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Abstract — With the introduction of the ISO26262 standard in 

the automotive field, numerous solutions for the in-field and on-

line testing have been proposed. Among the several test solutions 

available, the Built-In Self-Test (BIST) approach is the most used 

for manufacturing test of chips, while the Software-Based Self-

Test (SBST) approach is the most commonly used for on-line test 

the modern processors. This paper faces a very concrete problem 

concerning SBST development. In order to address more market 

demands, semiconductor industries are usually developing 

families of microcontroller, usually based on similar processors, 

instead of a single instance. This variety of architectures makes the 

development of SBST programs a repetitive, time and human 

consuming activity.  

The main aim of this work is to propose a methodology 

according with the SBST paradigm that permits to develop test 

programs able to achieve high coverage on different 

microcontrollers of the same family. The developed test programs 

are not showing any significant drop in coverage performance 

when they are used on different processors included in product of 

the same microcontroller family. The approach is based on the 

analysis of the processor hierarchy to identify the common units 

between the processors of the same family, first of all looking at 

those that show design differences. The module classification 

permits than to plan the most effective SBST development.  

A segment of industrial microcontrollers developed by 

STMicroelectronics for the automotive field, adapting many 

processors belonging to the same processor family, is used as a case 

of study. The experimental results demonstrate the effectiveness of 

the proposed approach, i.e., to reach the same fault coverage 

figures over many processors while dramatically reducing the 

development time. 

 
Index Terms — Automotive microcontroller ISO26262 test, In-

Field Self-Test, On-Line Self-Test, Reliability and Testing 

I. INTRODUCTION 

oday vehicles are equipped with very complex 

functionalities that use of many electronic components. In 

fact, in a modern vehicle, it is possible to find many different 

Electronic Control Units (ECUs) placed inside of the vehicle; 

Actually, in a vehicle’s engine, there may exist more than 7.000 

semiconductor components able to perform very different tasks. 

Typical tasks are devoted, for example, to manage safety 

systems such as the ABS or the ESP, to perform powertrain 

functionalities, or to improve the end-user experience by means 

of new applications circumscribed as infotainment [1], [2], [3]. 

The automotive sector is one of the most dynamic ones, since 

potential users are always asking for additional but safe and 

secure features. Actually, the manufacturers of electronic 

devices for automotive, and in particular the microcontrollers 

manufacturers, try to launch every few months a new product; 

all these new products belong to the same family of processors 

and share some features present in each device. The differences 

between the family products are mainly focused on the memory 

sizes, the type and quantity of peripherals available, and the 

safety mechanisms included in the device. Considering the 

processors that belong to a given family, in most cases only 

small variations are applied, e.g., including small modifications 

to the Instruction Set Architecture (ISA). In this way, the 

manufacturers exploit the selected architecture and guarantee 

an appropriate level of compatibility among the products on the 

same family. 

Guaranteeing the correct behavior of the electronic devices 

composing a vehicle is very complex, and its expected behavior 

has to be assured in very harsh environments. In fact, vehicles 

are prone to vibration, noise, extreme temperatures and 

electromagnetic fields that may affect and degrade the 

electronic components. The effects of possible faults may lead 

to significant damages, either from an economic point of view 

or in terms of consequences for the human users that may 

produce even human casualties. In safety-critical applications, 

such as the automotive ones, a set of very good practices have 

been introduced, trying to guarantee the correct functioning of 

the electronic devices during their normal life operation. During 

the last years, the trend is to resort to self-test procedures that 

operate in-field in autonomous mode. These in-field procedures 
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have been ruled by the introduction of some safety standards, 

such as the ISO 26262 in the automotive field, or ARP-4761 for 

avionics. 

In order to guarantee the system reliability, hardware and 

software-based approaches have been proposed, e.g., [4] and 

[5]. In the first case, even though the introduced hardware 

reaches to assure very high reliability levels, the area overhead 

and the difficulties to use them without destroying the system 

status create some difficulties in its adoption. On the other hand, 

software-based approaches usually reach lower reliability 

levels than the obtained by the hardware-based counterparts but 

require very few overheads in terms of hardware and memory. 

However, the most commonly used implementation 

methodologies to develop software-based solutions are mostly 

based on manual processes that involve very long development 

times making these approaches less attractive for the car 

manufacturers. 

 

In a family of microcontrollers, the implementation of safety 

mechanisms based on hardware or software solutions must be 

implemented and inherited starting from the initial devices to 

the following ones.  These mechanisms should guarantee very 

good reliability levels for all the components of the whole 

family. Inheriting hardware-based solutions is usually handled 

by the use of commercial tools that implement these 

mechanisms almost automatically. On the other side, software-

based solutions are rarely inheriting due to the implementation 

methodologies that in most cases tackle only one processor at a 

time.  

In this paper, we present a development methodology for 

software-based solutions oriented to provide a quick and cheap 

strategy that considers a whole family of microcontrollers at a 

time, instead of addressing each single processor cores 

separately. We propose to exploit the similarities among the 

different components of a family of microcontrollers during the 

development process. In particular, we define a portable 

classification topology that permits us to take advantage of the 

processor similarities during the early development stages of 

the SBST programs. Additionally, we define how to develop a 

set of test programs for the most common modules available in 

a family of microcontrollers in order to reduce the development 

time of the software test libraries.  

Through a very consistent set of experiments, run in a family 

of automotive oriented devices manufactured by 

STMicroelectronics, we experimentally observed that the 

generation of a software-based solution for a family may 

require the same development times as of the individual 

approach for each single products of the portfolio. The family 

oriented approach is also guaranteeing very high fault coverage 

(FC) levels for all components of the considered family. In this 

direction, to avoid the loss of effectiveness of the test programs 

from one processor to another, a threshold is defined. The 

identification of the minimum FC threshold is discussed in this 

paper. Additionally, the proposed approach describes how to 

maximize the processor FC by reusing test programs previously 

developed.  

 

The paper is organized as follows: Section II proposes a broad 

background concerning the on-line self-test, with a particular 

emphasis on the Software-Based Self-Test (SBST) approach. 

The development steps of a new processor family are also 

discussed in Section II. In Section III the proposed approach is 

discussed and analyzed; it allows the development of software 

test programs that are easily portable between the different 

processors of the same family under examination. Section IV 

reports the case study, i.e. the SPC58 processor family used in 

this work is analyzed. Section V reports the experimental 

results that support the proposed approach. Some industrial 

problems related to the development of the test programs are 

reported in Section VI. Finally, Section VII close this work with 

some conclusions. 

II. BACKGROUND 

This section proposes an overview of the safety standards used 

in different fields, with a particular emphasis on the automotive 

field. The motivations related to the in-field self-test are 

introduced and the two main categories of safety mechanisms 

used to perform in-field testing are reported. Later, an overview 

of the software-based test approach is provided. The structure 

of a generic Software Test Library (STL) used for testing a 

processor is discussed and analyzed. Finally, a description of 

the design process of a new industrial processor is shown. 

A. Safety standards 

The IEC 61508 [6] is an international standard introduced at the 

end of the 1990s. The International Electrotechnical 

Commission has proposed this standard with the goal of 

introducing some methods to apply, design, deploy and 

maintain automatic protection systems called safety-related 

systems. As the standard reported, it defines the functional 

safety as: “part of the overall safety relating to the EUC 

(Equipment Under Control) and the EUC control system which 

depends on the correct functioning of the 

Electrical/Electronic/Programmable Electronic Safety-related 

systems (E/E/PES), and other technology safety-related 

systems and external risk reduction facilities.” [6] 

The fundamental concept described in the standard is that any 

critical-system must work correctly or fail in a predictable 

(safe) way. As a consequence of the IEC 61508, many specific 

standards are introduced for different application fields. In the 

medical field, the IEC 62304 standard has been introduced, the 

EN 5012x has been introduced in the railway field. The DO-178 

standard is used in the aviation field, while in the automotive 

industry the ISO 26262 standard has been introduced. 

The ISO 26262 [7] is an international standard introduced in 

2011. The target of this standard is to define a functional safety 

metric for all Electrical/Electronic Systems used in automotive 

applications. The ISO 26262, in opposition to previous 

standards, introduced the concept of controllability [4]. The 

controllability is the ability to avoid a hazardous event by an 

action taken by a driver or by a system. The standard introduces 

four Automotive Safety Integration Level (ASIL) classes 

depending on severity, probably of exposure and controllability 

of dangerous events. The standard faces the steps to analyze the 

hardware failures of the electrical and electronic parts of cars. 

In addition, the ISO 26262 classifies the faults in some 

categories [4]: 
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• Perceived: This fault is perceived by the driver, but the 

fault is not detected by a safety mechanism in a 

prescribed time.  

• Detected: This fault is detected by safety mechanisms 

in a prescribed time.  

• Latent: This fault is neither detected by a safety 

mechanism and it is not perceived by the driver.  

• Safe fault: Fault whose occurrence will not 

significantly increase the probability of violation of a 

safety goal. 

• Residual fault: The effect of this fault does not affect 

the system. 

B. Safety mechanisms 

Different solutions facing the problem of the in-field self-test 

are proposed to be compliant with the introduced safety 

standards. Roughly speaking, the proposed solutions can be 

categorized into two main categories that separate pure 

hardware and software-based solutions; however, in the last 

years, hybrid proposals are also finding some space as safety 

mechanisms. Typically, the safety mechanisms are targeted to 

detect the permanent stuck-at faults, but it is possible to extend 

the test strategies to other fault models as the delay faults, the 

transient faults or the bridge faults. In every case, the FC figure 

can be evaluated with a fault-simulator software tool [8] [9]. In 

the automotive field, the FC is also called Diagnostic Coverage 

(DC) [7]. 

 

1) Hardware-based approaches 

Belonging to hardware-based approaches [10], the Logic-BIST 

(L-BIST) is one of the most popular approaches. In this 

approach, a state machine applies some non-functional test 

patterns to the Unit Under Test (UUT). The BIST system 

collecting and checking the results at the end of the process. 

When applied to a processor core, this test strategy can be used 

only during the power-on because it requires the system to be 

in a specific test-mode. On the other side, some safety 

mechanisms can be based on duplication and triplication of the 

UUT. In particular, the Triple Modular Redundancy (TMR) 

[11] technique uses three implementations of the same UUT 

and the output signals of these modules vote adopting a voting 

mechanism. The most basic voting algorithm is the majority 

voter, where the voter selects the most common output. The 

Lockstep configuration is a redundant system based on UUT 

duplication. Regarding the memory testing, two approaches are 

most used today: the Memory-BIST (M-BIST), and the Error 

Correction Code (ECC) approach.  The first one uses a March 

test sequence to test the RAM or Flash memory [12]. The M-

BIST approaches write and read sequence of test patterns in the 

memory cells oriented to detect different types of faults; these 

approaches modify the content of the memory. For this reason, 

the M-BIST can be used only at the power-on of the processor 

when the memory contains useless values. On the other hand, 

the ECC one uses a redundant code to perform an on-line check 

[13]. All hardware-based approaches require the instantiation 

of additional hardware to perform the testing processes. The 

amount of added hardware to perform the test can be a 

significant part of the whole device area. 

 

2) Software-based approach  

In order to use this approach, a test library able to detect the 

possible permanent hardware faults must be developed. The 

Software-Test Library (STL) is a collection of software 

programs able to excite the possible faults inside of the 

processor and the peripherals surrounding it. This strategy, 

initially proposed in [14], has been studied by different research 

groups as described in [15] [16] [17], and later extended 

targeting the automotive field [5]. Currently, the STL 

approaches are used by different companies to mainly test their 

own processors, for example: STMicroelectronics [18], 

Infineon [19], Cypress [20], Renesas [21], Microchip [22] and 

ARM [23]. The STL technique is based on the so-called 

Software-Based Self-Test (SBST) paradigms. The SBST 

consists of letting the CPU running a sequence of instructions 

to excite and propagate the faults that may affect the digital 

circuit [24]. The processor is periodically forced to execute the 

self-test code [5] able to detect the possible occurrence of 

permanent faults in the processor core itself, or in the 

peripherals connected to it. Such procedures are developed to 

activate possible faults and report their presence.  

Usually, the test programs return a value called signature. In the 

presence of a fault, the signature value produced by the test is 

different from the expected one. The signature value is 

produced by accumulating the results of the assembly 

instructions that perform the test. It is a good practice to develop 

a test program for specifically testing one unit of the processor. 

As described in [25], a test program can be developed mainly 

resorting to three different approaches: ATPG-based approach, 

deterministic approach, and evolutionary-based approach. The 

first one uses the test patterns generated by an ATPG tool [26] 

to test a functional unit of the processor. The ATPG-based 

approach is very powerful to test the arithmetic and logic units 

as the adder, the multiplier, and the divider units. The test 

program executes an assembly instruction able to apply the 

ATPG functional test pattern; for example, using the test 

patterns as the operands of an add instruction to test the adder 

unit. The results of the test instruction are used to produce the 

signature of the test. 

In the deterministic approach, the test program is developed 

studying the Unit Under Test (UUT). A deep knowledge of the 

UUT is necessary to develop a good test program and for 

implementing a specific test algorithm. Some examples of 

deterministic test algorithms are available in the literature, for 

example, in [27] for the Register File Unit and in [28] for the 

BTB unit. A testing algorithm to test the decoder unit is 

proposed in [29], while the test for the FPU is proposed in [30]. 

The last possible approach to develop a test program is the 

evolutionary-based approach. A first pseudo-random set of test 

programs is written, then, resorting to some genetic operators. 

The test programs are modified generating new and hopefully 

better test programs. The goodness of every individual or test 

program is evaluated against a given metric, e.g., the fault 

coverage reached by the program in the UUT. Then, the best 

individuals are selected for generating the next set of 

individuals. The evolutionary algorithm is executed until a 

stable condition is reached. As an example, an evolutionary 

optimizer called µGP [31] has been used to evolve the test 

programs.  
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The test programs that belong to a STL can be classified 

according to their ability to be integrated with the mission 

software application. The STL is usually composed of intrusive 

and non-intrusive test programs [32]. The former ones influence 

the behavior of the operating system or the mission software 

application because the intrusive test needs to take the total 

control of the processor to perform the test; e.g., test programs 

triggering exceptions, or using very special addresses in the 

RAM memory, or manipulating special registers. The intrusive 

tests need to be executed at the power-on or power-off, for 

example before launching the Operating System. On the other 

hand, the non-intrusive tests can be executed by the Operating 

System as a simple application because they do not require 

special conditions. The non-intrusive tests are usually 

performed with the processor configured in user-mode and they 

are periodically executed at run-time scheduled by the 

Operating System. 

A last test program category, which is also usually included in 

a STL is the so-called Instructions Self-Test (IST). The goal of 

the IST test programs is to execute at least once all the assembly 

instructions of the Instruction Set Architecture (ISA) supported 

by the processor. 

Compared to the hardware-based solutions, the STL presents 

many advantages, such as the ability to perform the test at the 

boot time as well as at run-time; the test programs are executed 

at-speed (i.e., at the circuit nominal frequency); and the STL 

does not require any hardware modification. On the other hand, 

the STL programs require to be allocated in the flash memory, 

and according to the execution schedule, these programs require 

be executed concurrently with the mission application. In the 

automotive sector, for example, the memory occupation as well 

as the execution time must comply with the system constraints 

in order to do not impair the execution of the actual application. 

In an automotive solution, the full flash memory occupation 

counts with about 200KB, while a single non-intrusive test 

program must spend at most 255 clock cycles [32], at every run.    

The STL-based approaches still present a serious limitation due 

to the difficulty of both writing efficient and effective test 

programs and devising suitable methodologies for test 

application.  

In order to allow the STL test programs to be compliant with 

the mission software environment, a viable solution is the 

adoption of the Embedded-Application Binary Interface 

(EABI) [33]. The EABI specifies standard conventions for the 

data types, the registers usage, the stack frame organization, and 

the function parameter passing of a software program. Thus, 

every test program includes an EABI prologue and epilogue, 

able to save and restore the mission status. 

In order to assess the test program suitability, the test programs 

are evaluated through a fault-simulation process as described in 

[34] and [35]. Each test program is evaluated targeting only the 

faults in the UUT as described in [5]. When the Fault Coverage 

of the single units reach a good level, a synchronization process 

[5] is performed, i.e., all test programs are fault-simulated 

targeting the whole processor obtaining a general Fault 

Coverage of the processor. Following this process, the fault-

simulation time is reduced as shown in [5], and it is possible to 

take advantage of the cascade phenomenon [5][36]. The 

cascade phenomenon consists of exploiting the beneficial 

effects on the fault coverage introduced by a test program, 

devised for a specific unit, on the other units of the processor.  

 

3) Hybrid approaches 

Among the test strategies proposed by the scientific and 

industrial community, a new third category is currently under 

development: the Hybrid approach, see [37], [38], [39], [40], 

[41], [42]. The hybrid approach merges the software approach 

with the hardware one. The hybrid approach tries to take 

advantage of the positive features of both techniques. It is able 

to reach a high fault coverage, as the hardware-based approach, 

with the ability to work on-line, as a software-based approach. 

The idea is, for example, to use a hardware test architecture 

driven by a software test program for applying some test 

patterns. The architecture works in a similar manner as the L-

BIST approach, but it is not limited to work at power-on. The 

hybrid approach allows to perform periodical on-line self-tests. 

In order to integrate these techniques in new devices, it is 

required to modify the hardware device; for this reason, hybrid 

approaches are not targeted in this paper.  

C. STL architecture 

The goal of this subsection is to show how an STL works, 

considering the final user point of view. Usually, two different 

sets of Application Programming Interfaces (APIs) are 

available, one for the tests performed at boot-time and one for 

the run-time test programs.  

At the boot-time, a single API calls a software task able to 

execute the test programs, as shown in Figure 1. Typically, the 

STL_BOOT is performed at the start-up before loading the 

Operating System. A Test_init function prepares the processor 

to perform all the test programs. In particular, the Test_init 

configures the interrupt controller to manage the interrupt 

requests generated by the test programs, initializes the RAM 

memory, disables all peripherals and configures a watchdog 

timer to avoid the program to be stuck in an infinite loop. The 

Test_loader function launches each test program and checks the 

signature value against the expected one. In case of a test 

program fails the Safe_state function is performed. The 

Safe_state function freezes the ECU in a safe state. If all the test 

programs return the expected signature, a Test_deinit function 

restores the processor state. Finally, the Operating System is 

launched.  

 
Figure 1: STL architecture for the boot-time tests  
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The non-intrusive test programs are performed at run-time, in 

this case, APIs complaints with the AUTOSAR standard is 

required [43]. Three APIs are usually implemented: 

Prepare_STL, Call_test_routine and Return_last_test_state. 

The Prepare_STL function initializes the variables used by the 

loader of the test programs. The Call_test_routine executes the 

test whose ID is passed as a parameter. While the 

Return_last_test_state indicates if the last test program 

executed has detected a fault or not. In the presence of a fault, 

the system must be placed in a safe state. 

D. Design process and industrial production timeline 

The development of a processor is a long and complex process 

that requires many steps to reach the final product [44]. 

Analysing the process at a high level, the features of the new 

device are initially defined and described. This higher level is 

known as the behavioural level. In the case of the processors, 

the general architecture and the Instruction Set Architecture 

(ISA) is established. In the next step, a formal description of the 

processor using a high-level language is performed. In this step, 

called Register Transfer Level (RTL), every single unit of the 

processor is described and its behaviour verified. The RTL is 

independent of the technology that will be used to implement 

the processor, but the RTL description is sufficiently detailed to 

allow the synthesis of the digital circuits. Furthermore, the RTL 

description allows us to perform formal verification of the 

processor using a logic simulator [45]. The next step is 

automatically generated from the RTL level through a synthesis 

process, this new level is called Gate-Level. At Gate-Level the 

circuit is described at the level of logical gates considering a 

specific technological library. In the last step called Switch-

Level, the processor is described at the transistor level. The 

Switch-Level is used to generate the chip layout. The layout is 

the description of the geometric information necessary to 

activate the final production process. An integrated circuit 

consists of a succession of silicon, oxide and aluminium layers 

that must be arranged in a certain way to create the transistors 

and the connections between them. Each of these layers 

corresponds to one or more production processes that are 

regulated by one or more masks. The complete set of the masks 

derived from the layout defines all the operations to be 

performed in production to create the final die. The die is the 

thin plate of semiconductor material on which the electronic 

circuit of the integrated circuit has been made. Finally, the die 

is closed in the plastic package, and the wires bonding is 

realized to connect the die with the external package contacts. 

Obtained the first sample of the new processor, a verification 

phase is performed. The aim of the verification phase is to check 

the device to an electrical point of view, e.g. the electrical power 

consumption of the processor. 

Typically, the processor manufacturer releases a 

Microcontroller Abstraction Layer (MCAL) [46] package 

containing the drivers and APIs for using the processor itself. 

The MCAL is a software module that directly accesses the on-

chip MCU peripheral units mapped in memory. The MCAL 

contain, for example, a set of drivers for the peripherals as the 

GPT (General Purpose Timer), the WDG (Watchdog), the 

MCU (Micro Controller Unit) as the MMU (Memory 

Management Unit) or the MPU (Memory Protection Unit), and 

for all communication devices as the CAN bus, the LIN bus, the 

Flex Ray bus, the Ethernet and the UART interface. In the 

automotive field, the MCAL structure is defined by the 

AUTOSAR standards [46]. The MCAL package is developed 

and tested by the manufacturer of the processor. 

The whole development process of a processor used in an 

embedded system may take about one year from the initial 

behaviour description to the first physical sample. The 

verification phase may require an additional 4 months for 

checking the physical device, and about 7 months to produce 

and check the MCAL library [47][48].  

 

The technical and commercial planning are very important 

aspects, among the aspects that concern the development of a 

new processor. In particular, the roadmap of the new processors 

is defined in order to establish the development plan and the 

production plan. The aim of these plans is to establish the 

characteristics of each processor. In particular, to establish the 

characteristics that change from processor to processor over 

time; for example, the size of the memories or the number and 

type of peripherals present in each processor [49]. In addition, 

the financial investment plan is established for the future years. 

The economic plan is associated with each development step 

and with each production activity [50]. In general, from a 

processor to another processor of the same family two develop 

roads are available. In the first one, the "child" processor is built 

by reducing the features of the "father" processor. In the second 

one, some features of the "father" processor are redesigned and 

improved. With these two approaches, it is possible to produce 

a wide range of processors belonging to the same family. 

However, the basic structure of the processors remains 

unchanged for all processors of the same family. The family 

tree of the processors can be produced considering the two 

possible develop roads. 

III. PROPOSED APPROACH 

This section discusses the proposed approach, the aim is to 

reduce STL development time for each processor of the same 

family; Secondly, the proposed approach allows to identify a 

structure for the development of test programs. The test 

programs developed with the proposed approach are efficient 

on different processors, i.e., the ability of the test programs to 

detect faults does not degrade from one processor to another 

processor of the same family. 

The proposed approach is supported by three different items of 

the new processors family: 1) the family tree of the new 

processors; 2) the development plan of the processors; 3) the 

features of each processor of the new family. All these three 

items, discussed in Section II, must be available before starting 

with the development planning of the portable tests.  

Briefly, the proposed approach is based on the classification of 

the processor's units. The proposed unit classification, called 

portable classification, is used to define how to develop the test 

programs for each unit.   

In the following, the first subsection introduces the idea of 

portable test programs; the second subsection reports the 

proposed portable classification, and finally, the last subsection 

discusses the proposed porting approach. 
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A. Definition of portable test program 

A portable test program mainly operates in a functional way, 

i.e., it  works independently of the hardware implementation of 

the unit that it tests. This consideration is useful in order to 

abstract the test program from the hardware, and in particular 

from the specific UUT.  

For example, the ATPG-based approach should be avoided 

when aiming to produce portable test programs. In fact, the 

ATPG-based approach tries to find a set of optimal test patterns 

for a given hardware implementation of the UUT. These test 

patterns are generated by special ATPG tools that operate at the 

gate-level. Clearly, a new synthesis of the circuit using different 

technological library or different synthesis parameters produces 

a different gate-level implementation, that requires a new set of 

test patterns. Thus, the ATPG test patterns generated for the 

UUT of a processor are not suitable for testing the same unit in 

a new processor, since a consistent loss of FC is predictable. 

In a similar way, the evolutionary-based approach should be 

also avoided aiming to developed portable test programs. 

Actually, in the evolutionary approach, the test program 

evolves according to the specific gate-level network in order to 

obtain high FC values. The test program developed is therefore 

specific for a single implementation of the UUT, and also in this 

case, there is a considerable decrease of the FC by reusing the 

test programs developed with the evolutionary-based 

approaches.  

In general, all the test programs developed using approaches 

based on a direct exploitation of the gate-level information are 

not suitable for the development of portable test programs. This 

is due to the considerations of the synthesis phase above 

described.  

As a matter of facts, in order to develop portable test programs, 

the deterministic approach is therefore preferred because it is 

based on the functional study of the UUT at RTL. Obviously, 

the deterministic approach lengthens the development time of 

the test programs because a study of the UUT is required, as 

described in subsection B.2 of the Background. However, this 

development phase is performed only one time on a processor 

of the new family. In the long term, there is a considerable 

saving of time and resources necessary to develop the test 

programs. 

B. The proposed portable classification 

This classification analyses the units of a processor with respect 

to similar versions present in other processors of the same 

family. Four possible categories are analyzed and discussed: 

 The EXCLUSIVE unit: The exclusive unit is present only in 

the processor under examination, and it is not present in other 

processors of the same family. In general, the exclusive units 

are included in a processor to optimized some specific 

operations requested by the customer. 

 The SHARED unit: In contrast to the previous category, the 

shared units are present unchanged in many processors of the 

same family. In a more general sense, it is possible to consider 

these units as belonging to the processor family. 

 The REDUCED unit: These units are included in many 

processors of the same family, but from processor to processor 

these units miss some functionalities. For example, the 

multiplier unit able to perform operations on 64-bit operands 

has been simplified, and in its next version the multiplier 

performs operations only on 32-bit operands. 

 The INCREASED unit: Similar to the reduced unit, the 

increased units are present in many processors of the family. 

Furthermore, the increased units improve their functionalities 

in the next version. A possible example is the extension of the 

instruction set of the processor. With the addition of some 

instructions, new features must be implemented in the processor 

units. 

The REDUCED and the INCREASED categories can be 

considered as a sub-category of the SHARED one. 

C. Porting methodology 

In this section, the proposed approach to develop a portable 

STL is shown and discussed. The steps of the proposed 

approach are shown in Figure 2. 

Family tree
development 

plan 
features

Unit 
identification 
and features 

collection 

STLs work 
plans

Portable 
classification

a) b) c) d)
 

Figure 2: The classification of the units of the processor family 

• Step a: The family tree of the processors family, the release 

times to the market of every device, and the features of each 

processor are gathered. At this point, it is important to 

determine when every phase of the development plan for 

every processor core in the family will take place. In 

particular, it must be defined the delivery times for the RTL, 

GATE, and Software MCAL. Figure 3 shows an example of 

a family tree composed of 5 different processors. From the 

figure, it is possible to see that the processor 1 must be 

delivered at M15, at the end of the fifth quarter (Q5), the RTL 

of the processor 1 is to be released during Q0 and the gate 

level near the end of Q3. It is possible to notice also that there 

is a dependence between the RTL of the processor 1 and the 

ones of processors 2 and 4.    

 

• Step b: The units of the different processors of the family 

are identified and the features of every unit extracted. It is 

important to identify the features in every processor and their 

evolution on the other cores in the whole family. Additionally, 

resorting to [5], a first analysis of the processor units is 

performed and the different units are classified according to 

their functionality. Five categories are identified: the first one 

includes all the functional units. These units execute specific 

operations in the processor such as the addition, shift, 

division, and the logic operations, these units are labelled as 

FUNCT units. The second category is named SPECIAL. The 

units belonging to this category are associated with the 

management of the instruction flow or the memories; the 

exception unit, the memory management unit and the branch 

predictor belong to the SPECIAL category. The third category 

only includes the processor REGISTER FILE. All the 

General-Purpose Registers and the Special-Purpose Registers 

belong to the REGISTER FILE category. The program 

counter unit and the effective address calculation unit belong 

to the ADDRESS category. The last category is the one that 
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includes CONTROL units. All the units able to management 

the pipelines belong to the CONTROL category. 

 

According to [5] the test program development process must 

follow an almost sequential order, starting with the FUNCT 

units, followed by the SPECIAL, REGISTER FILE, 

ADDRESS and CONTROL ones. In some intermediate points, 

a general synchronization is performed in order to take 

advantage of the beneficial results of the developed programs 

in the whole processor fault coverage. The development 

strategy proposed in [5] does not consider the portability of 

the programs, actually, it uses extensively non-portable 

solutions. Figure 4 shows a possible development process 

based on this technique while considering the delivery times 

for the family processors in the previous figure.  

 

P2

P3

1aPN 1bPN 2aPN

M10 M11 M12 M13 M14 M15 M16

P1

M17

Time

1aPN 1bPN 2aPN 2cPN

1aPN

P4 …..

…..

 
Figure 4: Development process in [5] 

In this case, it is possible that the development process takes 

so long time and the expected delivery time of the processor 

as well as the STLs may not coincide.  

 

• Step c: The processor units are classified according to the 

portable classification (see Section III.A). For the units 

classified as shared, reduced or increased the test programs 

must include portable test programs for every feature of the 

unit. On the other side, units classified as exclusive require a 

traditional non-portable test program. In general, portable test 

programs are structured in a modular way considering the unit 

features, i.e., an independent sub-test is developed for each 

feature. Once the portable sub-tests have been developed, an 

additional non-portable sub-test is usually required. This new 

non-portable test guarantees the targeted FC, i.e., the aim of 

the additional sub-test is to cover the gap of remaining FC, 

with respect to the expected FC value. In the example reported 

in Figure 5, the processors units are graphically classified as 

shared (blue borders) and exclusive (green borders). 

Additionally, the figure also highlights when a new feature 

appears in the development process for the shared units; this 

is named shared new, and is indicated by a blue arrow.  

• Step d: The STL Development Plan (SDP) is produced in 

this phase, is then important to define the number of 

Development Units (DU) composing the project. A DU is a 

team composed by at least one test engineer and an 

appropriate computation system where the development 

process is computed; here we assume that initially there is a 

unique DU in the development process, and that a DU is able 

to develop only a portable and a non-portable test program 
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Unit 1:
-1a
-1b

Unit 2:
-2a

Processor 3

Month 23th

Unit 1:
-1a
-1b
-1c

Unit 2:
-2a
-2b

Time
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Unit 1:
-1a
-1b
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-2a
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-1a
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-1d
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-2a
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-3a
-3b
-3c
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RTL p. 2 GATE p. 2 SW p. 2

RTL p. 3 GATE p. 3 SW p. 3

SW p. 4RTL p. 4 GATE p. 4

RTL p. 5 GATE p. 5 SW p. 5

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
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-1a
-1b
-1d
-1e

Unit 3:
-3a
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Figure 3: Family tree example 
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every month, or even two non-portable test programs but 

never two portable test programs. 

The development plan creation is divided in two phases: in 

the first one, an initial SDP is proposed ordering the 

development of the tests with respect to the release date of the 

processors to the market and the classification reported in step 

b, as the one reported in Figure 4. In this figure, the test 

development of the portable and non-portable parts for every 

unit are represented together; for example, for the processor 1 

(P1), the development of the test programs for the feature a, 

of the unit 2, is performed during M12 for both parts: the 

portable P and non-portable N.  

At this point, the second phase starts incorporating the 

information about the portable classification made in step c. 

Processor 1
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Unit 1:
-1a
-1b

Unit 2:
-2a

Processor 3

Month 23th

Unit 1:
-1a
-1b
-1c
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-2a
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Time
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Unit 1:
-1a
-1b

Unit 2:
-2a
-2c
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-1a
-1b
-1c
-1d
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-2a

Unit 3:
-3a
-3b
-3c
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-1a
-1b
-1d
-1e

Unit 3:
-3a
-3b

RTL p. 1 GATE p. 1 SW p. 1

RTL p. 2 GATE p. 2 SW p. 2

RTL p. 3 GATE p. 3 SW p. 3

SW p. 4RTL p. 4 GATE p. 4

RTL p. 5 GATE p. 5 SW p. 5

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

M10 M13 M14 M15 M19 M23 M25 M29

Legend:

Shared

Exclusive

Shared New

 

Figure 5: Portable classification of the processors family 
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Figure 6: SDP for a unique DU  
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For every unit, the portable part must be developed before the 

non-portable part.  

Thus, the following algorithm is applied to the original 

development order: 

 
1. Allocation of the portable part of the 

shared new units considering the processor 

delivering time. In this allocation, given 

2 portable tests to develop, the priority 

is given to the one with the nearest 

delivering time 

2. Allocation of the non-portable units in the 
remaining free slots considering: 

a. The portable part should be already 

developed; 

b. Given 2 non-portable test to develop, 

the priority is given to the one with the 

nearest delivering time   

 

Applying this algorithm to the example in Figure 4, let us with 

the development plan provided in Figure 6. In the figure, the 

portable and non-portable parts are represented using blue and 

red elements, respectively; in addition, the green elements 

represent the development of non-portable test programs for 

exclusive features that need not share the results later to other 

processors.  

 

The development must consider the case in which the number 

of DU increase, for example, it may happen that at the very 

early development steps, the number of DU is only one, but 

after a while, when a parallel process is necessary, the number 

of DU is increased to two or even more resources if available. 

The same example described previously is developed 

considering additional DU in Figure 7. During the definition 

of the development plan, the order of development of the 

individual tests for the individual features of each unit is 

modified to anticipate the development of the units classified 

as shared according to the previous algorithm. It is expected 

that the resulting test programs are then ported to the other 

processors of the same family. Porting a test program to 

processors containing reduced units need minor efforts since 

the test program is a reduced set of the original one. In 

contrast, for the units classified as increased, the test 

programs need additional test programs that are specific for 

testing only the new functionalities. At the end of the 

generation process, every portable test program is combined 

with a non-portable test program.  

 

The purpose of this second non-portable test program is to 

compensate for small FC drop on the considered unit. In order 

to accomplish with the marketing times offered by the 

microcontroller producers, it is very important to synchronize 

the development of the STL with the final production steps of 

any microcontroller in the family. 

For the sake of simplicity, it is assumed that any development 

process needs the same time unit ∆T, in this case represented by 

1 month, and as reported in the Figure 7 for example, in M13 

and M14 a second and third DU  are introduced to the 

development team. It is possible to notice that in the time M14 

one portable test program, two exclusive and three non-portable 

sub-test programs are developed simultaneously. 

 

During the last step of the proposed algorithm, the test program 

structure is created for any one of the units belonging to the 

processor family. Figure 8 shows the structure of the test 

program for Unit 1 of the example. The whole test program for 

the Unit 1 needs to consider the five different features that the 

unit may count with in any processor implementation. In Figure 

8, the portable sub-tests are shown in blue, while the non-

portable sub-tests are shown in red. In Figure 8 are reported in 
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Figure 7: SDP for increasing DUs  
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green the exclusive sub-test. Initially, the test program is 

developed for the Processor 1 (P1) feature a and b as discussed 

previously, and then ported to the Processor 2 (P2) and 

Processor 3 (P3). For any processor, it is necessary to develop 

a non-portable sub-test independently.  In the Processor 3 (P3) 

a new portable sub-test for the feature c is developed similarly. 

The test program for the feature d is developed for the 

Processor 4 (P4) and ported to Processor 5 (P5). 
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Figure 8: Test program structure for a common unit in the processor 
family  

IV. CASE STUDY 

This section introduces the case study. Different STLs have 

been developed, according to the proposed approach, for testing 

different automotive processors produced by 

STMicroelectronics. The STLs of the different processors have 

been developed with the approach proposed in Section III. 

Initially, this section provides an overview of the SPC58 

processor family. Afterwards, this section reports the most 

important features of some of the SPC58 family processors.  

A. The SPC58 processor family 

The SPC5X processors developed by STMicroelectronics are 

specifically developed for the automotive sector and for the 

different applications required by this sector. The last family 

designed by STMicroelectronics is the SPC58, it is available to 

the ECU development engineers since 2016. In this new family, 

there are numerous processors operating in a multicore context. 

The introduction of multicore architectures allows greater data 

computing on the ECU, it is necessary to meet the new needs of 

the automotive market. Today, the vehicles have sophisticated 

management and control systems for their parts; such as the 

engine, the suspension and the management of safety systems 

on board. Moreover, in the new vehicles, there is great 

importance to the infotainment applications. The aim of the 

infotainment applications is improving and facilitating the 

driving experience. Moreover, with the future introduction of 

the autonomous guide, the necessary computational abilities on 

the ECU remains a great technological challenge. The SPC58 

family processors are based on the 32 bits Power-PC 

architecture able to work up to 200MHz. They have large flash 

memory, from 1MB up to 10MB, and different types and sizes 

of RAM memory. The RAM memory shared between all cores 

and the private local RAM memory for each core. These 

different RAM memories are accessible by the cores with 

different time latency. The processors are equipped with 

numerous communication channels; such as the CAN bus, the 

LINFLEX bus, the UART, the USB interface and the Ethernet 

interface. In the SPC58 architecture the cores, peripherals and 

memories are divided over several AMBA BUS; to guarantee 

the best performance in terms of access speed. The Hardware 

Security Module (HSM) is introduced in the SPC58 family for 

managing the security aspects of the communication interfaces. 

The SPC58 family is segmentation in more lines of products 

[51]. The processor of the A and M lines are specifically 

developed for the engine propulsion control and for the 

transmission control. The A-line and M-line processors are high 

performance processor to managing complex real-time control 

software. The Digital Signal Processing (DSP) features are 

available on these processors. The processors of the P and L 

lines are used to managing the electrical sensors and to 

elaborate the measured performed by the acquisition systems. 

They are equipped with different 12 bits Analog-Digital 

Converter (ADC) able to work at high speed. The processors of 

the D, B and C lines are thinking to the network and low power 

applications. The description of the SPC58 family processors 

considered is shown in Figure 9, it is temporally organized. 

Figure 9 shows the period in which the processor and the 

MCAL software package are available to the customer. 

Moreover, the processor construction technology, the 

maximum work frequency and the number of the cores present 

are shown in Figure 9. 

 
Figure 9: Roadmap of the developed processors of the SPC58 family 

 

B. Compare the processors of the SPC58 family 

This subsection provides a description of the cores used in the 

SPC58 family processors. Moreover, the features of the core 

units are also compared. In this paper the processors Eiger, 

Bernina and Chorus are considered. 

 

1) Eiger 

The Eiger processor (SPC58NEx) [52] is a multicore processor 

equipped with 6MB of flash memory, 600KB of shared RAM 

and 64KB of local RAM for each core. The processor is 
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organized in two AMBA BUSs on which the different 

peripherals are connected. The processor is equipped with three 

cores (core a, core b and core c) of different type. All the cores 

are based on a double issues pipeline with five stages each, and 

all cores are able to execute the ISA Variable-Length Encoding 

(VLE) [53] assembly instructions and the Book-E [54] 

compatible VLE assembly instructions. In addition, the core a 

also supports the Lightweight Signal Processing (LSP) [55] 

instructions. All the cores are equipped with 32 General-

Purpose Register (GPR) at 32-bit each, and some Special-

Purpose Registers (SPR) used for configuring the core features. 

Moreover, all cores are equipped with an Embedded Floating-

Point Unit (EFPU2) and a Performance Monitor unit. The 

Performance Monitor is used for profiling the core activities at 

run-time, it is composed of 4 counters able to count different 

events. The Nexus3 debug module is present in both core types. 

The core b is equipped with 8KB of first-level (L1) instruction 

cache memory and 4KB of first-level (L1) data cache memory; 

while the core a has 8KB of L1 instruction cache. All cores 

have a Memory Protection Unit (MPU) and don't have the 

virtual Memory Management Unit (MMU), which was present 

in the previous STMicroelectronics processor family. The main 

features of the core a and core b are shown in Table 1. The 

Eigher processor belongs to the A-line devices. 

 
 Eiger  

(core b) 
Eiger  
(core a) 

Bernina 
(core a) 

Chorus 
(core a) 

#pipeline Dual issues Dual issues Dual issues Single 

issues 

#stage of 

pipeline 

5 5 5 4 

ISA VLE,  
Book-E 

VLE,  
Book-E,  

LSP 

VLE,  
Book-E, LSP 

VLE,  
Book-E 

#GPR  32 registers 
(32 bit each) 

32 registers 
(32 bit each) 

32 registers 
(32 bit each) 

32 
registers 

(32 bit 

each) 

#SPR  109 registers 
(32 bit each) 

108 registers 
(32 bit each) 

111 registers 
(32 bit each) 

99 
registers 

(32 bit 
each) 

Data cache 4KB - 8KB - 

Instruction 

cache 

8KB 8KB 16KB - 

Debug unit Nexus3 Nexus3 Nexus3 Nexus3 

BTB 8 entries 8 entries 8 entries 4 entries 

FPU EFPU2 EFPU2 EFPU2 EFPU2 

Performance 

monitor 

71 events 69 events 71 events 57 events 

MMU - - - - 

MPU 24 entries 
configurable 

24 entries 
configurable 

24 entries 
configurable 

- 

Table 1: The features of the SPC58 cores 

2) Bernina 

The Bernina processor (SPC58NNx) [56] is a multicore 

processor equipped with 6MB of flash memory, 512KB of 

shared RAM and 128KB of local RAM for each core. Two 

AMBA BUSs are present in the Bernina processors. The 

processor is equipped with three cores of the same type (called 

core a, core b and core c), and additional two cores used in 

lockstep configuration. The core a is based on a dual issues 

pipeline with five stages each. The VLE, Book-E and LSP 

assembly instructions are available in Bernina. In this core, 

there are 8KB of L1 data cache and 16KB of L1 instruction 

cache. The main features of the Bernina’s core are shown in 

Table 1. The Bernina processor belongs to the A-line devices. 

 

3) Chorus 

The Chorus processor (SPC582Bx) [56] is a single-core (core 

a) processor equipped with 1MB of flash memory and 96KB of 

RAM. A single AMBA BUS is present in the processor. Core 

a is based on a single issue with four stages each. The VLE and 

Book-E assembly instructions are available in core a. In this 

core, there are not data cache and instruction cache. The main 

features of the core a are shown in Table 1. The Chorus 

processor belongs to the C-line devices. 

 

C. Compare the core and the units of the SPC58 family 

This subsection compares the main features of the cores used in 

the processors previously described. In Table 2 the features of 

different units of the core are compared. The processor's 

development roadmap analyzed in Figure 9 is considered. In 

general, the units inside of the Eiger core b are classified as 

reduction compared to the Eiger core a. A similar consideration 

is possible for the units of the Chorus core a respected to the 

Eiger core b. Instead, the units of the Bernina core a are 

classified as increases compared with the Eiger core a. From 

Table 2, it can be seen that the Branch Target Buffer (BTB) unit 

remains almost unchanged for all processors, except for the 

Chorus where the number of entries is halved. The BTB is 

based on the Branch Instruction Cache (BTIC). It consists of a 

small cache memory contain two information: the address of 

the conditional jump instructions and the statistical prediction 

of the branch executed. The entries are populated and updated 

in accord with the Least-Frequently Used (LFU) approach, 

where the less frequently used entry is overwritten. The BTB 

has one SPR used to config the unit, to enable and disable the 

BTB, or to invalidate all entries. The BTIC implementation is 

architecturally transparent, so it does not have to be saved 

during the context switch.  

In all the cores there is only one divider unit shared between the 

two pipelines. In the cores that manage the LSP instructions, the 

divider operates at 64 bits, in the other cores it operates at 32 

bits. Table 2 shows the number of clock cycles needed to 

perform a single division. The number of clock cycles is 

variable, it depends on the implementation of the divisor unit 

and depends on the number of low logical bits present in the 

operands of the division. In the proposed architecture, the whole 

processor stalled while the division is performed. As the 

division unit, the multiplier unit is also shared between the two 

pipelines. However, each multiplication instruction is always 

executed in two clock cycles. In the cores that manage the LSP 

instructions, the multiplier is considerably more complex and it 

is able to perform a considerable number of different types of 

multiplication instructions. Moreover, in the cores with the LSP 

ISA instructions are management, the multiplier operates at 64 

bits; while in the other cores it operates at 32 bits. It should be 

noted that two distinct multipliers are present internally in the 

ISA LSP cores. The first multiplier is used to managed the VLE 

multiplications instructions that perform 32 bits multiplication, 

while the second multiplier is used for LSP instructions. In the 

LSP instruction multiplier is also present a hardware 
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accumulator used by some particular instructions. A decoder 

unit is integrated into the multiplier, it is able to decode the LSP 

multiplication instruction. The register file consists of 32 

generic registers (GPR) equal for all processors of the Power-

PC architecture, while the number of special registers (SPR) 

depends on the number of peripherals and their functionalities. 

All the registers are physically implemented in 32 bits, but in 

the cores that handle the LSP instructions, there is the 

possibility of concatenating two registers to obtain a 64-bit 

logic register. The register file has three read ports and two 

write ports in the cores that implementing the VLE and Book-

E instructions, while the ports are four in reading and four in 

writing in the cores that implementing the LSP instructions. In 

accord with the EABI standard [33], the R1 register is used as 

Stack Point. The R2 and R13 registers are used to access the 

Small Data Area (SDA) memory regions. The SDA regions are 

used managing the global variables and the global constants. 

The registers from R3 to R10 are volatile and they are used for 

passing the parameters to the functions written in C language. 

Moreover, the register R3 is used for the return value of the C 

functions. The volatile registers do not need to be saved in the 

stack frame during the context switch or when a function is 

called. Instead, the registers from R14 to R31 are non-volatile 

and must be saved in the stack frame.  

The shifter unit is able to performed shift and rotate instructions 

to right or to left. It can operate on 32 bits register in cores that 

handle the VLE instructions, or 64 bits register in cores that 

handle the LSP instructions. Each pipeline is equipped with its 

own shifter unit. Similarly to the shifter units, the adder units 

are also duplicated. There is the adder unit for each pipeline. 

The adder performs the operations in one single clock cycle. 

Whit the VLE instructions the adder units performing operation 

at 32 bits. In the cores that manage the LSP instructions, the 

adder unit is adapted to work with data of 64 bits. 

 BTB DIVIDER MULTIPLIER REGISTER FILE SHIFTER ADDER 

Eiger  

(core a) 

Features 

1)  8 entries 

2)  BTAC 
3)  LFU 

1)  3-24 clock 

cycle for a 
division 

2)  64 bits integer 
divider 

1) Multiplier with 

64 bits output 
2) Multiplier with 

32 bits input 
3) Accumulator 

4) Own decoder 

unit 
5) Two internal 

multipliers: 16 
bit and 32 bits 

1) 32 GPR 

2) 76 SPR 
3) Concatenation of 

two registers for 
management the 

LSP instructions 

1)  64 bits 

rotate and 
shift 

left/right 
operation  

1) 64 bits 

and 32 
bits adder 

#Instruction 

LSP - 1 457 0 16 24 

VLE - 22 4 8 8 8 

Book-E - 8 8 20 4 20 

#SPR used 1 - - - - - 

Eiger 

(core b) 

Features 

1)  8 entries 

2)  BTAC 
3)  LFU 

1) 6-16 clock cycle 

for a division 
2) 32 bits integer 

divider 

1) Multiplier with 

32 bits output 
2) Multiplier with 

16 bits input 

1) 32 GPR 

2) 77 SPR 

1)  32 bits 

rotate and 
shift 

left/right 
operation 

1) 32 bits 

adder 

#Instruction 

LSP - - - - - - 

VLE - 22 4 8 8 8 

Book-E - 8 8 20 4 20 

#SPR used 1 - - - - - 

Bernina 

(core a) 

Features 

1)  8 entries 
2)  BTAC 

3)  LFU 

1) 6-24 clock cycle 
for a division 

2) 64 bits integer 

divider 

1) Multiplier with 
64 bits output 

2) Multiplier with 

32 bits input 
3) Accumulator 

4) Own decoder 
unit 

5) Two internal 

multipliers: 16 
bits and 32 bits 

1) 32 GPR 
2) 79 SPR 

3) Concatenation of 

two registers for 
management the 

LSP instructions 

1)  64 bits 
rotate and 

shift 

left/right 
operation 

1) 64 bits 
and 32 

bits 

adder  

#Instruction 

LSP - 1 457 0 16 24 

VLE - 22 4 8 8 8 

Book-E - 8 8 20 4 20 

#SPR used 1 - - - - - 

Chorus 

(core a) 

Features 

1)  4 entries 
2)  BTAC 

3)  LFU 

1) 7-35 clock cycle 
for a division 

2) 32 bits integer 
divider 

1) Multiplier with 
32 bits 

2) Multiplier with 
16 bits 

1) 32 GPR 
2) 67 SPR 

1)  32 bits 
rotate and 

shift 
left/right 

operation 

1) 32 bits 
adder 

#Instruction 

LSP - - - - - - 

VLE - 22 4 8 8 8 

Book-E - 8 8 20 4 20 

#SPR used 1 - - - - - 

Table 2: The features of the different units inside of the cores 
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V. EXPERIMENTAL RESULTS 

This section reports the experimental results for the SPC58 

processor family produced by STMicroelectronics. The features 

of the family and the features of its processors have been 

described in Section IV. In particular, the first subsection 

reports the Fault Coverage figures for the different units of the 

cores of the different processors, in accord with the proposed 

porting methodology described in Section III. Furthermore, the 

development times of the STLs and the fault-simulation times 

are also reported. Later, some interesting examples of the 

reduction units are discussed and analyzed. Afterwards, the 

efficiency of the ATPG-base and Evolutionary-base approaches 

are discussed. Finally, the ISA contribution is analyzed. 

A. Portable STL results 

In order to demonstrate the effectiveness of the proposed 

methodology discussed in Section III, the FC values obtained 

using the same portable test programs on the different 

processors are reported. In particular, the results for BTB, 

Divider, Multiplier, Register File, Shifter, and Adder are 

analyzed.  

 

1) BTB 

A possible BTB test methodology is proposed in [28]. In [28] 

the test is performed by performing a sufficient number of 

conditional branches used to load the BTB entries. After that 

the BTB has been initialized, a new sequence of branches is 

performed to verify the BTB prediction. The test methodology 

proposed in [28] is portable because it is developed with the 

deterministic approach. It considers the BTB to a functional 

point of view and it is independent of its synthesis. The structure 

of the test programs is shown in Figure 10. The test program is 

implemented considering the sizes of the different RAM 

memories present in the different processors, the space 

available for each test program is shown in Figure 10. The 

algorithm proposed in [28] is adapted to the memory size of 

each processor. The numbers of possible permanent stuck-at 

faults for each BTB unit of the different core are shown in Table 

3, while the Fault Coverage figure for each processor is shown 

in Table 4. The first column, called FC, reports the Fault 

Coverage obtained considering all possible BTB faults. The 

second column (FC increm.) considers the incremental fault-

simulation approach. In the incremental approach, the faults 

previous detected by other test programs are not again 

considerate during a new fault-simulation campaign. The last 

column reports the time necessary to perform the fault-

simulation of the single test program considering all faults 

present in the UUT. The FC total value report the fault coverage 

obtained considering the union of all test programs. While the 

FC total and cascade value report the final FC. FC total and 

cascade value also includes the contribution of non-portable 

test programs eventually implemented. It is possible to note that 

no other test program introduces a cascade phenomenon on the 

FC of the BTB, and no other non-portable test programs are 

implemented for the BTB unit. Analyzing the FC values 

obtained with the same test program on all processors, it is 

possible to note a constant FC value around 70% for the Eiger 

core a, the Eiger core b and the Bernina core a, as shown in 

Table 4. It is possible to see from Table 2 that the BTBs unit of 

these three cores have the same features. It should be noted that 

at the GATE level these three BTBs are different because the 

number of faults is significantly different as shown in Table 3. 
 

 Eiger 

(core a) 
Eiger  

(core b) 
Bernina 

(core a) 
Chorus 

(core a) 

BTB 21,434 16,506 19,892 11,037 

Divider 34,013 18,928 35,018 20,337 

Multiplied 73,638 29,717 63,962 32,868 

Register file 146,217 82,518 140,654 68,217 

Shifter 12,422 3,132 17,115 3,136 

Adder 14,762 6,446 19,758 3,972 

Table 3: Number of faults for each unit of each core 

 
Figure 10: BTB test program structure 

The BTB unit of the Chorus core a is classified as REDUCED, 

compared to the BTB of the other cores considered in this 

family. In the Chorus core a, the number of BTB entries is 

halved. Only for this core, it is necessary to modify the test 

program. It is necessary to reduce the number of branches 

performed to initialize the BTB, and the number of branches 

performed to verify the predictions of the BTB. The test method 

proposed in [28] is easily scalable with respect to the number of 

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

TEST PROGRAMS FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 

BTB1 63.38 +63.38 168 57.76 +57.76 195 63.40 +63.40 227 53.43 +53.43 98 

BTB2 50.71 +6.24 161 45.65 +9.82 174 54.98 +6.20 206 42.13 +7.06 88 

BTB3 27.41 +2.28 85 14.81 +1.92 92 19.54 +1.34 161 18.54 +3.83 41 

             

FC total  71.90   69.50   71.16   64.32  

FC total and cascade  71.90   69.51   71.16   64.33  

Table 4: The BTB case 
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BTB entries. The FC reduction is due to the decrease of the 

memory available in the Chorus processor, as discusses in sub-

section B.3 of the Case Study. The variety of the memory 

addresses that can be loaded in the BTB entries is considerably 

lower in the Chorus processor. 

 

2) DIVIDER 

The test programs for the division unit consider divisions 

executed between the checkerboard patterns (0x0000, 0xFFFF, 

0xAAAA, 0x5555, 0xCCCC, 0x3333) and numbers of power 

of two (2, 4, 8, 16, ....). The use of these generic patterns does 

not require the calculation of ATPG patterns valid only for a 

specific implementation of the divisor, as discussed in Section 

III. The structure of the test programs is shown in Figure 11. 

Two sub-tests have been implemented, one considering the 

VLE instructions on 32-bit operands and one considering those 

with 64-bit operands. Furthermore, a non-portable test program 

was implemented using the ATPG approach. 

The Fault Coverage value obtained on the different processors 

of the family under examination is about 78% (77% Eiger core 

a, 83% Eiger core b, 76% Bernina core a, 77% Chorus core a), 

as shown in Table 5. In the Eiger core a and Bernina core a, 

the test methodology is extended to 64-bit patterns using LSP 

instructions. On the other cores, the VLE instructions with 32-

bit patterns are used. It is interesting to note that the DIV3 test  

 

  
Figure 11: Divider, multiplier, shifter, and adder test programs 

structure 

program on the Chorus processor does not give a useful 

contribution to the final FC, this test program was discarded in 

the final STL. In order to increase the FC of the dividers, some 

non-portable test programs are implemented with the ATPG 

approach. The contribution of these test programs is indicated 

by comparing the FC total value with the FC total and cascade 

value of Table 5. 

 

3) MULTIPLIER 

As introduced in section IV.C, the multiplier unit for the Eiger 

core a and Bernina core a acquires many features compared to 

the Eiger core b. Moreover, the multiplier of the Eiger core a 

has similar features to the multiplier of the Chorus core a. The 

structure of the test programs is shown in Figure 11. Two sub-

tests have been implemented, one considering the VLE 

instructions on 32-bit operands and one considering those with 

64-bit operands. Furthermore, a non-portable test program was 

implemented using the ATPG approach. The first set of test 

programs developed to test the Eiger core a multiplier is 

developed. Afterwards, a second set of test programs able to 

detect the faults present in the new version of the multiplier is 

implemented. The features of the two versions of the multiplier 

are shown in Table 2, while the number of faults is shown in 

Table 3. It is possible to note that the number of the possible 

faults present in the multipliers of the Eiger core a and Bernina 

core a is doubled compared to the number of the possible faults 

present in the multipliers of the Bernina core b and Chorus core 

a. This remarkable difference in the number of faults is due to 

the hardware added in the LSP version of the multiplier. In 

analogy to the divider unit, the multiplier unit is also tested with 

a checkerboard pattern and numbers of power of two. Different 

VLE and LSP instructions are used to apply the test patterns. 

From Table 9, it is possible to notice an FC of about 90% on the 

multiplier (87% Eiger core a, 91% Eiger core b, 92% Bernina 

core a, 91% Chorus core a). Furthermore, it can be seen a 

considerable influence of the LSP test program on the FC total 

value. The impact of the LSP test program is around 28% on 

FC total value, the LSP test program is present only in the LPS 

version of the multiplier for the Eiger core a and Bernina core 

a. Some test programs with the ATPG approach are developed 

to increase the FC of multipliers on different processors. The 

influence of these additional non-portable test programs is 

about 5%.  

 

4) REGISTER FILE 

The Register File of these processors is internally divided into 

numerous subunits. The Control Register sub-unit contains the 

status registers and control registers of the core, the Decode 

sub-unit contains the logic able to address each register, the 

Exception Register sub-unit contains the status register and 

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

TEST PROGRAMS FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 

DIV1 41.96 +41.96 111 60.10 +60.10 49 39.09 +39.09 65 55.88 +55.88 58 

DIV2 57.96 +19.16 114 42.24 +3.02 48 53.33 +19.86 66 64.25 +14.45 62 

DIV3 64.08 +10.69 109 45.37 +2.08 47 57.91 +9.81 62 50.24 +0.14 61 

DIV4 59.29 +2.00 104 76.34 +2.27 48 51.88 +6.41 63 56.27 +4.85 62 

MUL_DIV 37.00 +3.84 123 66.80 +16.04 63 28.72 +1.66 91 46.93 +2.13 75 

             

FC total  77.65   83.51   76.83   77.31  

FC total and cascade  79.23   86.78   78.01   82.20  

Table 5: The DIVIDER case 
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interrupt management registers used during an interrupt 

request. The General Register sub-unit contains the 32 GPR 

registers, while the Mem Mux sub-unit contains the Register 

File logic interface. In [27] a possible test methodology for the 

Register File is discussed. The methodology proposed in [27] is 

able to detect the faults present in some of the sub-units of the 

Register File, in particular in the General Register. The Control 

Registers sub-unit, the Decode sub-unit, and the Mem Mux sub-

unit are partially tested in [27]. The test methodology proposed 

in [27] for the Register File is based to write and to read the 

checkerboard pattern in all registers. The registers are 

subdivided into two groups. In each group, the encoding of all 

registers has a hamming distance higher than one bit with 

respect to each other. The structure of the test program for the 

register file is shown in Figure 12. The results of Table 10 show 

the overall FC of the Register File, while the results of Table 6 

and Table 7 shows the FC for its sub-units. Table 6 and Table 7 

considering two different test programs set, Table 6 considering 

only the RF_MEM test program, while Table 7 considering the 

whole STL. The methodology proposed in [27] is implemented 

in the RF_MEM test program.  

 

Other test programs have a great influence on the final FC of 

the Register File, as can be seen by comparing Table 6 with 

Table 7. Table 8 shows the number of faults for each sub-unit 

 
Register 
File  

sub-unit 

Eiger 

(core a) 
Eiger 

(core b) 
Bernina 

(core a) 
Chorus 

(core a) 

Control 
Register 

68.98% 65.27% 67.17% 66.80% 

Decoder 73.59% 69.23% 74.06% 74.84% 

Exception 

Register 

3.25% 2.89% 3.14% 2.97% 

General 

Register 

99.98% 91.48% 94.26% 98.50% 

Mem Mux 79.45% 82.68% 77.46% 81.28% 

Glue logic 97.16% 98.58% 98.12% 98.61% 

     

FC total 59.95% 62.54% 60.07% 70.21% 

Table 6: The FC obtained by the RF_MEM test program on the 

Register File sub-units 

of the Register File. Only the General Register sub-unit is 

considered for the porting approach. The methodology 

proposed in [27] is independent by the implementation of the 

Register File, it is portable from one processor to another 

processor of the same processor family; this methodology can 

be used, in another non-portable test program, also for testing 

the SPR registers classified as exclusive. It is possible to note in 

Table 7 that the FC figure of the General Register sub-unit of 

the Register File maintains a good FC value on all cores, the 

test program used in all cores is always the same. 

 
Register 

File  

sub-unit 

Eiger 

(core a) 

Eiger  

(core b) 

Bernina 

(core a) 

Chorus 

(core a) 

Control 
Register 

97.43% 90.27% 92.90% 91.15% 

Decoder 100.00% 94.04% 99.13% 92.80% 

Exception 

Register 

89.14% 80.08% 85.55% 100.00% 

General 
Register 

99.98% 91.48% 94.26% 98.50% 

Mem Mux 97.13% 97.47% 98.79% 95.99% 

Glue logic 99.89% 100.00% 98.97% 99.53% 

     

FC total 97.43% 90.27% 97.15% 92.90% 

Table 7: The FC obtained by the whole STL on the Register File sub-

units 

Register 
File  

sub-unit 

Eiger  

(core a) 
Eiger 

(core b) 
Bernina 

(core a) 
Chorus 

(core a) 

Control 

Register 

3,129 2,253 2,708 2,065 

Decoder 2,546 1,308 3,042 924 

Exception 
Register 

15,914 10,337 15,181 9,410 

General 

Register 

50,864 20,762 52,579 23,176 

Mem Mux 69,414 45,508 63,826 31,218 

Glue logic 4,350 2,350 3,318 1,424 

     

FC total 146,217 82,518 140,654 68,217 

Table 8: The number of faults for each sub-unit of the Register File 

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

TEST PROGRAMS FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 

MUL 55.21 +55.21 144 90.28 +90.28 84 53.04 +53.04 255 89.62 +89.62 89 

MUL_DIV 40.02 +2.79 237 62.77 +1.49 119 37.32 +10.76 341 59.74 +1.50 132 

MUL_LSP 48.16 +29.21 156 - - - 49.53 +28.49 278 - - - 

             

FC total  87.21   91.77   92.29   91.12  

FC total and cascade  91.76   98.23   92.30   97.88  

Table 9: The MULTIPLIED case 

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

TEST PROGRAMS FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 

RF_MEM 59.98 +59.98 659 62.54 +62.54 541 60.07 +60.07 504 70.21 +70.21 498 

             

FC total  59.98   62.54   60.07   70.21  

FC total and cascade  97.43   90.27   97.15   92.90  

Table 10: The REGISTER FILE case 
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Figure 12: Register file test program structure 

5) SHIFTER 

The same considerations of the divider unit and the multiplier 

unit can be replicated for the shifter unit. Some shift operations 

with checkerboard patterns are performed on 32-bit and 64-bit 

registers. The VLE instructions are used on the 32-bit registers 

in the Eiger core b and Chorus core a, while the LSP 

instructions are used on the 64-bit registers in the Bernina core 

a and Chorus core a.  

The structure of the test program for the shifter is shown in 

Figure 11. The FC obtained from the same test program on all 

the cores being examined is around 84%, as it shows in Table 

11 (80% Eiger core a, 85% Eiger core b, 82% Bernina core a, 

89% Chorus core a). Also for the shifter unit, other non-

portable test programs are implemented with the ATPG 

approach. Considering also the non-portable test programs' 

contribution, a high FC on the shifters is reached. 

 

6) ADDER 

The test methodology proposed for adder units is based on the 

sum of checkerboard test patterns. Furthermore, some sum 

operations between the very large numbers and the small 

numbers are implemented to detect the faults present in the 

adder's carry paths. The structure of the adder test program is 

shown in Figure 11. The FC obtained on the adder units with 

the same test program is about 85%, as it shows in Table 12 

(87% Eiger core a, 90% Eiger core b, 88% Bernina core a, 84% 

Chorus core a). The FC of the adder units is influenced by a 

high cascade effect given by the other test programs. This 

benefic effect on the FC is due to how the signature is 

constructed in the test programs. As discussed in Section B.2 of 

the Background, the signature is obtained by accumulation, i.e. 

sum operation, of the partial results generated during the test 

program. These sum operations contributed to the detection of 

the faults present in the adder, the effect of the cascade on the 

FC is shown in Table 12. 

B. Other Test programs for SHARED units 

With reference to the portable classification of the units 

discussed in Section III.B, it is possible to classify the Logic 

Instruction unit and the Exception Control unit as SHARED. 

The functionalities of the Logic Instruction unit and the 

functionalities of the Exception Control unit remain equal for 

all the processors of the SPC58 family. Two portable test 

programs can be developed for the Logical unit and for the 

Exception Control unit. The test program able to detect the 

faults present in the Logic Instruction unit uses AND, OR, NOT 

and XOR logic operations between checkerboard patterns. 

The Exception Control unit is tested as described in [5]. The 

methodology proposed in [5] consists of voluntarily triggering 

interruptions and verifying that the correct Interrupt Service 

Routine (ISR) is performed for each interruption source.  

The test methods proposed for the Logic Instructions unit and 

for the Exception Control unit are developed with the 

deterministic approach, these methodologies are independent of 

the synthesis at the gate level of the units. As it is possible to 

see from Table 13 and Table 14, the same test programs 

developed for a single processor of the family have been used 

on all processors of the family. The FC values of the Logic 

Instruction unit and of the Exception Control unit remains 

almost unchanged on all different cores. 

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

TEST PROGRAMS FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 

SHIFTER 80.90 +80.90 83 85.26 +85.26 32 82.01 +82.01 47 89.48 +89.48 21 

             

FC total  80.90   85.26   82.01   89.48  

FC total and cascade  83.04   99.69   89.03   99.59  

Table 11: The SHIFTER case 

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

TEST PROGRAMS FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 
FC [%] 

FC 

increm. 

[%] 

Time 

[Hour] 

ADDER1 87.53 +87.53 38 90.63 +90.63 14 88.69 +88.69 49 84.89 +84.89 9 

             

FC total  87.53   90.63   88.69   84.89  

FC total and cascade  93.46   94.41   93.56   93.25  

Table 12: The ADDER case 
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  Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

 #Faults FC[%] #Faults FC[%] #Faults FC[%] #Faults FC[%] 

Program Counter 37,793 70.85 20,411 66.25 32,113 66.49 20,203 65.95 

Divider 34,013 79.23 18,928 86.78 35,018 78.01 20,337 82.20 

Logic Instruction 4,172 89.94 3,232 95.08 3,360 93.74 2,288 92.48 

Multiplier 73,638 91.76 29,717 98.23 63,962 92.30 32,868 97.88 

Shifter 12,422 83.04 3,132 99.69 17,115 89.03 3,136 99.59 

Exception Control 15,297 50.63 10,363 47.54 13,695 55.28 9,834 55.37 

BTB 21,434 71.90 16,506 69.51 19,892 71.16 11,037 64.33 

Register File 146,217 97.43 82,518 90.27 140,654 97.15 68,217 92.90 

Fetch Unit 47,460 85.76 25,622 880.52 39,373 71.63 15,782 63.53 

Forward 134,091 75.85 44,679 78.67 115,287 77.65 29,632 87.39 

Decode Unit 66,566 53.28 30,141 69.61 101,900 67.29 19,005 63.65 

Load/Store Unit 17,879 72.51 10,631 71.89 22,712 82.83 15,669 73.05 

Brinc Unit 1,296 95.91 - - 1,338 92.37 - - 

Merge Unit 4,044 90.48 - - 4,136 91.32 - - 

Saturate Unit - - - - 16,404 73.00 - - 

Adder Unit 14,762 93.46 6,446 94.41 19,758 93.56 3,972 93.25 

Control Logic 50,309 74.82 28,591 78.71 58,202 73.01 19,463 70.64 

Performance 
Monitor 

2,620 87.90 880 100 3,096 86.82 564 90.25 

Glue Logic 31,216 72.90 13,204 77.45 21,507 68.45 10,363 79.07 

         

TOTAL 715,229 80.07 345,001 80.98 729,522 80.26 282,370 80.40 

Table 13: The final FC of each processor 

 

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

 #TP Memory 

occupation 
[Bytes] 

Duration 

[C.C.] 

#TP Memory 

occupation 
[Bytes] 

Duration 

[C.C.] 

#TP Memory 

occupation 
[Bytes] 

Duration 

[C.C.] 

#TP Memory 

occupation 
[Bytes] 

Duration 

[C.C.] 

Program Counter 0 - - 0 - - 0 - - 0 - - 

Divider 8 6,280 11,600 8 4,668 10,479 8 6,280 11,600 8 6,280 11,600 

Logic Instruction 1 690 350 1 690 350 1 690 350 1 690 350 

Multiplier 5 3,800 2,700 5 2,900 2,100 5 3,800 2,700 5 2,900 2,100 

Shifter 2 2,200 2,900 2 720 800 2 2,200 2,900 2 720 800 

Exception 

Control 
5 8,100 28,000 5 8,100 28,000 5 8,100 28,000 5 8,100 28,000 

BTB 3 3,000 32,700 3 3,000 32,700 3 3,000 32,700 3 2,600 7,438 

Register File 2 4,100 2,650 2 4,100 2,650 2 4,100 2,650 2 4,100 2,400 

Fetch Unit 1 2,700 2,315 1 2,700 2,315 1 2,700 2,315 1 1,800 1,980 

Forward 1 1,600 1,540 1 1,600 1,540 1 1,600 1,540 1 978 1,100 

Decode Unit 3 7,000 33,550 3 7,000 33,550 3 7,000 33,550 3 2,800 21,200 

Load/Store Unit 1 920 1,200 1 920 1,200 1 920 1,200 1 920 1,200 

Brinc Unit 1 1,300 820 0 - - 1 1,300 820 0 - - 

Merge Unit 2 4,400 3,350 0 - - 2 4,400 3,350 0 - - 

Saturate Unit 2 - - 0 - - 2 2,190 5,180 0 - - 

Adder Unit 2 1,600 1,300 2 1,450 1,200 2 1,600 1,300 2 1,150 860 

Control Logic 0 - - 0 - - 0 - - 0 - - 

Performance 

Monitor 
2 3,000 2,700 2 3,000 2,700 2 3,000 2,700 2 2,600 2,500 

             

TOTAL 41 49,690 127,675 36 40,848 119,584 41 49,880 132,855 36 35,638 92,328 

Table 14: The STL features of each core 

 

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a) 

 #IST-TP IST-C [%] #IST-TP IST-C [%] #IST-TP IST-C [%] #IST-TP IST-C [%] 

Book-E 7 94.88 7 94.88 7 94.88 7 94.88 

VLE 8 94.81 8 94.81 8 94.81 8 94.81 

LSP 9 94.55 - - 9 94.55 - - 

         

TOTAL 24 94.56 15 94.85 24 94.56 15 94.85 

Table 15: The ISA test programs 
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C. Chorus core a single issue case 

This paragraph is dedicated to the Chorus processor. This 

processor is obtained from the Eiger processor, as shown in 

Figure 9. In particular, the Chorus core a is obtained removing 

some features by the Eiger core b, as discussed in Section IV. 

This processor, belonging to the low power line of the SPC58 

family, consists of a single pipeline and a limited number of 

peripherals. The porting phase is considerably simplified for the 

Chorus processor due to the presence of only one pipeline in 

the Chorus core a. All the test programs in the dual issue 

processors are implemented to apply the same test patterns to 

both pipelines. For example, the sum operations that performed 

the test to the adder unit are performed twice; the first time to 

test the adder unit of the first pipeline and a second time to test 

the adder unit of the second pipeline [27][57]. Therefore, in the 

test programs, it is possible to disable the replicas of the sub-

tests associated with the test of the unit of the second pipeline. 

As the reader can see from the final FC results reported in Table 

13, the removal of the sub-test replicas does not affect the final 

FC of the internal units of the Chorus processor. The FC values 

of the units of the Chorus core a remain in line with the FC 

values of the other processors. However, it has a significant 

decrease in the number of test programs and their duration, as 

shown in Table 14. 

D. Fault Coverage results discussion 

Overall, the Tables 4-5-9-10-11-12 show how the proposed 

porting methodology is effective for processors belonging to 

the same family. Furthermore, it suggests that the development 

of the test programs in a portable way is more efficient. In other 

words, the test programs are developed respect the STL 

Development Plan (SDP) and the test program structure 

identified with the proposed approach.  

All the experiments were performed on a server equipped with 

two XEON ES-2620V3 processors operating at 2.4GHz with 

64GB of RAM available. All the fault-simulations are 

performed with 15 parallel processes. The time required to 

execute each fault-simulation has been reported in hours in each 

table. Table 13 shows the detail about the FC and the number 

of faults present in each unit and for each core. The last row 

reports the total number of faults present in the core and the 

final FC of the whole core. Instead, Table 14 shows for each 

unit of each core the number of test programs developed (#TP), 

the memory occupation and the duration in clock cycle. 

E. Developed time 

Figure 13 shows the development times of the STLs for the 

considered cores. As discussed in Section II.D and in Section 

III.C, it is possible to develop STL only once the gate-level 

synthesis is complete. The STL development starting when the 

gate level synthesis is completed and the verification phase of 

the physical device is passed. While the development of the 

STL ends when the FC of the core is at least 80%.  This value 

is calculated by the microcontroller manufacturer in accordance 

with the ASIL D ISO26262 standard [58].  

Interestingly, about 7 months are needed to develop the STL for 

the first core. Subsequent processors require less development 

time because they benefit from portable tests developed for the 

previous processors. In general, for each new processor remains 

necessary to develop some test programs for the units classified 

as exclusive. Moreover, the non-portable test programs required 

to be developed for increasing the FC; typically, new ATPG test 

patterns must be generated for the non-portable test programs. 

Non-portable tests are used to fill the small FC drop if present. 

This is particularly evident in the case of the Chorus processor; 

the Chorus STL is obtained by disabling many of the STL sub-

tests developed for the Eiger core b. The times reported in 

Figure 13 consider the fault-simulation times, and the processor 

setup time, i.e. the time required to configure the development 

environment for the processor. Figure 14 also shows the period 

of introduction of the processor on the market. This period 

represents a deadline defined by company marketing. It can be 

seen that the development of the STLs falls within these 

deadlines. 

Considering the ISO26262, the Single-Point Fault Mode 

(SPFM) is used for the single permanent stuck-at fault. The 

80% threshold was calculated by the manufacturer considering 

the silicon area surface of the core respect to the total surface of 

the device. A 99% FC on the overall microcontroller is finally 

obtained with the combination of STL with different 

approaches (like ECC, lockstep or other Hardware- and 

Software-based safety mechanisms) applied to all the 

components included in the microcontroller. In this paper, only 

the development of STLs for the processor has been considered. 

Given that to reach ASIL D levels, the processor cores have to 

run in Lockstep configuration, the STL approach is 

indispensable to intercept misbehaviors at early time, before 

their effects are leading to a processor failure noticed by the 

lockstep.  At microcontroller level, it is also correct to consider 

that the processor is just a minor part of the silicon area, and 

final ASIL numbers are also related to the other modules, such 

as the embedded memories and peripherals. Typically, the 

memories are tested resorting an ECC, while the peripherals can 

be tested with dedicated Hardware-based or Software-based 

approaches, as discussed in [59], [60], [61].   

Figure 14 shows a projection of STL development using the 

strategy proposed in [5]. In Figure 14, it is possible to see that 

the core b of Eiger and Bernina do not respect the deadlines.  

 
Figure 13: Portable STL developed time 
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Figure 14: STL developed time with the approach proposed in [5] 

Comparison between ATPG-base and Evolutionary-base 

approaches. 

In order to demonstrate the inefficiency of the ATPG 

approach in terms of test program portability, some non-

portable test programs developed for the Eiger core a was fault-

simulated on the other cores of other processors. For the same 

purpose, also some test programs developed with the 

evolutionary approach are assessed on other processors. The 

test programs developed for the divisor and multiplier units are 

considered. Table 16 shows the FC results obtained for the 

divider unit and for the multiplier unit. The test programs have 

been developed for the Eiger core a; afterwards, the same test 

programs are evaluated on the other cores 

It is possible to see from Table 16 that the test programs 

developed with the two non-portable approaches introduce a 

good fault coverage value only on the core for which they were 

developed; there is a significant loss of FC on the other cores. 

 
 Eiger 

(core a) 

Eiger 

(core b) 

Bernina 

(core a) 

Chorus 

(core a) 

Divisor unit 

ATPG 65.42% 23.58% 12.59 26.02% 

Evolutionary 68.50% 15.89% 9.57 21.64% 

Multiplier unit 

ATPG 70.87% 28.15% 22.06% 27.59% 

Evolutionary 75.57% 19.57% 19.89% 18.61% 

Table 16: ATPG-based approach and the evolution-based approach 

F. ISA coverage 

As discussed in Subsection B.2 of the background, the 

Instruction Self-Test is an alternative metric used for the 

functional testing of the processors. This metric is based on the 

execution of all ISA instructions at least once. The IST test 

programs are easily portable because they are developed in a 

functional way. Table 17 shows the number of IST Programs 

(#IST-TP) developed for each processor and the related IST 

Coverage (IST-C). The purpose of this section is to show the 

contribution of the IST programs on the processor's FC. Two 

experiments are performed for this analysis; the first 

experiment performs a comparison between the IST Program 

and the stuck-at Test Program concerning the Logical 

Instructions unit. The second experiment compares the FC 

obtained on the Decoder unit considering all the IST test 

programs and all test programs developed to detect the stuck-at 

faults. The experiments were performed on the Bernina core a. 

 

1) Logic Instruction unit experiment 

In the first experiment, the IST program on logic instructions is 

fault-simulated on the whole core. Followed, the test program 

developed to detect the stuck-at faults on the Logic Instructions 

unit is fault-simulated on the whole core. The two fault-

simulation results are compared, and the intersections between 

the different groups of faults are reported in Figure 15.  

The number of possible permanent stuck-at faults of Bernina 

core a is 729.522 (as indicated in Table 15), the developed STL 

provides a FC of 80.26% (equal to 585.514 faults detected). 

Figure 15 shows also the number of faults detected by the Logic 

instruction unit test program and by the IST logic instruction 

test program. It is possible to see that all the faults detected by 

the IST logic instruction program are also detected by the STL.  

 
Figure 15: ISA Logic Instruction unit results 

Figure 15 provides also a comparison between the Logic 

instruction unit test program and the IST logic instruction 

program. The great majority of the faults are detected from both 

programs. However, there are 18,383 faults detected from the 

IST program. In any case, the STL detected also the faults 

detected from the IST test program. This first experiment 

demonstrates the ineffectiveness of IST programs to detect 

permanent stuck-at faults. 

These results were performed using the Fault List Analyzer  

Tool (FLAT) [36] which allows of comparing the results of 

different fault simulations. 

 

2) Decoder unit experiment 

In the second experiment, two fault-simulations are performed 

on the Decoder unit with two different sets of programs. The 

first set includes all IST programs; while the second set includes 

only the test programs able of detecting the stuck-at faults in the 

Decoder unit. For the Bernina core a, three test programs have 

been implemented for the Decoder unit, as indicated in Table 
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16. Among the many possible approaches to test the Decoder 

unit, the test programs developed are implemented with the 

approach proposed in [29]. In [29] the legal and the illegal 

instructions are considered to detect the decoder's faults. 

 
Figure 16: ISA Decoder unit results 

From Figure 16, it is possible to notice that all the faults 

detected by the IST programs are already detected by the three 

specific test programs for the Decoder unit of the Bernina core 

a. Therefore, the IST programs do not introduce any effect on 

the FC of the Decoder unit. Furthermore, this experiment shows 

that the IST metric is not able to detect all the possible stuck-at 

faults present in the Decoder units.  

The two experiments performed to demonstrate the 

ineffectiveness of the IST approach. The IST test programs do 

not introduce a real contribution to the final FC of the STL, 

these programs can be disabled. 

VI. ISSUES ABOUT THE INDUSTRIAL CASES 

This section reports some problems encountered during the 

development of the STL and some problems encountered 

during the integration of the STL with the software environment 

of the customers. Furthermore, some precautions and checks 

actuated during the development of the test programs are 

explained in this section. 

A. Memory RAM used 

As discussed in Section B.2 of the Background, the test 

programs can be classified as intrusive and non-intrusive [32]. 

With reference to RAM memory, non-intrusive test programs 

do not write or read from the RAM memory, while intrusive 

tests access to the RAM memory. The intrusive test programs 

are executed at boot-time, before the operating system are 

executed. Often in the automotive sector, the ECUs are never 

really switched off when the vehicle is switched off, but the 

ECUs are placed in a low power state. When the vehicle 

switched on, the ECUs return in execution state without a real 

restart. There is not the real boot phase of the OS. Therefore, 

the intrusive test programs are executed in the presence of data 

in RAM memory, these data must not be corrupted or altered. 

The RAM memory regions used by the test programs are 

known, the integrity of these regions is management by the 

customer's software environment during the intrusive test 

execution.  

B. Multicore processor 

Many processors of the SPC58 family operated in a multicore 

scenario, and some of them used different core types. This 

aspect introduced the problem to execute the same STL in 

parallel on different cores of the same type. Also, the problem 

of executing different STL libraries, for different core types, in 

the same processor is present. The different STLs must not be 

influenced by each other, in particular about the use of the RAM 

memory. A possible approach to parallelize the STLs avoiding 

the RAM memory conflicts is proposed in [62][63]. 

C. External debugger 

The Nexus debug unit of the SPC58 family processors can work 

in two different operating modes; External Debug Mode (EDM) 

when the external debug is connected, usually via the JTAG 

port, or in Internal Debug Mode (IDM) when the external debug 

is not connected. The IDM configuration is used in many of the 

test programs because the IDM allows to test the interrupt 

management unit. The Performance Monitor, inside of the 

Nexus [52][56][64] , is used to increases the observability of 

the faults. When the external debug is connected, the test 

programs that use the Nexus in IDM must be disabled. An 

automatic control has been implemented to verify the presence 

of the external debugger and to disable the tests that used the 

Nexus. There is no loss of the ability of the STL to detect the 

faults by disabling these tests since the external debug is 

connected by the human operator in the workshop for the 

vehicle maintenance checks. On the field, the external debug is 

not connected and all the tests are normally performed. 

D. STL optimization 

At the end of the development of the STL, it is possible to 

perform an optimization of the tests. The STL can be optimized 

respect to different parameters; in particular, with respect to the 

FC, the STL time execution, and its occupation in the flash code 

memory. A special tool, called Fault List Analyzer Tool 

(FLAT) [36], has been used to analyze and optimize the STL. 

The FLAT considers different quality indexes able to evaluate 

the individual test programs and find an optimal solution, with 

respect to the parameters to be optimized. The FLAT use and 

its operations are illustrated in [36]. 

E. STL verification check and final test 

During the development of the test programs, it is necessary to 

verify the EABI standard complied. Moreover, it is necessary 

to have relevance about the RAM memory locations used by the 

test program. The Monitor tool is implemented to verify the 

correct saving and recovery of the core registers. Moreover, the 

Monitor tool keeps track of the writing operations in the RAM 

memory executed by each test program. The Monitor tool is 

used during the development of the test program; it is activated 

during RTL logic simulations before invoking the test program 

and immediately after its return. When the Monitor tool is 

called, it stopping the logic simulation. The GPR registers and 

the whole RAM memory are dumped. The dump is executed 

before invoking the test program and when the test program 

return; these two dumps are compared. In the comparison 

phase, the presence of different values in the registers indicates 

an error in the EABI stack frame of the test program. 
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F. Test program signature building 

The strategy used to build a test program signature has a 

significant impact on the performance and the effectiveness of 

the test program. In the literature, several strategies have been 

proposed. In this subsection, we briefly discuss the two most 

used. The strategy based on the Multiple-Input Shift Register 

(MISR) is computationally very expensive, if implemented via 

software, but it has a low aliasing. The aliasing is the situation 

in which a test program running on a defective unit produces a 

signature equal to the expected. This phenomenon occurs due 

to an escape of one or more faults, as discussed in [65], [66], 

[67]. In other words, some faults detected by the test patterns 

are masked during the construction of the signature. So due to 

aliasing, some potentially detectable faults are not detected by 

the test program. As discussed in [68], the MISR strategy is 

composed of a Flip-Flop chain alternating with numerous X-

OR logic gates. This algorithm can be easily implemented in 

hardware, but requires many logical steps to be implemented in 

software. For this reason, it is typically used in hardware-based 

testing approaches. 

The second possible strategy considered is based on the sum of 

the partial results obtained during the test. In [67], a possible 

hardware implementation is discussed; however, this algorithm 

can be easily implemented in software using subsequent sums 

operations. Compared to the MISR approach, the sum and 

accumulation approach is much less computationally 

expensive, but has higher aliasing, as discussed in [66]. 

However, for very short test programs that include few test 

patterns, the aliasing introduced with the accumulation strategy 

is negligible [66]. The portable test programs, described in this 

paper were implemented exploiting the accumulation strategy. 

 

VII. CONCLUSION 

The paper offers a wide background on the different in-field and 

on-line testing methodologies used in the modern industrial 

processors, with particular emphasis on the STL approach. 

Subsequently, the paper analyzes the problem of developing 

different STLs for different processors of the same family. An 

approach for developing portable test programs is proposed in 

this paper. The first aim of the proposed approach is to reduce 

the loss of Fault Coverage due to porting a test program from 

one processor to another of the same family. The second aim of 

the proposed approach is to reduce the development time of the 

test programs. To demonstrate the effectiveness of the proposed 

approach, it is applied to a real industrial case study. In 

particular, on the SPC58 family processors developed by 

STMicroelectronics for automotive safety-critical applications. 

This paper does not consider the development of STL for 

processors belonging to different processor families. In general, 

processors of different families do not have common features 

that allow an easy porting of test programs. Moreover, some 

considerations regarding the use of the Instruction Self-Test 

metric are reported. Finally, some practical considerations 

related to industrial development problems have been reported 

and analyzed. Overall, this work has required more than 3 years 

of research in collaboration with STMicroelectronics.  
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