation is on the real line. The neutral element is 0. 

The opposite element of x is   . Also the 

commutativity is evident. 

To have a group, we need the discussion of the 

associativity too, showing therefore that (   ) 

    (   ). Let us calculate        ((  

 )  )  and        (  (   )); we can easily 

see that [9]:       ((   )  )=       (  

(   ))=       ( )        ( )        ( ).  
 

Other groups  
Of course, other generalized sums can be obtained. 

Let us consider, for instance, the hyperbolic tangent. 

Its inverse hyperbolic function is defined as:  

 

      ( )  
 

 
  (

   

   
) 

 

The domain is the open interval (    ). A property 

of this function is the following [13]: 

 

      ( )        ( )        (
   

    
) 

 

We have a group law given by  (   )  

    (      ( )        ( )). Therefore, we can 

obtain the generalized sum as [9]: 

 

    (   ) (    )    (3) 

 

This sum is commutative. The neutral element is 0. 

The opposite element of x is   . We have the 

associativity, that is (   )     (   ) 
[9].  

To show that we have a group of (-1,1) and operation 

(3) it is necessary to verify the closure. That is, we 

have to see that the result of the sum is in the open 

interval (-1,1). This is discussed in [9]. 

The generalized sum (3) is used by Kaniadakis in 

Ref.14 for the relativistic velocity.  

Another group is obtained from function  ( )  

    (     ) and its inverse    ( )    (
 

√   
). 

The  group law   (   ) =  (   ( )     ( )) 
gives [9]: 

 

    (   )  (   )      (4) 

 

We will show in a following section that the same 

rule of additivity exists for the Fermat numbers. 

 

The q-integers  
Let us see how we can apply the previously discussed 

generalized sums to the numbers. Let us start from the 

q-integers of the q-calculus. 
 

Many mathematicians have contributed to this 

calculus [15-20]. Consequently, the q-calculus is also 

known as “quantum calculus” and “time-scale 

calculus”, or “calculus of partitions” too [19]. 

Moreover, it is expressed by means of different 

notations or, as told in [19], by different “dialects”. 

Here we will use the notation given in the book by 

Kac and Cheung [20].  

 

As discussed in [21], the q-integers are forming a 

group having a generalized sum, which is similar to 
sum of the Tsallis q-entropy of two independent 

systems. The symmetric q-integers are linked to the 

Kaniadakis calculus.  

The “q-integer” [ ] is defines by:  

 

[ ]  
    

   
        ...      

 

First, we have to define the operation of addition by 

composing two q-integers. This operation is not the 

sum that we use for the natural integers of course, but 

it is a generalized sum. 

 

Let us start from the q-integer [   ]  and calculate 

as in [21]. We have:  
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[   ]  [ ]  [ ]  (   )[ ][ ] 
 

Then, we can define the generalized “sum” of the 

group as:  

 
[ ] [ ]  [ ]  [ ]  (   )[ ][ ]              (5) 

 

If we use (5) as the sum, we have the closure of it, 

because the result of the sum is a q-integer. 

Moreover, this sum is commutative. The neutral 

element is [0] = 0. The opposite element of [n] is 

equal to [  ]  [21].  

 

The generalized sum (5) is associative [21]. We have 

also that: [ ] [ ] [ ]  [     ].  
 

Therefore, the five axioms of an Abelian group are 

satisfied. In this manner, using the generalized sum 

given by (5), we have the Abelian group of the q-

integers. 

 

What is important for the present discussion is the 

fact that the generalized sum (5) is similar to the sum 

that we find in the approach to entropy proposed by 

Constantino Tsallis [4], for his generalized entropy. 
For two independent systems A and B, the Tsallis 

entropy is given by:  

 

  (   ) =    ( )    ( )  (   )  ( )  ( )                          

 

In this formula the parameter (   ), in a certain 

manner, measures the departure from the ordinary 

additivity, which is recovered in the limit    .  The 
group on which is based the Tsallis entropy, and 

therefore the generalized sum given above, is known 

in literature as the “multiplicative group”.  As told in 

[12], the use of a group structure allows determining a 

class of generalized entropies.  

 

Symmetric q-numbers 
In the previous section, we have considered the group 

of the q-integers as defined by q-calculus. In [20], it is 

also defined the symmetric q-integer in the following 
form (here we use a notation different from that given 

in the Ref.20): 

 

[ ]  
      

     
 

 

Repeating the approach previously given, we can 

determine the group of the symmetric q-integers. Let 

us start from the q-integer[   ] , which is:  

 

[   ]  = 
       (   )

     
   (6) 

 

and try to find it as  a generalized sum  of  the q-

integers [ ]  and  [ ]  [21]. 

By writing      (   ),  the q-integer turns out into 

a hyperbolic sine:  

 

[ ]  
      

     
 =  

 
              

     
  

    (     )

(     )
   (7) 

 

from (6), after some passages using (7), we find [21]:  

 

[   ]  =  [ ] √      
 (     ) + 

 [ ] √      
 (     ) 

 

Let us define:   (     )  ⁄   and then:  [ ]  
    (     ). Therefore, we have the generalized sum 

of the symmetric q-integers as: 

 
[ ]  [ ] = 

[ ] √   
 [ ] 

  [ ] √   
 [ ] 

     (8) 

 

Let us stress that (8) is also the generalized sum (1) 

proposed by G. Kaniadakis (see also the discussion in 

[22]).  

 

The Mersenne numbers 

In the case that     , we have: 
 

 [ ]  
    

   
     . 

 

These are the Mersenne Numbers. 

About these numbers, a large literature exists (see for 

instance that given in [23]).  Among the Mersenne 

integers, we find the Mersenne primes. The numbers 

are named after Marin Mersenne (1588 – 1648), a 

French Minim friar, who studied them in the early 

17th century. Let us call    the Mersenne number. 

Of course, we have the generalized sum for the  q-
numbers as given in (5): 

 

[ ] [ ]  [ ]  [ ]  [ ][ ] 
 

However, we can repeat the calculus starting from 

      
     . After some passages we obtain 

    = (    )(    )           , that 

is: 

 

                                  (9) 

 

Let us stress that we have a generalized sum of the 

form of those of the groups known as “multiplicative 

groups”.  

Using (9), for the Mersenne numbers we can imagine 

the following recursive relation: 
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The sum  (9) is associative. 

We cannot have a group of the Mersenne numbers, 

without considering also the opposites O of them, so 

that:       (  ). Therefore: 

 

 (  )  
   
    

     

 

Explicitly:  (    ) =      . These numbers are 

the Mersenne numbers with a negative exponent.  

 

Symmetric Mersenne   
Let us consider again the symmetric q-integer in the 

case of    .  

We can define the symmetric Mersenne in the 

following manner: 

 

  
  [ ]  

      

     
   (10) 

 

By writing      (   ),  (10)  turns out into a 

hyperbolic sine:  

 

  
  

              

     
  

    (     )

(     )
 

 

Let us define   (     )  ⁄ . We have the 

generalized sum of the symmetric Mersenne as: 
 

  
    

   = 

  
 √    (  

 )    
 √    (  

 )            (11) 

 

Of course, we have again the generalized sum 

proposed by G. Kaniadakis. 
 

Fermat, Cullen and Woodall Numbers  

As seen before, the Mersenne numbers     
     

are forming a group with the following generalized 

sum: 

 

                 
 

Using this composition rule, we can have the 

following recursive relation: 
 

          = 

                 
 

Numbers are  1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 

2047, 4095, 8191, 16383, 32767, 65535,   and so on, 

in agreement to the sequence given in  

http://oeis.org/A000225. 

 

Another famous sequence of integers is that of the 
Fermat numbers. Fermat numbers are defined as  

    
    [24]. These numbers have the following 

generalized sum [25]: 

      (    )  (    )              (12) 

 

which is the same of the group law (4) that we have 

discussed in [25] and in a previous section of this 

work. 
 

From (12), we can give the following recursive 

relation for the Fermat numbers:           . 
Starting from     

      , we have: 3, 5, 9, 17, 

33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 

16385, 32769, 65537, 131073, 262145, 524289, and 

so on in agreement to http://oeis.org/A000051. 

 

The sum is associative. The neutral element is 

    
      and the opposites O of the Fermat 

numbers are given by   (  )      [25]. 

 
Similar to the Fermat numbers, we have the Cullen 

numbers. The Woodall numbers are similar to the 

Mersenne numbers [26,27]. Let us find the 

generalized sums of them, as detailed in [28].  

The Cullen numbers are     
    . 

The generalized sum is [28]:  

 

       
 (    )   

 (    )            (13) 

 

The neutral element of this sum is     
      . 

Using (13): 

     = 

  (    )   
 (    )       

 

We have     
      . Recursive relation is: 

 

      
     (    )    

 

So we have:  3, 9, 25, 65, 161, 385, 897, 2049, 4609, 

10241, 22529, 49153, 106497, 229377, 491521, 

1048577, and so on, in agreement to 

http://oeis.org/A002064. 

 

Of the Cullen numbers, we can also give another form 

of the generalized sum [28]: 
 
     = 
 

 
(    )(    )  

 

 
(    )(    )              (14) 

 

The recursive relation assumes the form:      

 (    )  
 

 
(    )   . In the case that we use 

the generalized sum (14), we have to remember that 

when m or n are equal to zero, we need to assume  
(    )  ⁄    ,  (    )  ⁄   . 

The Woodall numbers are defined as:     
    . 

Let us write the generalized sum as [28]: 

 
       

 (    )   
 (    )               (15) 
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The neutral element of this sum is     
     

  . Using (15): 

 

     = 

  (    )   
 (    )       

 

We have     
      . Recursive relation is: 

 

      
     (    )    

 

So we have:   1, 7, 23, 63, 159, 383, 895, 2047, 4607, 

10239, 22527, 49151, 106495, 229375,  491519, 

1048575, and so on, in agreement to 

http://oeis.org/A003261. 

 

Also for the Woodall numbers, we can give another 

form of the generalized sum (15), as shown in [28].  

 

Thabit numbers 
Let us consider the Thabit numbers [29]. These 

numbers are given as       
   , where the 

asterisk represents the ordinary multiplication. The 

operation of addition between Thabit numbers is [30]: 

 

      (            )    (16) 

 

Using (16), we can see that the neutral element is 

    , so that: 

 

      
 

 
(            )     

 

The recursive relation is given accordingly to (16), 

starting from     : 

 

                 
 

We have   5, 11, 23, 47, 95, 191, 383, 767, 1535, 

3071, 6143, 12287, 24575, 49151,  and so on. In bold 

characters, the prime numbers as from 
http://oeis.org/A007505.  

 

Repunits 

As explained in [31], the term “repunit” was coined 

by Beiler in a book of 1966 [32], for the numbers 

defined as:  

 

   
     

    
 

 
The sequence of repunits starts with 1, 11, 111, 1111, 

11111, 111111, … (sequence A002275 in the OEIS, 

https://oeis.org/A002275). As we can easily see, these 

numbers are linked to q-integers and Mersenne 

numbers [33]. The repunits are the q-integers for 

q=10 : 

 

[ ]     
     

    
 

 
We can use the same approach for the repunits of that 

given for the q-numbers.  Let us consider the 

following operation (generalized sum):      
     . It is defined in the following manner: 

 

            (    )               (17) 

 

The recursive relation for the repunits, given 

according to (17) and starting from     , is: 
 

            (    )     
 

That is: 11, 111, 1111, 11111, 111111, 1111111, 

11111111, and so on.  

As we have considered the symmetric q-integers, we 

can define the “symmetric” repunits as [33]: 

 

     
        

       
  

    (      )

       
 

 

The sequence is: 1, 10.1, 101.01, 1010.101, 

10101.0101, 101010.10101, etc. 
In this case, the addition is the same as that for the 

symmetric q-numbers: 

 

         = 

      √   
 (    )

 
     √   

 (    )
 
 

 

Here    
 

 
(   

 

  
). Let us note that        . 

The recursive formula for the symmetric repunits is:  

 

                = 

    √   
  √    (    )

 
 

 

Conclusion 
In this work, we have discussed the composition 

operations of generalized entropies (Tsallis and 

Kaniadakis). These operations can be obtained from 

some group laws based on functions and their 

inverses.  The group laws can be defined as 

“generalized sums” because the generalized entropies 

are motivating them.  
 

The approach using the group operations can be 

applied to the study of numbers. We have discussed 

the composition rules for some famous sequences of 

numbers (Mersenne, Fermat, Cullen, Woodall and 

Thabit numbers). We have also considered the 

sequence of the repunits, which can be seen as a 

specific case of the q-integers.    
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Binary Operators of the Groupoids of  OEIS A093112 and A093069 Numbers
(Carol and Kynea Numbers) 

Amelia Carolina Sparavigna
Department of Applied Science and Technology, Politecnico di Torino, Italy.

Here we discuss the binary operators of the sets made by the OEIS sequences of integers A093112 and
A093069, also called Carol and Kynea numbers. We will see that these numbers are linked, through the
binary operators, to the Mersenne and Fermat integers. 

Written in Torino, 6 June 2019. DOI: 10.5281/zenodo.3240465

As told in [1], there are at least three definitions of "groupoid", which are currently in use. The first type
of groupoid that we can find is an algebraic structure on a set with a binary operator. The only restriction
on the operator is closure. This properties means that, applying the binary operator to two elements of a
given set S, we obtain a value which is itself a member of S.
Here, we consider the groupoids of the sets of the numbers given by OEIS sequences A093112 and
A093069 [2,3], which are also called  by Cletus Emmanuel, the Carol and Kynea numbers.

An A093112 number (Carol number) is an integer having the following form [2]:

Cn=4
n−2n+1−1=(2n−1)2−2

We can find the first numbers of the sequence A093112 in the OEIS [2]. That is: -1, 7, 47, 223, 959, 3967,
16127, 65023, 261119, 1046527, 4190207, 16769023, 67092479, 268402687, and so on.
An A093069 number (Kynea numbers) is defined as [3]:

Kn=(2n+1)2−2

So we have  [3]:  7,  23,  79,  287,  1087,  4223,  16639,  66047,  263167,  1050623,  4198399,  16785407,
67125247, 268468223, 1073807359, 4295098367, 17180131327, 68720001023, and so on.
As we did in some previous discussions (see for instance [4,5]), we can find a binary operator, which
satisfy the closure, of given sets of numbers. In [4], we considered the groupoids of Mersenne, Fermat,
Cullen and Woodall numbers.

Here how to find the operator for A093112 numbers. Let us use:

(Cm+2)
1 /2=(2m−1)=Mm ; (Cn+2)

1 /2=(2n−1)=M n ; (Cm+n+2)
1/2=(2m+n−1)=Mm+n

which are Mersenne numbers [4]. So we have the binary operator [4]:

(2m+ n−1)=Mm+n=Mm⊕M n=Mm+M n+MmM n=(2m−1)(2n−1)+(2m−1)+(2n−1)

Therefore, since (Cm+n+2)
1/2=(2m+n−1)=Mm+n :



(Cm+n+2)
1/2=(Cm+2)

1 /2(Cn+2)
1 /2+(Cm+2)

1/2+(Cn+2)
1 /2

We can find the binary operator for the Carol numbers as:

Cm+n=−2+[(Cm+2)
1 /2(Cn+2)

1 /2+(Cm+2)
1/2+(Cn+2)

1 /2]2 =

−2+(Cm+2)(Cn+2)+(Cm+2)+(Cn+2)+2(Cm+2)(Cn+2)
1/2+2(Cm+2)

1/2(Cn+2)+2(Cm+2)
1 /2(C n+2)

1 /2

So we have:

Cm+n=6+CmCn+3Cm+3Cn+2(Cm+2)(Cn+2)
1 /2+2(Cm+2)

1 /2(Cn+2)+2(Cm+2)
1 /2(C n+2)

1 /2

Therefore, the binary operator is defined as:

Cm⊕Cn=6+CmCn+3Cm+3Cn+2(Cm+2)(Cn+2)
1 /2+2(Cm+2)

1/2(Cn+2)+2(Cm+2)
1/2(Cn+2)

1/2

From this binary operation, we can have the recurrence relation: Cn+1=Cn⊕C1 .

That is:

Cn+1=6+C1Cn+3C1+3Cn+2(C1+2)(Cn+2)
1/2+2(C1+2)

1/2(Cn+2)+2(C1+2)
1/2(Cn+2)

1/2

From  C1=−1 ,  we have:  7,   47,   223,  959, 3967, 16127,  65023, 261119,  1046527,  4190207,
16769023,  67092479,  268402687, and so on.

Let us consider the Kynea numbers.

As we did before for the Carol numbers, let us use the following approach:

(Km+2)
1/2=(2m+1)=Fm ; (K n+2)

1/2=(2n+1)=Fn ; (Km+n+2)
1 /2=(2m+n+1)=Fm+n

which are Fermat numbers [4]. So we have the binary operator [4]:

(2m+ n+1)=Fm+n=Fm⊕Fn=(1−Fm)+(1−Fn)+FmFn=2+(2m+1)(2n+1)−(2m+1)−(2n+1)

(Km+n+2)
1 /2=(2m+n+1)=Fm+n=2+(2m+1)(2n+1)−(2m+1)−(2n+1)

Km+n=−2+[2+(2m+1)(2n+1)−(2m+1)−(2n+1)]2=−2+[2+(Km+2)
1 /2(K n+2)

1/2−(Km+2)
1 /2−(Kn+2)

1/2]2

Then:

Km+n=2+(K m+2)(K n+2)+(K m+2)+(Kn+2) + 4 (Km+2)
1/2(Kn+2)

1 /2−4(K m+2)
1 /2−4(K n+2)

1 /2

−2(Km+2)(Kn+2)
1/2−2(Km+2)

1/2(K n+2)+2(Km+2)
1/2(Kn+2)

1 /2

Therefore, the binary operator is defined as:



Km⊕K n=10+KmKn+3Km+3Kn + 4 (Km+2)
1/2(Kn+2)

1 /2−4(K m+2)
1 /2−4(K n+2)

1 /2

−2(Km+2)(Kn+2)
1/2−2(Km+2)

1/2(K n+2)+2(Km+2)
1/2(Kn+2)

1 /2

Recurrence is given by:

Kn+1=Kn⊕K1=10+K nK1+3Kn+3K1 + 4 (K1+2)
1 /2(K n+2)

1/2−4 (K1+2)
1/2−4 (Kn+2)

1 /2

−2(K1+2)(Kn+2)
1 /2−2(K 1+2)

1/2(Kn+2)+2(K1+2)
1 /2(K n+2)

1/2

Then, starting from   K1=7 , we have   23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623,  
4198399, 16785407,  67125247,  268468223, and so on. 
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A Binary Operator Generated by Homographic Function 

Amelia Carolina Sparavigna
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Abstract: In this work we are discussing the binary operator that we can generated by homographic
function. By means of this operator, that we can see as a generalized sum, we can create a group. 

Keywords:  generalized sum, binary operator, groups, Abelian groups.
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In  recent  works  we  have  shown some  generalized  sums  and  related  groups,  which  are  based  on

transcendental functions.  Let us note that the generalized sums are binary operators which widespread

the addition of real numbers. Besides the investigation of groups generated by transcendental functions,

we have also considered groups involving generalized integers  [1-5].  Here we consider  the group

having a binary operator generated by homographic function.

Let us consider two elements  x and y of reals  R, and a related binary operation.  We indicate this

composition law by the notation x⊕ y ,  a generalized sum so that (R,) is giving a group. 

Let us remember that a group is a set A having an operation  which is combining the elements of A.

That is, the operation combines any two elements  a,b  to form another element of the group denoted

ab.   To qualify (A,)  as a group, the set  and operation must satisfy the following requirements.

Closure: For all a,b in A, the result of the operation ab is also in A. Associativity: For all a,b and c in

A, it holds (ab)c = a(bc). Neutral (or identity) element: An element e exists in A, such that for

all elements a in A, it is ea = ae = a. Opposite (or inverse) element: For each a in A, there exists an

element  b  in  A  such that  ab  =  ba  =  e,  where  e  is the identity. If a group is Abelian,  a further

requirement is the commutativity: For all a,b in A, ab = ba.  

To have a given generalized sum, we follow an approach based on a "generation" [1,6-8].



Let us have a function G(x) , which is invertible  G−1(G(x))=x . A deformation  generator can

define the group law Φ(x , y)  [6,7]:

 Φ(x , y)=G(G−1(x)+G−1( y ))   or   x⊕ y=G(G−1(x )+G−1( y)) .

In this manner the group law is giving the generalized sum, as we can call the binary operator of the

group.

Let us consider the homographic function.

 G(x)= x+1
x−1 ; G

−1(x)= x+1
x−1 ; G

−1(G(x))=

x+1
x−1

+1

x+1
x−1

−1
= x+1+x−1
x+1−x+1

=x

x⊕ y=G(G−1(x )+G−1( y))=G( x+1
x−1

+ y+1
y−1

)=G( 2 xy−2
(x−1)( y−1)

)=

2 xy−2
(x−1)( y−1)

+1

2 xy−2
(x−1)( y−1)

−1

So that: x⊕ y=3 xy−x− y−1
xy+x+ y−3 (1).

(1) is the generalized sum based on the homographic function..

To have a finite value of (1), we need  xy+x+ y−3≠0 .  That is:  y≠(3−x )/(1+x) (*). In this

manner we have the closure on finite values.

Let us consider the neutral element e of this sum. It is different from zero, as we can easily see if we

use 0 in the generalized sum:

x⊕0=3 x 0−x−0−1
x 0+x+0−3

=−x−1
x−3

= x+1
3−x

Let us note that x⊕0 is the number that we have in the condition (*). For this reason, let us also 

avoid 0, from the element of the set (**).



The neutral element e is equal to −1 : x⊕(−1)=−3 x−x+1−1
−x+x−1−3

=−4 x
−4

=x

The opposite element of x  is 1/ x , so that: x⊕(1 /x )=3 x / x−x−1/ x−1
x / x+x+1/x−3

=−1

For the associativity, we can show that x⊕( y⊕z)=(x⊕ y )⊕z . Actually: 

x⊕( y⊕z)=3 x ( y⊕z)−x−( y⊕z)−1
x ( y⊕z )+ x+( y⊕z )−3 ; (x⊕ y )⊕z=3(x⊕ y )z−(x⊕ y)−z−1

(x⊕ y )z+(x⊕ y)+z−3

x⊕( y⊕z)=8 xyz−4 xy−4 xz−4 yz+4
4 xyz−4 x−4 y−4 z+8

=(x⊕ y )⊕z

Using the binary operator (1), and conditions (*),(**), we can define the neutral element. We have also

that the binary operator possesses the associative property.  In this manner (1) is a generalized sum of a

group.
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Groupoids of  OEIS A002378 and A016754 Numbers
(oblong and odd square numbers)

Amelia Carolina Sparavigna
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Here we discuss the binary operators of the sets made by the OEIS sequences of integers
A002378 and A016754.  A002378 are defined as oblong numbers.  

Written in Torino, 16 June 2019. DOI: 10.5281/zenodo.3247003

Let us use the definition of the first type of groupoid given in [1]: it is an algebraic structure
on a set with a binary operator. The only restriction on the operator is closure. This properties
means that, applying the binary operator to two elements of a given set S, we obtain a value
which is itself a member of S. Here, we consider the groupoids of the sets of the numbers
given by OEIS sequences A002378 and A016754 [2,3], which are told as oblong and odd
squares (centered octagonal) numbers.

An A002378 number is also known as a promic, pronic, or heteromecic number (formerly
M1581 N0616). It is an integer having the following form [2]:

On=n(n+1)

OEIS gives: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380,
420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, and so on.
Ref. 2 tells that 4On+1 are the odd squares A016754 numbers.
An A016754 number (odd square number) is defined as [3]:

on=(2n+1)2

So we have [3]: 1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089,
1225, 1369, 1521, and so on.
As we did in some previous discussions (see for instance [4,5]), we can find a binary operator,
which satisfy the closure, of given sets of numbers. In [4], we considered the groupoids of
Mersenne, Fermat, Cullen and Woodall numbers. Here, we follow the same approach as in
[6], for Carol and Kynea numbers.

Here how to find the operator for A002378  numbers. Let us use:

(n(n+1)+1/4 )1 /2=(n2+n+1/4)1/2=((n+1 /2)2)1 /2

So we define:



(Om+1/4)
1 /2=(m+1/2)=Am ; (On+1/4)

1 /2=(n+1/2)=An ; 

 (Om+ n+1 /4)
1/2=(m+n+1/2)=Am+n

We use  numbers  Am to help us in the calculation. We have for them the binary operator:

Am+n=Am⊕An=Am+An−1/2=(m+1/2)+(n+1/2)−1/2=m+n+1/2

Therefore: (Om+ n+1 /4)
1/2=Am+n = Am⊕An=Am+An−1/2

(Om+ n+1 /4)
1/2=(Om+1 /4)

1/2+(On+1/4)
1 /2−1 /2

We can find the binary operator for the Oblong numbers as:

Om+n+1 /4=Om+On+3/4+2(Om+1/4)
1 /2(On+1/4)

1 /2−(Om+1/4 )
1 /2−(On+1/4)

1 /2

Om+n=Om+On+1/2+2(Om+1/4)
1 /2(On+1/4)

1 /2−(Om+1/4)
1 /2−(On+1/4)

1 /2

So we have the binary operator  defined as:

Om⊕On=Om+O n+1 /2+2(Om+1 /4)
1/2(On+1/4)

1 /2−(Om+1/4)
1 /2−(On+1/4)

1 /2

Associativity:

Om⊕(On⊕O p)=Om⊕On+p=Om+n+p ; (Om⊕On)⊕O p=Om+n⊕O p=Om+n+p

From this binary operation, we can have the recursive relation: On+1=On⊕O1 .

From O1=2 , we have:  6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272,
306, 342, 380, 420, 462, and so on.

Let us consider the odd square numbers.
Here how to find the operator for A016754 numbers: on=(2n+1)2 . Let us use:

om
1 /2=(2m+1)=Am ; on

1 /2=(2n+1)=An ;  om+n
1 /2 =(2(m+n)+1)=Am+n

We use  numbers  Am to help us in the calculation. So we have the binary operator:

Am+n=Am⊕An=Am+An−1=(2m+1)+(2n+1)−1=2(m+n)+1

Therefore: om+n
1 /2 =Am+n = Am⊕An=Am+An−1

We can find the binary operator for the odd square numbers as:



om+n=om+on+1+2om
1/2on

1/2−2om
1 /2−2on

1 /2

So we have the binary operator  defined as:

om⊕on=om+on+1+2om
1 /2on

1 /2−2om
1 /2−2on

1/2

Associativity:

om⊕(on⊕op)=om⊕on+p=om+n+ p ; (om⊕on)⊕op=om+n⊕op=om+n+p

From this binary operation, we can have the recursive relation: on+1=on⊕o1 .

From o1=9 , we have:  25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961,
1089, 1225, 1369, 1521, 1681, 1849, and so on.
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Groupoid of  OEIS A001844 Numbers (centered square numbers)
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Here  we  discuss  the  binary  operator  of  the  set  made  by  the  OEIS  sequence  of  integers
A001844, defined as centered square numbers. This binary operator can be used to have a
groupoid. Actually, neutral and opposite elements can be defined too, and a possible group for
these numbers can be given.
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A groupoid is  an algebraic  structure made by a set  with a  binary operator  [1].  The only
restriction on the operator is closure. This properties means that, applying the binary operator
to two elements of a given set S, we obtain a value which is itself a member of S. If this
operation is associative and we have a neutral element and opposite elements into the set, then
the groupoid becomes a group.
Here, we consider the set of numbers given by OEIS sequence A001844 (centered square
numbers). The numbers have the following form [2]:

Cn=n
2+(n+1)2=2n(n+1)+1

As we did in some previous discussions (see for instance [3-5]), we can find a binary operator,
which satisfy the closure. Let us follow the same approach as in [5], for Carol and Kynea
numbers.

We have: Cn=n
2+(n+1)2=2n(n+1)+1=2(n+1/2)2+1/2 .

Let us use numbers An:, so that: (n+1/2)2=(An)
2 .

[(Cm−1/2)/2]
1 /2=(m+1/2)=Am ; [(Cn−1/2)/2]

1 /2=(n+1/2)=An ; 

 [(Cm+n−1 /2)/2]
1/2=(m+n+1/2)=Am+n

Numbers  Am can help us in the calculation (the same numbers we used in [6]). 
 For them, the binary operator is:

Am+n=Am⊕An=Am+An−1/2=(m+1/2)+(n+1/2)−1/2=m+n+1/2

Therefore:



[(Cm+n−1 /2)/2]
1/2=(m+n+1/2)=Am+n = Am⊕An=Am+An−1/2

Consequently, for the centered square numbers, the binary operator of a generalized sum is
coming from:

Cm+n=Cm+Cn+2(Cm−1/2)
1 /2(Cn−1/2)

1 /2−√2(Cm−1/2)1/2−√2(Cn−1 /2)1/2

The generalized sum is given as:

Cm⊕Cn=Cm+Cn+2(Cm−1/2)
1/2(Cn−1/2)

1/ 2−√2(Cm−1/2)1 /2−√2(Cn−1/2)1 /2 (1)

From (1), we have the recursive relation: Cn+1=Cn⊕C1 . Starting with number C1=5 , we
have:  13,  25,  41,  61,  85, 113, 145, 181,  221,  265,  313,  365,  421, 481,  545,  613,  685,
761, 841,   925, and so on. The same as http://oeis.org/A001844.

The binary operator is associative: Cm+n+ p=Cm+n⊕C p=Cm⊕Cn+ p

Using (1), we can see that we can have a neutral element: C0=1 .

Cm+0=Cm⊕C 0=Cm+C0+2(Cm−1/2)
1 /2(C0−1/2)

1 /2−√2(Cm−1/2)1/2−√2(C0−1 /2)1/2

Cm+1+2(Cm−1/2)
1/2(1/2)1 /2−√2(Cm−1/2)1/2−√2(1/2)1/2=Cm

   
Since we have a neutral element, we could try to find the opposite element so that:

Cm−m=Cm⊕Opp(Cm)=Cm⊕C−m=C0

In [2], we have the relation: a(−m)=a (m−1) (*), where a(m)=Cm .

Let us consider, in the framework given above, the meaning of (*).

Let  us define X=√(Opp(Cm)−1/2)  and evaluate

C0=Cm⊕Opp(Cm)=Cm+X
2+1/2+2 X (Cm−1/2)

1 /2−√2(Cm−1 /2)1/2−√2 X=1 (**)

This is an equation of the form X2+BX+K=0 , where coefficients are:

 B=2(Cm−1/2)
1/2−√2 and K=Cm+1/2−1−√2(Cm−1/2)1/2 . 

Solutions are given by X=(−B±√(B2−4K ))/2 , where √(B2−4 K)=√2 .

For  X=(−B−√2)/2 ,  the opposite element turns out to be:  Opp(Cm)=Cm . We have
therefore that the composition (**) of an element with itself produces the identity. So each
element turns out to be self-inverse. 

http://oeis.org/A001844


 For X=(−B+√2)/2 , the opposite element is given as: 

 Opp (Cm)=X
2+1 /2=Cm−1

and therefore we find relation (*). However, in the binary operation (**), X is negative.

As  a  consequence,  when  we  use  Cm−1  in  the  generalized  sum (1),  if  we  assume the
negative  value  of  root  X=−√(Cm−1−1/2) ,  we  obtain  the  neutral  element,  so  that
Cm⊕C−m=C0 .  In  the  case  that  we  use  the  positive  root,  the  generalized  sum  gives
Cm⊕Cm−1=C2m−1 . The reason is that, to find (1), we could use a positive or negative sign

in front of the square root:

±[(Cm−1−1 /2)/2]
1/2=(m−1+1/2)=Am−1

If we want to use the binary operator for a groupoid, it is enough to use the positive value of
the root. 
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Peano, ci porti ai numeri di Mersenne.
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Giuseppe Peano è stato un grande matematico piemontese, noto anche per aver inventato il "latino
sine flexione", una  lingua ausiliaria internazionale derivata dal Latino classico.

Peano nacque il 27 agosto 1858, a Spinetta presso Cuneo. Studiò a Torino presso il Liceo classico
Cavour, ottenendo la licenza liceale nel 1876 [1]. Assistente di Angelo Genocchi all'Università di
Torino, divenne professore di calcolo infinitesimale presso lo stesso ateneo a partire dal 1890 [1].
Morì nella sua villa a Cavoretto, il 20 aprile del 1932.

Tra i suoi primi risultati scientifici troviamo il teorema dell'esistenza della soluzione di equazioni
differenziali ordinarie ed il primo esempio di una curva che riempie una superficie, la cosiddetta
Curva di Peano (in effetti, un frattale). Con questa curva, Peano mostrò come la definizione di curva
sia  una  questione  delicata.  Una  curva  piana  viene  vista,  in  modo  intuitivo,  come  un  oggetto
monodimensionale in un piano bidimensionale, e quindi come incapace di riempirlo. La curva di
Peano è invece capace di riempire lo spazio delimitato da un quadrato. "Da questo lavoro partì la
revisione del concetto di curva, che fu ridefinito da Camille Jordan (1838 – 1932) (curva secondo
Jordan)." [2]. Peano fu “anche uno dei padri del calcolo vettoriale insieme a Tullio Levi-Civita” [2].
Introdusse anche il “resto di Peano” nella formula di Taylor e la misura di Peano-Jordan [3].

Dopo essersi dedicato al calcolo infinitesimale, Peano passò all'aritmetica e alla logica. Diede "una
definizione assiomatica dei numeri naturali, i famosi Assiomi di Peano, i quali vennero ripresi da
Russell e Whitehead nei loro Principia Mathematica per sviluppare la teoria dei tipi." [2]. Bertrand
Russell disse di Peano: «Provai una grande ammirazione per lui quando lo incontrai per la prima
volta al Congresso di Filosofia del 1900, che fu dominato dall'esattezza della sua mente.» [2].

L'assioma è, nel linguaggio comune, una verità o un principio che si ammette senza discussione,
evidente di per sé. In matematica, l’assioma “è in genere sinonimo di postulato, da cui tuttavia si
distingue, specialmente in logica matematica” [4]. In questo caso, con gli assiomi “si vuole indicare
un  sistema  formale  di  proprietà  che  costituiscono  una  definizione  implicita  dell’ente  o
dell’espressione cui si riferiscono, a prescindere quindi dalla loro evidenza, dal momento che non
hanno la pretesa di essere verità assolutamente valide" [4]. Gli assiomi di Peano sono dati, in tal
modo, per definire i numeri naturali. 



In [5], gli assiomi vengono proposti nella seguente maniera. 

• zero è un numero naturale;

• se n è un numero naturale, anche il successore di n è un numero naturale;

• se i successori di due numeri naturali sono uguali, allora i due numeri sono uguali;

• zero non è successore di alcun numero naturale;

•  se  A è  un  insieme  di  numeri  naturali  che  contiene  lo  zero  e  il  successore  di  ogni  numero
appartenente a esso, allora A coincide con tutto l’insieme dei numeri naturali.

L’ultimo assioma è noto come  principio di induzione matematica.  In [5] è riformulato in modo
equivalente come segue: «se P è una proprietà concernente i numeri naturali soddisfatta da zero e
tale che, se è soddisfatta da un dato numero naturale, lo è anche dal suo successore, allora P è
soddisfatta da ogni numero naturale». Nella formulazione originaria degli assiomi, Peano definì i
numeri naturali a partire da 1 e non da 0. 

Il sistema che si è ottenuto con questi assiomi è unico, a meno di isomorfismi [6].

Dopo la definizione assiomatica dei principi di aritmetica e geometria, Peano passò poi alla logica
matematica, come spiegato nella prefazione al libro “Giochi Di Aritmetica E Problemi Interessanti”,
libro che Peano scrisse nel 1925  [7]. Egli diede vita a Torino, nell'ultimo decennio del secolo, ad
una pionieristica "scuola" di logica. Di questa scuola, il “Formulario di Matematica” ne era stato “la
realizzazione  più  compiuta  e  coerente.  Peano  stesso  fu  a  lungo,  prima  di  Russell,  leader
riconosciuto e influente nel campo della logica” [7]. Da ultimo Peano si dedicò anche allo studio
comparato delle lingue. Come sottolinea Umberto Bottazzini, autore della prefazione [7], nell'ampio
spettro  delle  ricerche  matematiche  e  logiche,  rientra  naturalmente  il  volumetto  sui  Giochi  Di
Aritmetica E Problemi Interessanti, che si lega anche all'interesse di Peano per l'insegnamento delle
matematiche alle scuole elementari. 

Il volumetto  [7] comincia così "In tutti i tempi, e presso tutti i popoli, si insegnavano dei giochi per
rendere  dilettevole  o  meno noiosa  l'aritmetica.  Saggiamente  questi  giochi  si  trovano  nei  nuovi
programmi delle scuole elementari. Credo far cosa utile agli insegnati col pubblicarne alcuni". 

In verità l'aritmetica non è mai noiosa, se piace, ed anche i problemi di Peano per i bambini sono
tutt'altro che banali. Eccone uno.

Usiamo qualche formula.  Sia  M n il  numero di uova che resta dopo ciascuna vendita.  Esso è
legato al numero di uova prima della vendita nella seguente maniera: 



M n+1−
M n+1

2
−1
2
=M n

 (1)

Quindi,  se  partiamo  da  7,  abbiamo  7−7 /2−1/2=7 /2−1/2=3  (prima  vendita).  Poi:
3−3 /2−1/2=3/2−1 /2=1 (seconda  vendita).  Infine:  1−1/2−1/2=1 /2−1/2=0 .  Oppure

riscriviamo la relazione (1), come:

M n+1

2
−1
2
=M n

da cui:

M n+1=2M n+1  (2)

E quindi, se partiamo da 0, con la (2), abbiamo 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095,
8191,  16383,  32767,  65535,  131071,  262143,  524287,  1048575,  2097151,  4194303,  8388607,
16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647,
4294967295 e così via.  Ma questi sono i numeri che troviamo nella sequenza OEIS  A000225 di
numeri interi [8]. Detti talvolta interi di Mersenne, tra di essi troviamo i primi di Mersenne.

Ecco perché il numero delle uova l'ho indicato con la lettera M maiuscola.

Al  sito  [9],  troviamo  l’indovinello  matematico  concernente  le  uova  ed  i  numeri  di  Mersenne
formulato come “Tre Signore vanno al mercato. La prima compra da un contadino metà delle sue
uova, più un mezzo uovo. La seconda compra metà delle uova rimaste più un mezzo uovo. La terza
acquista l’unico uovo che è rimasto. Quante uova aveva il contadino all’inizio?”.

Il problema delle uova è anche definito come il “No broken eggs puzzle” [10], perché in effetti,
nessun uovo è spaccato a metà, come logica vuole. 

I numeri di Mersenne sono scritti come: 

M n=2
n−1

In [11],  ne ho studiato la  somma “generalizzata”,  somma che  generalizza  la  somma aritmetica
usuale (si veda la discussione in [12]), in modo che da due numeri di Mersenne, opportunamente
combinati, si abbia un terzo numero di Mersenne. Partiamo dal numero:

 Mm+n=2
m+n−1

Si ha che [11]:

 Mm+n=2
m+n−1=(2m−1)(2n−1)+2m−1+2n−1=Mm+M n+MmM n

La somma generalizzata è quindi: 

Mm⊕M n=Mm+M n+MmM n  (3)

Prendiamo ora questa somma e riscriviamola così:

M 1⊕M n=M 1+M n+M 1M n

Sappiamo che il risultato è pari a  M n+1 . Inoltre  M 1=2
1−1=1 . Si ha quindi la relazione di

“successione” per i numeri di Mersenne:



M n+1=M 1⊕M n=M 1+M n+M1M n=2M n+1

e questa è la relazione (2) del problema di Peano. Ed è anche un isomorfismo degli interi.

C’è una differenza tra la (2) e la (3). La (3), se scritta come  Mm⊕M 0=Mm+M 0+MmM 0=Mm ,
non mi produce la successione, ma mi indica che esiste un elemento neutro nel semi-gruppo dei
numeri di Mersenne, e che questo elemento neutro è lo zero. 

In conclusione: mai sottovalutare i problemini per le elementari, specie se formulati da un grande
matematico. 
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A groupoid is a set with a binary operaton [1]. Let us consider the set of the Proth numbers and
find the binary operator which is rendering the set a groupoid.

 The Proth are integers given by:

Pk ,n=k 2
n+1

Integers k and n are given so that k is odd and 2n>k . Details on the Proth numbers are given in
OEIS A080075.

Let us consider Pk ,m+n=k2
m+n+1 . This number is given as: 

Pk ,m+n=
1
k
(Pk , mPk , n−Pk ,m−Pk ,n+1)+1

Pk ,m+n=
1
k
((k 2m+1)(k2n+1)−(k 2m+1)−(k 2n+1)+1)+1

Pk ,m+n=
1
k
(k22m+ n+k 2m+k 2n+1−k 2m−1−k 2n−1+1)+1=k 2m+n+1

Let us define the binary operator as:

Pk ,m⊕Pk ,n=
1
k
(Pk , mPk ,n−Pk , m−Pk , n+1)+1 (*)

This is the same approach we used in some previous works (see [2] and references therein), where
we discussed the binary operaton of Mersenne, Fermat and other integers, in the framework of
the generalized algebras [3,4].

Let us consider k=1. We obtain the following numbers (Fermat numbers [2]):

P1 ,n=2
n+1 , with n=1,2,3,…

That is: 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, and so on. If k=3, we have: 

P3 ,n=3⋅2
n+1 , with n=2,3,4,…

This relaton is giving:  13, 25, 49, 97, 193, 385, 769, 1537, 3073, … . Then we have:



P5 ,n=5⋅2
n+1 , with n=3,4,5,… ; P7 ,n=7⋅2

n+1 , with n=3,4,5,…

P9 ,n=9⋅2
n+1 , with n=4,5,6,… ; P11 , n=11⋅2

n+1 , with n=4,5,6,…

P13 ,n=13⋅2
n+1 , with n=4,5,6,… ; P15 ,n=15⋅2

n+1 , with n=4,5,6,…

P17 ,n=17⋅2
n+1 , with n=5,6,7,… ; P19 ,n=19⋅2

n+1 , with n=5,6,7,...

and so on. For k=5, we have: 41, 81, 161, 321, 641, 1281, 2561, 5121, ….

Let us note that all these sets of numbers are groupoids as well.

Together, all these sets are giving the sequence in htps://oeis.org/A080075/list

From htps://oeis.org/A080075,  we have  that  the  Proth  numbers  can  be obtained from other
sequences, in the two following manners: 1) a(n) = A116882(n+1)+1, obtained by Klaus Brockhaus,
Georgi Guninski and M. F. Hasler, Aug 16, 2010,   2) a(n) = A157892(n)*2^A157893(n) + 1, by  M. F.
Hasler, Aug 16, 2010.

From the binary operator (*), we can obtain a recurrence formula from the binary operator, in the
following manner.   Let us use Pk ,n+1=k 2

n+1+1 and Pk ,1=k 2
1+1=2 k+1 . We have:

Pk ,n+1=Pk ,n⊕Pk ,1=
1
k
(Pk , nPk ,1−Pk ,n−P k ,1+1)+1

Pk ,n+1=
1
k
(P k ,n(2k+1)−Pk , n−(2k+1)+1)+1=1

k
(2kPk ,n−2k )+1=2 Pk ,n−1

The binary operaton (*) is commutatve and associatve, so that:

 (Pk ,m⊕Pk ,n)⊕Pk , o=Pk , m⊕(P k ,n⊕Pk , o) .

Let us note that we could repeat the same approach for numbers of the form T k ,n=k⋅2
n−1 , In 

the case of k=3, we have the Thabit numbers [5]. We obtain a groupoid with binary operator:

T k ,m⊕T k , n=
1
k
(T k , mT k ,n+T k , m+T k , n+1)−1
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In [1] we can find discussed the Star Numbers. These numbers are representing the cells in a
generalized Chinese checkers board (or "centered" hexagram). To the star numbers are linked
some   sequences  of  integers  [1,2].   In  [3],  these  numbers  are  also  defined  as  centered
dodecagonal  numbers.  As  illustrated  by  Omar  E.  Pol,  these  number  shave  a  classic
representation  in  the  form  of  stars,  but  they  can  also  be  represented  by  n-1  concentric
hexagons around a central element. In general, centered polygonal numbers are those numbers
represented by a central dot, surrounded by polygonal layers with a constant number of sides.
Here we consider the Oeis A003154 numbers as a groupoid. 
A groupoid is  an algebraic  structure made by a set  with a  binary operator  [4].  The only
restriction on the operator is closure. This properties means that, applying the binary operator
to two elements of a given set S, we obtain a value which is itself a member of S. If this
operation is associative and we have a neutral element and opposite elements into the set, then
the groupoid becomes a group. So let us consider OEIS A003154 numbers.
The numbers have the following form [3]:

Sn=6n (n−1)+1=6n
2−6n+1

As we did in some previous discussions (see for instance [5]), we can find a binary operator,
which satisfy the closure. Let us follow the same approach as in [6-8].

We have: Sn=6n
2−6n+1=6 (n−1)2+6(n−1)+1

Let us use numbers An:, so that: An=(n−1) . We have that:

An+m=(n−1)+(m−1)+1=(n+m−1)

So we can define a binary operation such as: An+m=An⊕Am=An+Am+1 .



We have that: Sn=6 An
2+6 An+1 ; An=−1

2
± 1
12

(12+24 Sn)
1/2=−1

2
±1
6
(3+6Sn)

1 /2
(1)

Let us consider in (1) the positive sign:

An+m=An+Am+1=−1
2
+ 1
6
(3+6 Sn)

1/2−1
2
+ 1
6
(3+6Sm)

1/2+1

Then it must be:
 

An+m=−1
2
+ 1
6
(3+6 Sn+m)

1 /2
=
1
6
(3+6Sn)

1 /2+ 1
6
(3+6 Sm)

1/2

1
6
(3+6Sn+m)

1/2=1
6
(3+6 Sn)

1/2+ 1
6
(3+6 Sm)

1 /2+1
2

So we have: 

(3+6 Sn+m)=((3+6 Sn)
1/2+(3+6 Sm)

1/2+3)2 =

(3+6 Sn)+(3+6Sm)+9+6(3+6 Sn)
1/2+6(3+6Sm)

1 /2+2(3+6 Sn)
1/2(3+6 Sm)

1/2

Then:

Sn+m=Sn+Sm+2+(3+6Sn)
1/2+(3+6 Sm)

1/2+ 1
3
(3+6 Sn)

1/2(3+6 Sm)
1/ 2

The generalized sum for the star numbers is given as:

Sn⊕Sm=Sn+Sm+2+(3+6Sn)
1 /2+(3+6 Sm)

1/ 2+ 1
3
(3+6 Sn)

1/2(3+6Sm)
1/2 (2)

From (1), we have the recursive relation: Sn+1=Sn⊕S1 . Starting from number S1=1 , we
have:  13,  37,  73,  121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633,
1837, 2053, 2281, 2521, and so on. The same as http://oeis.org/A003154 .
The recursive relation is:

Sn+1=Sn+1+2+(3+6 Sn)
1/2+3+(3+6Sn)

1 /2

Sn+1=Sn+6+2(3+6 Sn)
1 /2

The square root: 
(3+6 Sn)

1/2

gives the sequence:  3, 9,  15,  21, 27, 33,  39,  45, etc.      

http://oeis.org/A003154


Let us consider in (1) the negative sign:

An+m=An+Am+1=−1
2
−1
6
(3+6 Sn)

1 /2−1
2
−1
6
(3+6Sm)

1 /2+1

We have:

Sn⊕Sm=Sn+Sm+2−(3+6 Sn)
1/2−(3+6Sm)

1 /2+ 1
3
(3+6Sn)

1 /2(3+6Sm)
1 /2  (3)

From (3), with the number S1=1 we have the  relation: Sn=Sn⊕S1 .  Therefore, S1 is a
neutral element, as we can easily see:

Sn+1+2−(3+6 Sn)
1/ 2−(3+6)1 /2+ 1

3
(3+6Sn)

1 /2(3+6)1 /2 =

Sn−(3+6 Sn)
1/2+(3+6 Sn)

1/2=Sn

Using (3) and starting from number S2=13 , we have:  37,  73,  121, 181, 253, 337, 433,
541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, and so on. Again, it is
same as http://oeis.org/A003154 .
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The groupoid of the Triangular Numbers and the generation of related
integer sequences

Amelia Carolina Sparavigna
Department of Applied Science and Technology, Politecnico di Torino, Italy.

Here we discuss the binary operators of the set made by the triangular numbers, sequence
A000217, in the On-Line Encyclopedia of Integer Sequences (OEIS).  As we will see, by
means of these binary operators we can obtain related integer sequences. Here we propose
some of them. The sequences, except one, are given in OEIS.

Written in Torino, 2 October  2019. DOI: 10.5281/zenodo.3470205

In [1], we find defined the triangular numbers as those which are counting dots arranged in
equilateral triangles. Then, the n-th triangular number is the number of dots in the triangle
with n dots on a side. It is equal to the sum of the natural numbers from 1 to n:

T n=∑
k=1

n

k=n (n+1)
2

The  triangular  numbers  are  forming  the  sequence  A000217  in  OEIS,  the  On-Line
Encyclopedia of Integer Sequences  [2,3].
Some properties of triangular numbers are given in [1] and [4]. One of the properties that we
find in [1] is: 

 T n+m=T n+T m+nm   (1)

Actually,  we have  another  manner  to  write  T n+m ,  if  we consider  OEIS A000217 as  a
groupoid. 
A groupoid is  an algebraic  structure made by a  set  with a binary operator  [5].  The only
restriction on the operator is closure. This properties means that, applying the binary operator
to two elements of a given set S, we obtain a value which is itself a member of S. If this
operation is associative and we have a neutral element and opposite elements into the set, then
the groupoid becomes a group. So, let us consider OEIS A000217 numbers and find binary
operators between them.

1
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As we did in some previous discussions (see for instance [6]), we can find a binary operator,
which is satisfying the closure. We can follow the same approach as in [7-10].
We have:

 2T n=n
2+n=(n+1)2−(n+1)

Let us use numbers An:, so that: An=(n+1) . Then:

An+m=(n+1)+(m+1)−1

So we can define a binary operation such as: An+m=An⊕Am=An+Am−1 .

Moreover, we have that: 2T n=An
2−An ; An=

1
2
±1
2
(1+8T n)

1 /2
     (2)

Let us consider in (2) the positive sign:

An+m=An+Am−1=
1
2
(1+8T n)

1/2+ 1
2
(1+8Tm)

1/2

 

An+m=
1
2
+ 1
2
(1+8T n+m)

1 /2

So we have: 

(1+8T n+m)=[−1+(1+8T n)
1/2+(1+8T m)

1 /2]2 =

(1+8T n)+(1+8Tm)+1−2(1+8T n)
1 /2−2(1+8Tm)

1/2+2(1+8T n)
1 /2(1+8T m)

1/2

Then:

T n+m=T n+T m+
1
4
−1
4
(1+8Sn)

1 /2−1
4
(1+8Tm)

1/2+ 1
4

(1+8Tn)
1/2(1+8Tm)

1/2

The  binary operator, that is, the generalized sum for the triangular numbers is given as:

T n⊕Tm=T n+T m+
1
4

[1−(1+8T n)
1/2−(1+8Tm)

1/2+(1+8T n)
1 /2(1+8T m)

1 /2] (3)

Using (3) and (1), we have the following identity:
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4 nm=1−(1+8T n)
1 /2−(1+8Tm)

1 /2+(1+8T n)
1/2(1+8T m)

1/2

From the generalized sum (3), we have the recursive relation: T n+1=T n⊕T 1 . 

Starting from number T1=1 , the generated sequence is 3, 6, 10, 15,  21, 28, 36,  45,  55,
66,  78,  91, 105,  120,  136, 153, 171,  190,  210,   231, and so on.  
The recursive relation can be written, in this case with T1=1 , as:

T n+1=T n+1+
1
4
[−2−(1+8T n)

1/2+3 (1+8Tn)
1/2]

T n+1=T n+1+
1
2
[−1+(1+8T n)

1 /2]

Moreover, we have that (1+8T n)
1/2

is the sequence of the odd numbers 3, 5, 7, 9, 11, 13, 15,
17, 19, and so on. 

Let us consider again (3), that is:

 T n⊕T m=T n+T m+
1
4

[1−(1+8T n)
1/2−(1+8Tm)

1/2+(1+8T n)
1 /2(1+8Tm)

1 /2]

in the form T n+1=T n⊕T 1 , but here we change the values of T1 . Here in the following 
the sequences that we generate.

T1=0 , sequence 0, 0, 0, 0, 0, 0, … . 

T1=1 , sequence 3, 6, 10, 15,  21, 28, 36,  45,  55,  66,  78,  91, 105,  120,  136, 153, 171,
190,  210,   231, and so on.  And this is OEIS A000217, the sequence of triangular numbers.

T1=3 , sequence 10, 21, 36, 55, 78, 105, 136,  171,  210, 253,  300, 351,  406,  465, 528,
595,  666, 741, 820,  903, … . Searching this sequence in OEIS, we can easily find that it is
A014105, that is, the Second Hexagonal Numbers: H n=n(2n+1) .

T1=4 , sequence 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612,
684, 760, 840, 924, … OEIS A046092 (four times triangular numbers).

T1=6 , sequence 21, 45, 78, 120, 171, 231, 300, 378, 465, 561, 666, 780, 903, 1035, 1176, 
1326, 1485, 1653, 1830, 2016, … OEIS A081266 (Staggered diagonal of triangular spiral in 
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A051682).

T1=7 , sequence 23, 48, 82, 125, 177, 238, 308, 387, 475, 572, 678, 793, 917, 1050, 1192, 
1343, 1503, 1672, 1850, 2037, … OEIS A062725.

 T1=10 , sequence 36, 78, 136, 210, 300, 406, 528, 666, 820, 990, 1176, 1378, 1596, 1830,
2080, 2346, 2628, 2926, 3240, 3570, … OEIS A033585, that is, numbers: 2n(4 n+1) .

 T1=11 , sequence 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610,
1845, 2096, 2363, 2646, 2945, 3260, 3591, … OEIS A139276, that is, numbers n(8n+3) .

Of course, we can continue and obtain further sequences.

Let us remember that, in (2), we can consider the negative sign too. Then we have another
binary operation:

T n⊕T m=T n+Tm+
1
4

[1+(1+8T n)
1/2+(1+8T m)

1 /2+(1+8T n)
1 /2(1+8Tm)

1 /2]

Again, let us consider T n+1=T n⊕T 1 as we did before.

 T1=0 , sequence  1, 3, 6, 10, 15,  21, 28, 36,  45,  55,  66,  78,  91, 105,  120,  136, 153, 
171,  190,  210,  and so on.   OEIS A000217, the sequence of triangular numbers.

 T1=1 , sequence  6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 
630, 703, 780, 861,  …  OEIS A000384, Hexagonal numbers Hn=n(2n−1) .

 T1=3 , sequence  15, 36, 66, 105, 153, 210, 276, 351, 435, 528, 630, 741, 861, 990, 1128,
1275,  1431,  1596,  1770,  1953,   …   OEIS  A062741,  three  times  pentagonal  numbers
3n(3n−1)/2 .

 T1=4 , sequence  17, 39, 70, 110, 159, 217, 284, 360, 445, 539, 642, 754, 875, 1005,
1144, 1292, 1449, 1615, 1790, 1974,  …  OEIS A022266, numbers n(9n−1) /2 .

 T1=6 , sequence 28, 66, 120, 190, 276, 378, 496, 630, 780, 946, 1128, 1326, 1540, 1770,
2016, 2278, 2556, 2850, 3160, 3486,  …  OEIS  A014635, numbers 2n(4 n−1) .

 T1=7 , sequence 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785,
2032, 2295, 2574, 2869, 3180, 3507,   …  OEIS A139274, numbers n(8n−1) .
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 T1=10 , sequence  45, 105, 190, 300, 435, 595, 780,  990, 1225,  1485, 1770,  2080, 2415,
2775,  3160, 3570,  4005,  4465, 4950, 5460 …. This sequence is not present in OEIS.

 T1=11 , sequence 47, 108, 194, 305, 441, 602, 788, 999, 1235, 1496, 1782, 2093, 2429,
2790,  3176,  3587,  4023,  4484,  4970,  5481,  ….  OEIS  A178572,  numbers  with  ordered
partitions that have periods of length 5.

Of  course,  the  approach  here  proposed  can  used  for  the  generation  of  further  integer
sequences, using the binary operators given in the previous works [6-10]. It is possible that,
among the generated sequences, news sequences are produced too. 
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The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers
and their representations by means of integer sequences

Amelia Carolina Sparavigna
Department of Applied Science and Technology, Politecnico di Torino, Italy.

In some previous works, we have discussed the groupoids related to the integer sequences of
Mersenne,  Fermat,  Cullen,  Woodall  and other  numbers.  These  groupoid  possess  different
binary operators. As we can easily see, other integer sequences can have the same binary
operators, and therefore can be used to represent the related groupoids. Using the On-Line
Encyclopedia  of  Integer  Sequences  (OEIS),  we  can  also  identify  the  properties  of  these
representations of  groupoids. At the same time, we can also find integer sequences not given
in OEIS and probably not yet studied.

Written in Torino, 3 October  2019. DOI: 10.5281/zenodo.3471358

A groupoid is  an algebraic  structure made by a set  with a  binary operator  [1].  The only
restriction on the operator is closure. This property means that, applying the binary operator to
two elements of a given set S, we obtain a value which is itself a member of S. If this binary
operation is associative and we have a neutral element and opposite elements into the set, the
groupoid becomes a group.
Groupoids are interesting also for the study of integer numbers. As shown in some previous
works [2-7], the integer sequences of Mersenne, Fermat, Cullen, Woodall and other numbers
are groupoid possessing different binary operators. Here we show that other integer sequences
can  have  the  same  binary  operators,  and  therefore  can  be  used  to  represent  the  related
groupoids.  That is,  we can obtain different  integer  sequences by means of the recurrence
relations generated by the considered binary operations. 
In  [7],  we  started  the  search  for  different  representations  for  the  groupoid  of  Triangular
Numbers. Here we continue this search, using the binary operators obtained in the previous
analyses. In particular, we will see the representations linked to Mersenne, Fermat, Cullen,
Woodall, Carol and Kynea, and Oblong numbers. The binary operators of these numbers have
been already discussed in previous works. The results concerning the Triangular numbers are
also reported.
Using the On-Line Encyclopedia of Integer Sequences (OEIS), we can easily identify the
several representations of groupoids. At the same time, we can also find integer sequences not
given in OEIS and probably not yet studied.

1



Zenodo, 3 October 2019, DOI 10.5281/zenodo.3471358
__________________________________________________________

Mersenne numbers  
We discussed the binary operator of the set of Mersenne numbers in [8,9].
The numbers are given as M n=2

n−1 . The binary operator is:

M n+m=M n⊕Mm=M n+Mm+M nMm   (1)

As shown in [9], this binary operation is a specific case of the binary operator of q-integers,
which can be linked to the generalized sum of Tsallis entropy [10,11]. 
The binary operator can be used to have a recurrence relation: 

M n+1=M n⊕M 1    (2)

Here in the following, let us show the sequences that we can generate from (1) and (2).
We use OEIS, the On-Line Encyclopedia of Integer Sequences, to give more details on them. 

M 1=0 , sequence 0, 0, 0, 0, 0, 0, … . 

M 1=1 , sequence  3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767,
65535, 131071, 262143, 524287, 1048575, 2097151,  and so on.  The Mersenne numbers
2n−1 . This sequence is OEIS A000225.  (OEIS tells  that  these  numbers  are  sometimes

called Mersenne numbers, “although that name is usually reserved for A001348”). 

M 1=2 ,  sequence  8,  26,  80,  242,  728,  2186,  6560,  19682,  59048,  177146,  531440,
1594322,  4782968,  14348906,  43046720,  129140162,  387420488,  and  so  on  (OEIS
A024023, an=3

n−1 ).

M 1=3 , sequence  15, 63, 255, 1023, 4095, 16383, 65535, 262143, 1048575, 4194303,
16777215, 67108863, 268435455, and so on (OEIS A046092, an=4

n−1 ). 

And we can continue: M 1=4 , OEIS A024049, an=5
n−1 ;  M 1=5 , OEIS A024062,

an=6
n−1  ; M 1=6  OEIS A024075, an=7

n−1 , and so on. 

An interesting sequence is M 1=9 , A002283, an=10
n−1 . Dividing this sequence by 9,

we have the repunits A002275,  an=(10n−1)/9 .  The generalized sum of the repunits is
given in [12].

Fermat numbers
The group of Fermat numbers has been discussed in [13]. As explained in [14], there are two
definitions  of  the  Fermat  numbers.  “The less  common is  a  number of  the  form  2n+1
obtained by setting x=1 in a Fermat polynomial, the first few of which are 3, 5, 9, 17, 33, ...
(OEIS A000051)” [14]. We used this definition. 
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 Fn=2
n+1

Fn+m=Fn⊕Fm=(1−Fn)+(1−Fm)+FnFm   (3)

The  binary operator can be used to have a recurrence relation:  Fn+1=Fn⊕F1    (4)

Sequences can generate from (3) and (4).

F1=0 , sequence 2, 0, 2, 0, 2, 0, … .    ; 

F1=1 , sequence 1, 1, 1, 1, 1, 1, …. .

F1=2 , sequence 2, 2, 2, 2, 2, 2, … . 

F1=3 , sequence  5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769,
65537, 131073, 262145, 524289, 1048577, 2097153, and so on, the Fermat numbers. (OEIS
A000051, an=2

n+1 .

F1=4 ,  sequence A034472, an=3
n+1 ;  F1=5 ,  sequence A052539, a(n) = 4^n + 1,

(using the notation of  OEIS). Continuing with 6, we have A034474, a(n) = 5^n + 1. For 7, we
have A062394, a(n) = 6^n + 1. And so on.
 
Cullen and Woodall numbers
These numbers had been studied in [15]. 
Let us consider the Cullen numbers. 

 Cn=n2
n+1

Cn+m=Cn⊕Cm=(1
n
+ 1
m

)(Cn−1)(Cm−1)+1   (5)

  Cn+1=Cn⊕C1    (6)

C1=1 ,  sequence 1, 1, 1, 1, 1, 1, 1, and so on.

C1=2 ,  sequence 3, 4, 5, 6, 7, 8, 9, and so on.

C1=3 ,  sequence 9, 25,  65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497,
229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, and so on.
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OEIS A002064, Cullen numbers: n*2^n + 1.
 
C1=4 ,  sequence  19,  82,  325,  1216,  4375,  15310,  52489,  177148,  590491,  1948618,

6377293, 20726200, 66961567, 215233606, 688747537, and so on. OEIS A050914, a(n) =
n*3^n + 1.

C1=5  sequence A050915, a(n) = n*4^n + 1. And so on. 

Let us mention the case C1=11 which is giving  A064748, a(n) = n*10^n + 1. That is:  201,
3001, 40001, 500001, 6000001, 70000001, 800000001, and so on.

Woodall numbers are W n=n2
n−1 , and the binary operator is:

W n+m=W n⊕Wm=( 1
n
+ 1
m

)(W n+1)(Wm+1)−1   (7)

  W n+1=W n⊕W 1    (8)

W 1=0 ,  sequence 1, 2, 3, 4, 5, 6, 7, and so on.

W 1=1 ,  sequence 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495,
229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519, 44040191, and so on.
A003261, Woodall (or Riesel) numbers: n*2^n - 1.

W 1=2 , sequence A060352, a(n) = n*3^n - 1.

W 1=3 , sequence A060416, a(n) = n*4^n – 1. And so on. 

Let us mention the case W 1=9 , which is giving A064756, a(n) = n*10^n – 1, that is, 199,
2999, 39999, 499999, 5999999, 69999999, 799999999, and so on.

Carol and Kynea Numbers
These numbers have been studied in [3]. 
Carol number is: 

Cn=(2n−1)2−2

The binary operator is:
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Cn⊕Cm=6+CnCm+3(Cn+Cm)+2(Cn+2)(Cm+2)
1/2+2(Cm+2)(Cn+2)

1/2+2(C n+2)
1/2(Cm+2)

1 /2

(9)

Cn+1=Cn⊕C1   (10)

Here we have square roots, so we can obtain integer sequences only in some cases.

C1=−1 , sequence  A093112, a(n) = (2^n-1)^2 – 2, that is 7, 47, 223, 959, 3967, 16127,
65023, 261119, 1046527, 4190207, … As told in [16], Cletus Emmanuel called these numbers
as "Carol numbers".

C1=2 ,  sequence  62,  674,  6398,  58562,  529982,  4778594,  43033598,   387381122,
3486666302,  31380705314, and so on.   Not given in OEIS.

C1=7 , sequence  223,   3967, 65023, 1046527,  16769023, 268402687,   4294836223,
68718952447,  1099509530623,  17592177655807, and so on. Not given in OEIS.

Let us consider the Kynea numbers. 

K n=(2n+1)2−2

The binary operator is:

Kn⊕Km=−2+[2+(Km+2)
1 /2(Kn+2)

1/2−(K m+2)
1 /2−(Kn+2)

1/2]2 (11)

K n+1=Kn⊕K 1   (10)

Here we have square roots, so we can obtain integer sequences only in some cases.

K1=−1 , sequence -1, -1, -1, -1, -1, and so on.

K1=2 , sequence 2, 2, 2, 2, 2, 2, and so on.

K1=7 , sequence A093069, a(n) = (2^n + 1)^2 – 2, that is 7, 23, 79, 287, 1087, 4223,
16639, 66047, 263167, 1050623, 4198399, and so on. As told in [17], Cletus Emmanuel calls
these "Kynea numbers" [17].

K1=14 , sequence  98, 782,  6722, 59534, 532898, 4787342, 43059842,    387459854,
3486902498,  31381413902, and so on. Not given in OEIS.
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Oblong numbers
These numbers are discussed in [4]. The oblong number is defined as:  On=n(n+1) . It is
given  by  OEIS  A002378.  An  oblong  number  is  also  known  as  a  promic,  pronic,  or
heteromecic number. OEIS gives the list: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182,
210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992,
1056, and so on.
The binary operator is:

Again, as we did before we have:

O1=0 , sequence 0, 0, 0, 0, 0, and so on.

O1=2 , sequence OEIS A002378, as given above. 

O1=6 , sequence, A002943, a(n) = 2*n*(2*n+1).

O1=12 , sequence A045945, Hexagonal matchstick numbers: a(n) = 3*n*(3*n+1).

O1=20 , sequence 72, 156, 272, 420, 600, 812, 1056, 1332, 1640, 1980, and so on. Not
given in OEIS.

Of course, we can repeat the same approach for the odd squares (A016754) numbers. Their
binary operator is given in [4]. Also for the centered square numbers and the star numbers, we
have the binary operators [5,6], so we can find the related representations by means of integer
sequences  too.  As  previously  told,  among  the  generated  sequences,  news  sequences  are
produced that can be interesting for further investigation of integer sequences. 

Triangular numbers
These numbers are really interesting. The numbers are of the form (OEIS A000217):

T n=∑
k=1

n

k=
n (n+1)
2

I have discussed them in [7]. For these numbers we can give two binary operators. 
For the convenience of the reader, I show the results that we can obtain.
The first binary operator is [7]:

 T n⊕T m=T n+T m+
1
4

[1−(1+8T n)
1/2−(1+8Tm)

1/2+(1+8T n)
1 /2(1+8Tm)

1 /2]
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Again we consider T n+1=T n⊕T 1 , and change the value of T1 . Here in the following the
sequences that we generate.

T1=0 , sequence 0, 0, 0, 0, 0, 0, … . 

T1=1 , sequence 3, 6, 10, 15,  21, 28, 36,  45,  55,  66,  78,  91, 105,  120,  136, 153, 171,
190,  210,   231, and so on.  And this is OEIS A000217, the sequence of triangular numbers.

T1=3 , sequence 10, 21, 36, 55, 78, 105, 136,  171,  210, 253,  300, 351,  406,  465, 528,
595,  666, 741, 820,  903, … . Searching this sequence in OEIS, we can easily find that it is
A014105, that is, the Second Hexagonal Numbers: H n=n(2n+1) .

T1=4 , sequence 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612,
684, 760, 840, 924, … OEIS A046092 (four times triangular numbers).

T1=6 , sequence 21, 45, 78, 120, 171, 231, 300, 378, 465, 561, 666, 780, 903, 1035, 1176, 
1326, 1485, 1653, 1830, 2016, … OEIS A081266 (Staggered diagonal of triangular spiral in 
A051682).

T1=7 , sequence 23, 48, 82, 125, 177, 238, 308, 387, 475, 572, 678, 793, 917, 1050, 1192, 
1343, 1503, 1672, 1850, 2037, … OEIS A062725.

 T1=10 , sequence 36, 78, 136, 210, 300, 406, 528, 666, 820, 990, 1176, 1378, 1596, 1830,
2080, 2346, 2628, 2926, 3240, 3570, … OEIS A033585, that is, numbers: 2n(4 n+1) .

 T1=11 , sequence 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610,
1845, 2096, 2363, 2646, 2945, 3260, 3591, … OEIS A139276, that is, numbers n(8n+3) .

Of course, we can continue and obtain further sequences. 
As previously told, we have a second binary operator for the triangular numbers [7]. It is the
following:

T n⊕T m=T n+Tm+
1
4

[1+(1+8T n)
1/2+(1+8T m)

1 /2+(1+8T n)
1 /2(1+8Tm)

1 /2]

Again, let us consider T n+1=T n⊕T 1 as we did before.

 T1=0 , sequence  1, 3, 6, 10, 15,  21, 28, 36,  45,  55,  66,  78,  91, 105,  120,  136, 153, 
171,  190,  210,  and so on.   OEIS A000217, the sequence of triangular numbers.
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 T1=1 , sequence  6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 
630, 703, 780, 861,  …  OEIS A000384, Hexagonal numbers Hn=n(2n−1) .

 T1=3 , sequence  15, 36, 66, 105, 153, 210, 276, 351, 435, 528, 630, 741, 861, 990, 1128,
1275,  1431,  1596,  1770,  1953,   …   OEIS  A062741,  three  times  pentagonal  numbers
3n(3n−1)/2 .

 T1=4 , sequence  17, 39, 70, 110, 159, 217, 284, 360, 445, 539, 642, 754, 875, 1005,
1144, 1292, 1449, 1615, 1790, 1974,  …  OEIS A022266, numbers n(9n−1) /2 .

 T1=6 , sequence 28, 66, 120, 190, 276, 378, 496, 630, 780, 946, 1128, 1326, 1540, 1770,
2016, 2278, 2556, 2850, 3160, 3486,  …  OEIS  A014635, numbers 2n(4 n−1) .

 T1=7 , sequence 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785,
2032, 2295, 2574, 2869, 3180, 3507,   …  OEIS A139274, numbers n(8n−1) .

 T1=10 , sequence  45, 105, 190, 300, 435, 595, 780,  990, 1225,  1485, 1770,  2080, 2415,
2775,  3160, 3570,  4005,  4465, 4950, 5460 …. This sequence is not present in OEIS.

 T1=11 , sequence 47, 108, 194, 305, 441, 602, 788, 999, 1235, 1496, 1782, 2093, 2429,
2790,  3176,  3587,  4023,  4484,  4970,  5481,  ….  OEIS  A178572,  numbers  with  ordered
partitions that have periods of length 5.

Using  the  On-Line  Encyclopedia  of  Integer  Sequences  (OEIS),  we  have  seen  that  quite
different sequences can have the same binary operators. We have also found integer sequences
not given in OEIS and that need to be studied.

Conclusion
Groupoids  are  related  to  the  integer  sequences.  These  groupoid  possess  different  binary
operators. As we have shown, other integer sequences can have the same binary operators,
and therefore can be used to represent the related groupoids. 
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Introduction 

A groupoid is an algebraic structure made by a set 

with a binary operator [1]. The only restriction on the 

operator is closure. This property means that, 

applying the binary operator to two elements of a 

given set S, we obtain a value which is itself a 

member of S. If this binary operation is associative 

and we have a neutral element and opposite elements 

into the set, the groupoid becomes a group. 

 

Groupoids are interesting also for the study of integer 
numbers. As shown in some previous works [2-7], 

the integer sequences of Mersenne, Fermat, Cullen, 

Woodall and other numbers are groupoid possessing 

different binary operators. Here we show that other 

integer sequences can have the same binary 

operators, and therefore can be used to represent the 

related groupoids. That is, we can obtain different 

integer sequences by means of the recurrence 

relations generated by the considered binary 

operations.  

 

In [7], we started the search for different 
representations for the groupoid of Triangular 

Numbers. Here we generalize this search, using the 

binary operators obtained in the previous analyses. In 

particular, we will see the representations linked to 

Mersenne, Fermat, Cullen, Woodall, Carol and 

Kynea, and Oblong numbers. The binary operators of 

these numbers have been already discussed in 

previous works. The results concerning the 

Triangular numbers are also reported. 

 

Using the On-Line Encyclopedia of Integer 
Sequences (OEIS), we are able to identify the several 

representations of groupoids. At the same time, we 

can also find integer sequences not given in OEIS 

and probably not yet studied. 

 

Mersenne numbers   
We discussed the binary operator of the set of 

Mersenne numbers in [8,9]. The numbers are given 

as    
   . The binary operator is: 

 

          =          (1) 
 

As shown in [9], this binary operation is a specific 

case of the binary operator of q-integers, which can 

be linked to the generalized sum of Tsallis entropy 

[10,11].  

The binary operator can be used to have a recurrence 

relation:  

 

             (2) 

 

Here in the following, let us show the sequences that 
we can generate from (1) and (2). 

We use OEIS, the On-Line Encyclopedia of Integer 

Sequences, to give more details on them.  

 

    , sequence 0, 0, 0, 0, 0, 0, … .  

 

    , sequence  3, 7, 15, 31, 63, 127, 255, 511, 

1023, 2047, 4095, 8191, 16383, 32767, 65535, 

131071, 262143, 524287, 1048575, 2097151,  and so 

on. The Mersenne numbers     . This sequence is 
OEIS A000225.  (OEIS tells that these numbers 

are sometimes called Mersenne numbers, “although 

that name is usually reserved for A001348”).  
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    , sequence 8, 26, 80, 242, 728, 2186, 6560, 

19682, 59048, 177146, 531440, 1594322, 4782968, 

14348906, 43046720, 129140162, 387420488, and so 

on (OEIS A024023,     
   ). 

 

    , sequence  15, 63, 255, 1023, 4095, 16383, 

65535, 262143, 1048575, 4194303, 16777215, 

67108863, 268435455, and so on (OEIS A046092, 

    
   ).  

 

And we can continue:     , OEIS A024049, 

    
   ;     , OEIS A024062,     

    

;      OEIS A024075,     
   , and so on. 

An interesting sequence is     , A002283, 

     
   . Dividing this sequence by 9, we have 

the repunits A002275,    (  
   )  ⁄ . The 

generalized sum of the repunits is given in [12]. 

 

Fermat numbers 
The group of Fermat numbers has been discussed in 

[13]. As explained in [14], there are two definitions 

of the Fermat numbers. “The less common is a 

number of the form      obtained by setting x=1 in 

a Fermat polynomial, the first few of which are 3, 5, 

9, 17, 33, ... (OEIS A000051)” [14]. We used this 

definition.  

 

     
    

 

          = (    )  (    )       (3) 

 

The  binary operator can be used to have a recurrence 

relation:               (4) 

 

Sequences can generate from (3) and (4). 

 

    , sequence 2, 0, 2, 0, 2, 0, … .    ;  

 

    , sequence 1, 1, 1, 1, 1, 1, …. . 
 

    , sequence 2, 2, 2, 2, 2, 2, … .  

 

    , sequence  5, 9, 17, 33, 65, 129, 257, 513, 

1025, 2049, 4097, 8193, 16385, 32769, 65537, 

131073, 262145, 524289, 1048577, 2097153, and so 

on, the Fermat numbers. (OEIS A000051,     
  

 . 
 

    , sequence A034472,    
   ; for     , 

sequence A052539,     
   .  Continuing with 6, 

we have A034474,     
   . For 7, we have 

A062394,     
   . And so on. 

  

Cullen and Woodall numbers 

These numbers had been studied in [15].  

Let us consider the Cullen numbers,       
   . 

We have the binary operator: 

          =(
 

 
 

 

 
) (    )(    )     (5) 

 

               (6) 
 

    ,  sequence 1, 1, 1, 1, 1, 1, 1, and so on. 

 

    ,  sequence 3, 4, 5, 6, 7, 8, 9, and so on. 

 

    , sequence 9, 25, 65, 161, 385, 897, 2049, 

4609, 10241, 22529, 49153, 106497, 229377, 

491521, 1048577, 2228225, 4718593, 9961473, 
20971521, 44040193, and so on. OEIS A002064, 

Cullen numbers:      
   . 

  

    , sequence 19, 82, 325, 1216, 4375, 15310, 

52489, 177148, 590491, 1948618, 6377293, 

20726200, 66961567, 215233606, 688747537, and so 

on. OEIS A050914,      
   . For      

sequence A050915,      
   . And so on. Let us 

mention the case      which is giving  A064748, 

      
   . That is:  201, 3001, 40001, 500001, 

6000001, 70000001, 800000001, and so on. 

 

Woodall numbers are      
   , and the binary 

operator is: 

 

           =(
 

 
 

 

 
) (    )(    )    (7) 

 

               (8) 

 

    ,  sequence 1, 2, 3, 4, 5, 6, 7, and so on. 

 

    ,  sequence 7, 23, 63, 159, 383, 895, 2047, 

4607, 10239, 22527, 49151, 106495, 229375, 

491519, 1048575, 2228223, 4718591, 9961471, 

20971519, 44040191, and so on. A003261, Woodall 

(or Riesel) numbers:     
   . 

 

    , sequence A060352,      
   . For 

    , we have sequence A060416,      
   . 

And so on. Let us mention the case     , which is 

giving A064756,       
   , that is, 199, 2999, 

39999, 499999, 5999999, 69999999, 799999999, and 

so on. 

 

Carol and Kynea Numbers 

These numbers have been studied in [3]. Carol 

number is:    ( 
   )   . The binary operator  

     is given in [3]: 

 

                           
 

where    (    )(    )
  ⁄ ,   (   

 )  ⁄ (    ),   (    )
  ⁄ (    )

  ⁄ . 

We can use again            . Since the binary 

operator contains square roots, we can obtain integer 
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sequences only in some cases. 

 

     , sequence  A093112,    ( 
   )   , 

that is 7, 47, 223, 959, 3967, 16127, 65023, 261119, 

1046527, 4190207, … As told in [16], Cletus 

Emmanuel called these numbers as "Carol numbers". 
 

    , sequence 62, 674, 6398, 58562, 529982, 

4778594, 43033598,  387381122,      3486666302,  

31380705314, and so on.   Not given in OEIS. 

 

    , sequence  223,   3967, 65023, 1046527,  

16769023, 268402687,   4294836223,    

68718952447,  1099509530623,  17592177655807, 

and so on. Not given in OEIS. 

 
Let us consider the Kynea numbers.   

 

   ( 
   )    

 

The binary operator       is given in [3]. We use 

again            . Again,  we have square 

roots, so we can obtain integer sequences only in 

some cases. 

 

     , sequence -1, -1, -1, -1, -1, and so on. 
 

    , sequence 2, 2, 2, 2, 2, 2, and so on. 

 

    , sequence A093069 ,    ( 
   )   , 

that is 7, 23, 79, 287, 1087, 4223, 16639, 66047, 

263167, 1050623, 4198399, and so on. As told in 

[17], Cletus Emmanuel calls these "Kynea numbers" 

[17]. 

 

     , sequence  98, 782,  6722, 59534, 532898, 

4787342, 43059842,    387459854,    3486902498,  

31381413902, and so on. Not given in OEIS. 
 

Oblong numbers 

These numbers are discussed in [4]. The oblong 

number is defined as:     (   ). It is given by 

OEIS A002378. An oblong number is also known as 

a promic, pronic, or heteromecic number. OEIS gives 

the list: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 

182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 

552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 

and so on. 

The binary operator       is:  
 

      
 

 
           

 

where    (     ⁄ )
  ⁄ (     ⁄ )

  ⁄ ,   
 (     ⁄ )

  ⁄  (     ⁄ )
 . Again, as we did 

before we have: 

 

    , sequence 0, 0, 0, 0, 0, and so on. 

 

    , sequence OEIS A002378, as given above.  
 

    , sequence, A002943,      (    ). 
 

     , sequence A045945, Hexagonal matchstick 

numbers:      (    ).  

 

     , sequence 72, 156, 272, 420, 600, 812, 

1056, 1332, 1640, 1980, and so on. Not given in 

OEIS. It is      (    ). And we can continue. 

 

Of course, we can repeat the same approach for the 

odd squares (A016754) numbers. Their binary 

operator is given in [4]. Also for the centered square 

numbers and the star numbers, we have the binary 

operators [5,6], so we can find the related 

representations by means of integer sequences too. 

As previously told, among the generated sequences, 

news sequences are produced that can be interesting 

for further investigation of integer sequences.  
 

Triangular numbers 

These numbers are really interesting. The numbers 

are of the form (OEIS A000217): 

 

   ∑ 

 

   

 
 (   )

 
 

 

I have discussed them in [7]. For these numbers we 

can give two binary operators. For the convenience of 

the reader, I show the results that we can obtain.  

The first binary operator is [7]: 

 

             
 

 
[  (     )

  ⁄  

(     )
  ⁄  (     )

  ⁄ (     )
  ⁄ ] 

 

Again we consider           , and change the 

value of   . Here in the following the sequences that 
we generate. 

 

    , sequence 0, 0, 0, 0, 0, 0, … .  

 

    , sequence 3, 6, 10, 15,  21, 28, 36,  45,  55,  

66,  78,  91, 105,  120,  136, 153, 171,  190,  210,   

231, and so on.  And this is OEIS A000217, the 

sequence of triangular numbers. 

 

    , sequence 10, 21, 36, 55, 78, 105, 136,  171,  
210, 253,  300, 351,  406,  465, 528, 595,  666, 741, 

820,  903, … . Searching this sequence in OEIS, we 

can easily find that it is A014105, that is, the Second 

Hexagonal Numbers:     (    ). 
 

    , sequence 12, 24, 40, 60, 84, 112, 144, 180, 
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220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 

840, 924, … OEIS A046092 (four times triangular 

numbers). 

 

    , sequence 21, 45, 78, 120, 171, 231, 300, 378, 

465, 561, 666, 780, 903, 1035, 1176, 1326, 1485, 

1653, 1830, 2016, … OEIS A081266 (Staggered 

diagonal of triangular spiral in A051682). 

 

    , sequence 23, 48, 82, 125, 177, 238, 308, 387, 

475, 572, 678, 793, 917, 1050, 1192, 1343, 1503, 

1672, 1850, 2037, … OEIS A062725. 

 

      , sequence 36, 78, 136, 210, 300, 406, 528, 

666, 820, 990, 1176, 1378, 1596, 1830, 2080, 2346, 

2628, 2926, 3240, 3570, … OEIS A033585, that is, 

numbers:   (    ). 
 

      , sequence 38, 81, 140, 215, 306, 413, 536, 

675, 830, 1001, 1188, 1391, 1610, 1845, 2096, 2363, 

2646, 2945, 3260, 3591, … OEIS A139276, that is, 

numbers  (    ). 
 

Of course, we can continue and obtain further 

sequences.  

As previously told, we have a second binary operator 

for the triangular numbers [7]. It is the following:

 

 

            
 

 
[  (     )

  ⁄  (     )
  ⁄  (     )

  ⁄ (     )
  ⁄ ] 

 

 

Again, let us consider           as we did 
before. 

 

     , sequence  1, 3, 6, 10, 15,  21, 28, 36,  45,  

55,  66,  78,  91, 105,  120,  136, 153, 171,  190,  210,  

and so on.   OEIS A000217, the sequence of 

triangular numbers. 

 

     , sequence  6, 15, 28, 45, 66, 91, 120, 153, 

190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 

780, 861,  …  OEIS A000384, Hexagonal 

numbers    (    ). 
 

     , sequence  15, 36, 66, 105, 153, 210, 276, 

351, 435, 528, 630, 741, 861, 990, 1128, 1275, 1431, 

1596, 1770, 1953,  …  OEIS A062741, three times 

pentagonal numbers   (    )  ⁄ . 

 

     , sequence  17, 39, 70, 110, 159, 217, 284, 

360, 445, 539, 642, 754, 875, 1005, 1144, 1292, 
1449, 1615, 1790, 1974,  …  OEIS A022266, 

numbers  (    )  ⁄ . 

 

     , sequence 28, 66, 120, 190, 276, 378, 496, 

630, 780, 946, 1128, 1326, 1540, 1770, 2016, 2278, 

2556, 2850, 3160, 3486,  …  OEIS  A014635, 

numbers   (    ). 
 

     , sequence 30, 69, 124, 195, 282, 385, 504, 
639, 790, 957, 1140, 1339, 1554, 1785, 2032, 2295, 

2574, 2869, 3180, 3507,   …  OEIS A139274, 

numbers  (    ). 
 

      , sequence  45, 105, 190, 300, 435, 595, 780,  

990, 1225,  1485, 1770,  2080, 2415,   2775,  3160, 

3570,  4005,  4465, 4950, 5460 …. This sequence is 

not present in OEIS. 

      , sequence 47, 108, 194, 305, 441, 602, 788, 
999, 1235, 1496, 1782, 2093, 2429, 2790, 3176, 

3587, 4023, 4484, 4970, 5481, …. OEIS A178572, 

numbers with ordered partitions that have periods of 

length 5. 

 

Using the On-Line Encyclopedia of Integer 

Sequences (OEIS), we have seen that quite different 

sequences can have the same binary operators. We 

have also found integer sequences not given in OEIS 

and that need to be studied. 

 

Conclusion 
Groupoids are related to the integer sequences. These 

groupoid possess different binary operators. As we 

have shown, other integer sequences can have the 

same binary operators, and therefore can be used to 

represent the related groupoids.  
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