
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An efficient strategy for the development of software test libraries for an automotive microcontroller family / Piumatti, D.;
Sanchez, E.; Bernardi, P.; Martorana, R.; Pernice, M. A.. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. -
ELETTRONICO. - 115:(2020), p. 113962. [10.1016/j.microrel.2020.113962]

Original

An efficient strategy for the development of software test libraries for an automotive microcontroller
family

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.microrel.2020.113962

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.microrel.2020.113962

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2850363 since: 2020-10-29T11:48:46Z

Elsevier

 1

Abstract — With the introduction of the ISO26262 standard in

the automotive field, numerous solutions for the in-field and on-

line testing have been proposed. Among the several test solutions

available, the Built-In Self-Test (BIST) approach is the most used

for manufacturing test of chips, while the Software-Based Self-

Test (SBST) approach is the most commonly used for on-line test

the modern processors. This paper faces a very concrete problem

concerning SBST development. In order to address more market

demands, semiconductor industries are usually developing

families of microcontroller, usually based on similar processors,

instead of a single instance. This variety of architectures makes the

development of SBST programs a repetitive, time and human

consuming activity.

The main aim of this work is to propose a methodology

according with the SBST paradigm that permits to develop test

programs able to achieve high coverage on different

microcontrollers of the same family. The developed test programs

are not showing any significant drop in coverage performance

when they are used on different processors included in product of

the same microcontroller family. The approach is based on the

analysis of the processor hierarchy to identify the common units

between the processors of the same family, first of all looking at

those that show design differences. The module classification

permits than to plan the most effective SBST development.

A segment of industrial microcontrollers developed by

STMicroelectronics for the automotive field, adapting many

processors belonging to the same processor family, is used as a case

of study. The experimental results demonstrate the effectiveness of

the proposed approach, i.e., to reach the same fault coverage

figures over many processors while dramatically reducing the

development time.

Index Terms — Automotive microcontroller ISO26262 test, In-

Field Self-Test, On-Line Self-Test, Reliability and Testing

I. INTRODUCTION

oday vehicles are equipped with very complex

functionalities that use of many electronic components. In

fact, in a modern vehicle, it is possible to find many different

Electronic Control Units (ECUs) placed inside of the vehicle;

Actually, in a vehicle’s engine, there may exist more than 7.000

semiconductor components able to perform very different tasks.

Typical tasks are devoted, for example, to manage safety

systems such as the ABS or the ESP, to perform powertrain

functionalities, or to improve the end-user experience by means

of new applications circumscribed as infotainment [1], [2], [3].

The automotive sector is one of the most dynamic ones, since

potential users are always asking for additional but safe and

secure features. Actually, the manufacturers of electronic

devices for automotive, and in particular the microcontrollers

manufacturers, try to launch every few months a new product;

all these new products belong to the same family of processors

and share some features present in each device. The differences

between the family products are mainly focused on the memory

sizes, the type and quantity of peripherals available, and the

safety mechanisms included in the device. Considering the

processors that belong to a given family, in most cases only

small variations are applied, e.g., including small modifications

to the Instruction Set Architecture (ISA). In this way, the

manufacturers exploit the selected architecture and guarantee

an appropriate level of compatibility among the products on the

same family.

Guaranteeing the correct behavior of the electronic devices

composing a vehicle is very complex, and its expected behavior

has to be assured in very harsh environments. In fact, vehicles

are prone to vibration, noise, extreme temperatures and

electromagnetic fields that may affect and degrade the

electronic components. The effects of possible faults may lead

to significant damages, either from an economic point of view

or in terms of consequences for the human users that may

produce even human casualties. In safety-critical applications,

such as the automotive ones, a set of very good practices have

been introduced, trying to guarantee the correct functioning of

the electronic devices during their normal life operation. During

the last years, the trend is to resort to self-test procedures that

operate in-field in autonomous mode. These in-field procedures

An Efficient Strategy for the Development of

Software Test Libraries for an Automotive

Microcontroller Family
D. Piumatti1, Member, IEEE, E. Sanchez1, Senior Member, IEEE,

P. Bernardi1, Member, IEEE, R. Martorana2, M.A. Pernice2

1 Dipartimento di Automatica e Informatica (DAUIN), Politecnico di Torino, Torino, Italy

 {davide.piumatti; ernesto.sanchez; paolo.bernirdi}@polito.it

2 STMicroelectronics, Catania, Italy

 {rosario.martorana; mose.pernice}@st.com

T

Corresponding author: Davide Piumatti

davide.piumatti@polito.it

 2

have been ruled by the introduction of some safety standards,

such as the ISO 26262 in the automotive field, or ARP-4761 for

avionics.

In order to guarantee the system reliability, hardware and

software-based approaches have been proposed, e.g., [4] and

[5]. In the first case, even though the introduced hardware

reaches to assure very high reliability levels, the area overhead

and the difficulties to use them without destroying the system

status create some difficulties in its adoption. On the other hand,

software-based approaches usually reach lower reliability

levels than the obtained by the hardware-based counterparts but

require very few overheads in terms of hardware and memory.

However, the most commonly used implementation

methodologies to develop software-based solutions are mostly

based on manual processes that involve very long development

times making these approaches less attractive for the car

manufacturers.

In a family of microcontrollers, the implementation of safety

mechanisms based on hardware or software solutions must be

implemented and inherited starting from the initial devices to

the following ones. These mechanisms should guarantee very

good reliability levels for all the components of the whole

family. Inheriting hardware-based solutions is usually handled

by the use of commercial tools that implement these

mechanisms almost automatically. On the other side, software-

based solutions are rarely inheriting due to the implementation

methodologies that in most cases tackle only one processor at a

time.

In this paper, we present a development methodology for

software-based solutions oriented to provide a quick and cheap

strategy that considers a whole family of microcontrollers at a

time, instead of addressing each single processor cores

separately. We propose to exploit the similarities among the

different components of a family of microcontrollers during the

development process. In particular, we define a portable

classification topology that permits us to take advantage of the

processor similarities during the early development stages of

the SBST programs. Additionally, we define how to develop a

set of test programs for the most common modules available in

a family of microcontrollers in order to reduce the development

time of the software test libraries.

Through a very consistent set of experiments, run in a family

of automotive oriented devices manufactured by

STMicroelectronics, we experimentally observed that the

generation of a software-based solution for a family may

require the same development times as of the individual

approach for each single products of the portfolio. The family

oriented approach is also guaranteeing very high fault coverage

(FC) levels for all components of the considered family. In this

direction, to avoid the loss of effectiveness of the test programs

from one processor to another, a threshold is defined. The

identification of the minimum FC threshold is discussed in this

paper. Additionally, the proposed approach describes how to

maximize the processor FC by reusing test programs previously

developed.

The paper is organized as follows: Section II proposes a broad

background concerning the on-line self-test, with a particular

emphasis on the Software-Based Self-Test (SBST) approach.

The development steps of a new processor family are also

discussed in Section II. In Section III the proposed approach is

discussed and analyzed; it allows the development of software

test programs that are easily portable between the different

processors of the same family under examination. Section IV

reports the case study, i.e. the SPC58 processor family used in

this work is analyzed. Section V reports the experimental

results that support the proposed approach. Some industrial

problems related to the development of the test programs are

reported in Section VI. Finally, Section VII close this work with

some conclusions.

II. BACKGROUND

This section proposes an overview of the safety standards used

in different fields, with a particular emphasis on the automotive

field. The motivations related to the in-field self-test are

introduced and the two main categories of safety mechanisms

used to perform in-field testing are reported. Later, an overview

of the software-based test approach is provided. The structure

of a generic Software Test Library (STL) used for testing a

processor is discussed and analyzed. Finally, a description of

the design process of a new industrial processor is shown.

A. Safety standards

The IEC 61508 [6] is an international standard introduced at the

end of the 1990s. The International Electrotechnical

Commission has proposed this standard with the goal of

introducing some methods to apply, design, deploy and

maintain automatic protection systems called safety-related

systems. As the standard reported, it defines the functional

safety as: “part of the overall safety relating to the EUC

(Equipment Under Control) and the EUC control system which

depends on the correct functioning of the

Electrical/Electronic/Programmable Electronic Safety-related

systems (E/E/PES), and other technology safety-related

systems and external risk reduction facilities.” [6]

The fundamental concept described in the standard is that any

critical-system must work correctly or fail in a predictable

(safe) way. As a consequence of the IEC 61508, many specific

standards are introduced for different application fields. In the

medical field, the IEC 62304 standard has been introduced, the

EN 5012x has been introduced in the railway field. The DO-178

standard is used in the aviation field, while in the automotive

industry the ISO 26262 standard has been introduced.

The ISO 26262 [7] is an international standard introduced in

2011. The target of this standard is to define a functional safety

metric for all Electrical/Electronic Systems used in automotive

applications. The ISO 26262, in opposition to previous

standards, introduced the concept of controllability [4]. The

controllability is the ability to avoid a hazardous event by an

action taken by a driver or by a system. The standard introduces

four Automotive Safety Integration Level (ASIL) classes

depending on severity, probably of exposure and controllability

of dangerous events. The standard faces the steps to analyze the

hardware failures of the electrical and electronic parts of cars.

In addition, the ISO 26262 classifies the faults in some

categories [4]:

 3

• Perceived: This fault is perceived by the driver, but the

fault is not detected by a safety mechanism in a

prescribed time.

• Detected: This fault is detected by safety mechanisms

in a prescribed time.

• Latent: This fault is neither detected by a safety

mechanism and it is not perceived by the driver.

• Safe fault: Fault whose occurrence will not

significantly increase the probability of violation of a

safety goal.

• Residual fault: The effect of this fault does not affect

the system.

B. Safety mechanisms

Different solutions facing the problem of the in-field self-test

are proposed to be compliant with the introduced safety

standards. Roughly speaking, the proposed solutions can be

categorized into two main categories that separate pure

hardware and software-based solutions; however, in the last

years, hybrid proposals are also finding some space as safety

mechanisms. Typically, the safety mechanisms are targeted to

detect the permanent stuck-at faults, but it is possible to extend

the test strategies to other fault models as the delay faults, the

transient faults or the bridge faults. In every case, the FC figure

can be evaluated with a fault-simulator software tool [8] [9]. In

the automotive field, the FC is also called Diagnostic Coverage

(DC) [7].

1) Hardware-based approaches

Belonging to hardware-based approaches [10], the Logic-BIST

(L-BIST) is one of the most popular approaches. In this

approach, a state machine applies some non-functional test

patterns to the Unit Under Test (UUT). The BIST system

collecting and checking the results at the end of the process.

When applied to a processor core, this test strategy can be used

only during the power-on because it requires the system to be

in a specific test-mode. On the other side, some safety

mechanisms can be based on duplication and triplication of the

UUT. In particular, the Triple Modular Redundancy (TMR)

[11] technique uses three implementations of the same UUT

and the output signals of these modules vote adopting a voting

mechanism. The most basic voting algorithm is the majority

voter, where the voter selects the most common output. The

Lockstep configuration is a redundant system based on UUT

duplication. Regarding the memory testing, two approaches are

most used today: the Memory-BIST (M-BIST), and the Error

Correction Code (ECC) approach. The first one uses a March

test sequence to test the RAM or Flash memory [12]. The M-

BIST approaches write and read sequence of test patterns in the

memory cells oriented to detect different types of faults; these

approaches modify the content of the memory. For this reason,

the M-BIST can be used only at the power-on of the processor

when the memory contains useless values. On the other hand,

the ECC one uses a redundant code to perform an on-line check

[13]. All hardware-based approaches require the instantiation

of additional hardware to perform the testing processes. The

amount of added hardware to perform the test can be a

significant part of the whole device area.

2) Software-based approach

In order to use this approach, a test library able to detect the

possible permanent hardware faults must be developed. The

Software-Test Library (STL) is a collection of software

programs able to excite the possible faults inside of the

processor and the peripherals surrounding it. This strategy,

initially proposed in [14], has been studied by different research

groups as described in [15] [16] [17], and later extended

targeting the automotive field [5]. Currently, the STL

approaches are used by different companies to mainly test their

own processors, for example: STMicroelectronics [18],

Infineon [19], Cypress [20], Renesas [21], Microchip [22] and

ARM [23]. The STL technique is based on the so-called

Software-Based Self-Test (SBST) paradigms. The SBST

consists of letting the CPU running a sequence of instructions

to excite and propagate the faults that may affect the digital

circuit [24]. The processor is periodically forced to execute the

self-test code [5] able to detect the possible occurrence of

permanent faults in the processor core itself, or in the

peripherals connected to it. Such procedures are developed to

activate possible faults and report their presence.

Usually, the test programs return a value called signature. In the

presence of a fault, the signature value produced by the test is

different from the expected one. The signature value is

produced by accumulating the results of the assembly

instructions that perform the test. It is a good practice to develop

a test program for specifically testing one unit of the processor.

As described in [25], a test program can be developed mainly

resorting to three different approaches: ATPG-based approach,

deterministic approach, and evolutionary-based approach. The

first one uses the test patterns generated by an ATPG tool [26]

to test a functional unit of the processor. The ATPG-based

approach is very powerful to test the arithmetic and logic units

as the adder, the multiplier, and the divider units. The test

program executes an assembly instruction able to apply the

ATPG functional test pattern; for example, using the test

patterns as the operands of an add instruction to test the adder

unit. The results of the test instruction are used to produce the

signature of the test.

In the deterministic approach, the test program is developed

studying the Unit Under Test (UUT). A deep knowledge of the

UUT is necessary to develop a good test program and for

implementing a specific test algorithm. Some examples of

deterministic test algorithms are available in the literature, for

example, in [27] for the Register File Unit and in [28] for the

BTB unit. A testing algorithm to test the decoder unit is

proposed in [29], while the test for the FPU is proposed in [30].

The last possible approach to develop a test program is the

evolutionary-based approach. A first pseudo-random set of test

programs is written, then, resorting to some genetic operators.

The test programs are modified generating new and hopefully

better test programs. The goodness of every individual or test

program is evaluated against a given metric, e.g., the fault

coverage reached by the program in the UUT. Then, the best

individuals are selected for generating the next set of

individuals. The evolutionary algorithm is executed until a

stable condition is reached. As an example, an evolutionary

optimizer called µGP [31] has been used to evolve the test

programs.

 4

The test programs that belong to a STL can be classified

according to their ability to be integrated with the mission

software application. The STL is usually composed of intrusive

and non-intrusive test programs [32]. The former ones influence

the behavior of the operating system or the mission software

application because the intrusive test needs to take the total

control of the processor to perform the test; e.g., test programs

triggering exceptions, or using very special addresses in the

RAM memory, or manipulating special registers. The intrusive

tests need to be executed at the power-on or power-off, for

example before launching the Operating System. On the other

hand, the non-intrusive tests can be executed by the Operating

System as a simple application because they do not require

special conditions. The non-intrusive tests are usually

performed with the processor configured in user-mode and they

are periodically executed at run-time scheduled by the

Operating System.

A last test program category, which is also usually included in

a STL is the so-called Instructions Self-Test (IST). The goal of

the IST test programs is to execute at least once all the assembly

instructions of the Instruction Set Architecture (ISA) supported

by the processor.

Compared to the hardware-based solutions, the STL presents

many advantages, such as the ability to perform the test at the

boot time as well as at run-time; the test programs are executed

at-speed (i.e., at the circuit nominal frequency); and the STL

does not require any hardware modification. On the other hand,

the STL programs require to be allocated in the flash memory,

and according to the execution schedule, these programs require

be executed concurrently with the mission application. In the

automotive sector, for example, the memory occupation as well

as the execution time must comply with the system constraints

in order to do not impair the execution of the actual application.

In an automotive solution, the full flash memory occupation

counts with about 200KB, while a single non-intrusive test

program must spend at most 255 clock cycles [32], at every run.

The STL-based approaches still present a serious limitation due

to the difficulty of both writing efficient and effective test

programs and devising suitable methodologies for test

application.

In order to allow the STL test programs to be compliant with

the mission software environment, a viable solution is the

adoption of the Embedded-Application Binary Interface

(EABI) [33]. The EABI specifies standard conventions for the

data types, the registers usage, the stack frame organization, and

the function parameter passing of a software program. Thus,

every test program includes an EABI prologue and epilogue,

able to save and restore the mission status.

In order to assess the test program suitability, the test programs

are evaluated through a fault-simulation process as described in

[34] and [35]. Each test program is evaluated targeting only the

faults in the UUT as described in [5]. When the Fault Coverage

of the single units reach a good level, a synchronization process

[5] is performed, i.e., all test programs are fault-simulated

targeting the whole processor obtaining a general Fault

Coverage of the processor. Following this process, the fault-

simulation time is reduced as shown in [5], and it is possible to

take advantage of the cascade phenomenon [5][36]. The

cascade phenomenon consists of exploiting the beneficial

effects on the fault coverage introduced by a test program,

devised for a specific unit, on the other units of the processor.

3) Hybrid approaches

Among the test strategies proposed by the scientific and

industrial community, a new third category is currently under

development: the Hybrid approach, see [37], [38], [39], [40],

[41], [42]. The hybrid approach merges the software approach

with the hardware one. The hybrid approach tries to take

advantage of the positive features of both techniques. It is able

to reach a high fault coverage, as the hardware-based approach,

with the ability to work on-line, as a software-based approach.

The idea is, for example, to use a hardware test architecture

driven by a software test program for applying some test

patterns. The architecture works in a similar manner as the L-

BIST approach, but it is not limited to work at power-on. The

hybrid approach allows to perform periodical on-line self-tests.

In order to integrate these techniques in new devices, it is

required to modify the hardware device; for this reason, hybrid

approaches are not targeted in this paper.

C. STL architecture

The goal of this subsection is to show how an STL works,

considering the final user point of view. Usually, two different

sets of Application Programming Interfaces (APIs) are

available, one for the tests performed at boot-time and one for

the run-time test programs.

At the boot-time, a single API calls a software task able to

execute the test programs, as shown in Figure 1. Typically, the

STL_BOOT is performed at the start-up before loading the

Operating System. A Test_init function prepares the processor

to perform all the test programs. In particular, the Test_init

configures the interrupt controller to manage the interrupt

requests generated by the test programs, initializes the RAM

memory, disables all peripherals and configures a watchdog

timer to avoid the program to be stuck in an infinite loop. The

Test_loader function launches each test program and checks the

signature value against the expected one. In case of a test

program fails the Safe_state function is performed. The

Safe_state function freezes the ECU in a safe state. If all the test

programs return the expected signature, a Test_deinit function

restores the processor state. Finally, the Operating System is

launched.

Figure 1: STL architecture for the boot-time tests

 5

The non-intrusive test programs are performed at run-time, in

this case, APIs complaints with the AUTOSAR standard is

required [43]. Three APIs are usually implemented:

Prepare_STL, Call_test_routine and Return_last_test_state.

The Prepare_STL function initializes the variables used by the

loader of the test programs. The Call_test_routine executes the

test whose ID is passed as a parameter. While the

Return_last_test_state indicates if the last test program

executed has detected a fault or not. In the presence of a fault,

the system must be placed in a safe state.

D. Design process and industrial production timeline

The development of a processor is a long and complex process

that requires many steps to reach the final product [44].

Analysing the process at a high level, the features of the new

device are initially defined and described. This higher level is

known as the behavioural level. In the case of the processors,

the general architecture and the Instruction Set Architecture

(ISA) is established. In the next step, a formal description of the

processor using a high-level language is performed. In this step,

called Register Transfer Level (RTL), every single unit of the

processor is described and its behaviour verified. The RTL is

independent of the technology that will be used to implement

the processor, but the RTL description is sufficiently detailed to

allow the synthesis of the digital circuits. Furthermore, the RTL

description allows us to perform formal verification of the

processor using a logic simulator [45]. The next step is

automatically generated from the RTL level through a synthesis

process, this new level is called Gate-Level. At Gate-Level the

circuit is described at the level of logical gates considering a

specific technological library. In the last step called Switch-

Level, the processor is described at the transistor level. The

Switch-Level is used to generate the chip layout. The layout is

the description of the geometric information necessary to

activate the final production process. An integrated circuit

consists of a succession of silicon, oxide and aluminium layers

that must be arranged in a certain way to create the transistors

and the connections between them. Each of these layers

corresponds to one or more production processes that are

regulated by one or more masks. The complete set of the masks

derived from the layout defines all the operations to be

performed in production to create the final die. The die is the

thin plate of semiconductor material on which the electronic

circuit of the integrated circuit has been made. Finally, the die

is closed in the plastic package, and the wires bonding is

realized to connect the die with the external package contacts.

Obtained the first sample of the new processor, a verification

phase is performed. The aim of the verification phase is to check

the device to an electrical point of view, e.g. the electrical power

consumption of the processor.

Typically, the processor manufacturer releases a

Microcontroller Abstraction Layer (MCAL) [46] package

containing the drivers and APIs for using the processor itself.

The MCAL is a software module that directly accesses the on-

chip MCU peripheral units mapped in memory. The MCAL

contain, for example, a set of drivers for the peripherals as the

GPT (General Purpose Timer), the WDG (Watchdog), the

MCU (Micro Controller Unit) as the MMU (Memory

Management Unit) or the MPU (Memory Protection Unit), and

for all communication devices as the CAN bus, the LIN bus, the

Flex Ray bus, the Ethernet and the UART interface. In the

automotive field, the MCAL structure is defined by the

AUTOSAR standards [46]. The MCAL package is developed

and tested by the manufacturer of the processor.

The whole development process of a processor used in an

embedded system may take about one year from the initial

behaviour description to the first physical sample. The

verification phase may require an additional 4 months for

checking the physical device, and about 7 months to produce

and check the MCAL library [47][48].

The technical and commercial planning are very important

aspects, among the aspects that concern the development of a

new processor. In particular, the roadmap of the new processors

is defined in order to establish the development plan and the

production plan. The aim of these plans is to establish the

characteristics of each processor. In particular, to establish the

characteristics that change from processor to processor over

time; for example, the size of the memories or the number and

type of peripherals present in each processor [49]. In addition,

the financial investment plan is established for the future years.

The economic plan is associated with each development step

and with each production activity [50]. In general, from a

processor to another processor of the same family two develop

roads are available. In the first one, the "child" processor is built

by reducing the features of the "father" processor. In the second

one, some features of the "father" processor are redesigned and

improved. With these two approaches, it is possible to produce

a wide range of processors belonging to the same family.

However, the basic structure of the processors remains

unchanged for all processors of the same family. The family

tree of the processors can be produced considering the two

possible develop roads.

III. PROPOSED APPROACH

This section discusses the proposed approach, the aim is to

reduce STL development time for each processor of the same

family; Secondly, the proposed approach allows to identify a

structure for the development of test programs. The test

programs developed with the proposed approach are efficient

on different processors, i.e., the ability of the test programs to

detect faults does not degrade from one processor to another

processor of the same family.

The proposed approach is supported by three different items of

the new processors family: 1) the family tree of the new

processors; 2) the development plan of the processors; 3) the

features of each processor of the new family. All these three

items, discussed in Section II, must be available before starting

with the development planning of the portable tests.

Briefly, the proposed approach is based on the classification of

the processor's units. The proposed unit classification, called

portable classification, is used to define how to develop the test

programs for each unit.

In the following, the first subsection introduces the idea of

portable test programs; the second subsection reports the

proposed portable classification, and finally, the last subsection

discusses the proposed porting approach.

 6

A. Definition of portable test program

A portable test program mainly operates in a functional way,

i.e., it works independently of the hardware implementation of

the unit that it tests. This consideration is useful in order to

abstract the test program from the hardware, and in particular

from the specific UUT.

For example, the ATPG-based approach should be avoided

when aiming to produce portable test programs. In fact, the

ATPG-based approach tries to find a set of optimal test patterns

for a given hardware implementation of the UUT. These test

patterns are generated by special ATPG tools that operate at the

gate-level. Clearly, a new synthesis of the circuit using different

technological library or different synthesis parameters produces

a different gate-level implementation, that requires a new set of

test patterns. Thus, the ATPG test patterns generated for the

UUT of a processor are not suitable for testing the same unit in

a new processor, since a consistent loss of FC is predictable.

In a similar way, the evolutionary-based approach should be

also avoided aiming to developed portable test programs.

Actually, in the evolutionary approach, the test program

evolves according to the specific gate-level network in order to

obtain high FC values. The test program developed is therefore

specific for a single implementation of the UUT, and also in this

case, there is a considerable decrease of the FC by reusing the

test programs developed with the evolutionary-based

approaches.

In general, all the test programs developed using approaches

based on a direct exploitation of the gate-level information are

not suitable for the development of portable test programs. This

is due to the considerations of the synthesis phase above

described.

As a matter of facts, in order to develop portable test programs,

the deterministic approach is therefore preferred because it is

based on the functional study of the UUT at RTL. Obviously,

the deterministic approach lengthens the development time of

the test programs because a study of the UUT is required, as

described in subsection B.2 of the Background. However, this

development phase is performed only one time on a processor

of the new family. In the long term, there is a considerable

saving of time and resources necessary to develop the test

programs.

B. The proposed portable classification

This classification analyses the units of a processor with respect

to similar versions present in other processors of the same

family. Four possible categories are analyzed and discussed:

 The EXCLUSIVE unit: The exclusive unit is present only in

the processor under examination, and it is not present in other

processors of the same family. In general, the exclusive units

are included in a processor to optimized some specific

operations requested by the customer.

 The SHARED unit: In contrast to the previous category, the

shared units are present unchanged in many processors of the

same family. In a more general sense, it is possible to consider

these units as belonging to the processor family.

 The REDUCED unit: These units are included in many

processors of the same family, but from processor to processor

these units miss some functionalities. For example, the

multiplier unit able to perform operations on 64-bit operands

has been simplified, and in its next version the multiplier

performs operations only on 32-bit operands.

 The INCREASED unit: Similar to the reduced unit, the

increased units are present in many processors of the family.

Furthermore, the increased units improve their functionalities

in the next version. A possible example is the extension of the

instruction set of the processor. With the addition of some

instructions, new features must be implemented in the processor

units.

The REDUCED and the INCREASED categories can be

considered as a sub-category of the SHARED one.

C. Porting methodology

In this section, the proposed approach to develop a portable

STL is shown and discussed. The steps of the proposed

approach are shown in Figure 2.

Family tree
development

plan
features

Unit
identification
and features

collection

STLs work
plans

Portable
classification

a) b) c) d)

Figure 2: The classification of the units of the processor family

• Step a: The family tree of the processors family, the release

times to the market of every device, and the features of each

processor are gathered. At this point, it is important to

determine when every phase of the development plan for

every processor core in the family will take place. In

particular, it must be defined the delivery times for the RTL,

GATE, and Software MCAL. Figure 3 shows an example of

a family tree composed of 5 different processors. From the

figure, it is possible to see that the processor 1 must be

delivered at M15, at the end of the fifth quarter (Q5), the RTL

of the processor 1 is to be released during Q0 and the gate

level near the end of Q3. It is possible to notice also that there

is a dependence between the RTL of the processor 1 and the

ones of processors 2 and 4.

• Step b: The units of the different processors of the family

are identified and the features of every unit extracted. It is

important to identify the features in every processor and their

evolution on the other cores in the whole family. Additionally,

resorting to [5], a first analysis of the processor units is

performed and the different units are classified according to

their functionality. Five categories are identified: the first one

includes all the functional units. These units execute specific

operations in the processor such as the addition, shift,

division, and the logic operations, these units are labelled as

FUNCT units. The second category is named SPECIAL. The

units belonging to this category are associated with the

management of the instruction flow or the memories; the

exception unit, the memory management unit and the branch

predictor belong to the SPECIAL category. The third category

only includes the processor REGISTER FILE. All the

General-Purpose Registers and the Special-Purpose Registers

belong to the REGISTER FILE category. The program

counter unit and the effective address calculation unit belong

to the ADDRESS category. The last category is the one that

 7

includes CONTROL units. All the units able to management

the pipelines belong to the CONTROL category.

According to [5] the test program development process must

follow an almost sequential order, starting with the FUNCT

units, followed by the SPECIAL, REGISTER FILE,

ADDRESS and CONTROL ones. In some intermediate points,

a general synchronization is performed in order to take

advantage of the beneficial results of the developed programs

in the whole processor fault coverage. The development

strategy proposed in [5] does not consider the portability of

the programs, actually, it uses extensively non-portable

solutions. Figure 4 shows a possible development process

based on this technique while considering the delivery times

for the family processors in the previous figure.

P2

P3

1aPN 1bPN 2aPN

M10 M11 M12 M13 M14 M15 M16

P1

M17

Time

1aPN 1bPN 2aPN 2cPN

1aPN

P4 …..

…..

Figure 4: Development process in [5]

In this case, it is possible that the development process takes

so long time and the expected delivery time of the processor

as well as the STLs may not coincide.

• Step c: The processor units are classified according to the

portable classification (see Section III.A). For the units

classified as shared, reduced or increased the test programs

must include portable test programs for every feature of the

unit. On the other side, units classified as exclusive require a

traditional non-portable test program. In general, portable test

programs are structured in a modular way considering the unit

features, i.e., an independent sub-test is developed for each

feature. Once the portable sub-tests have been developed, an

additional non-portable sub-test is usually required. This new

non-portable test guarantees the targeted FC, i.e., the aim of

the additional sub-test is to cover the gap of remaining FC,

with respect to the expected FC value. In the example reported

in Figure 5, the processors units are graphically classified as

shared (blue borders) and exclusive (green borders).

Additionally, the figure also highlights when a new feature

appears in the development process for the shared units; this

is named shared new, and is indicated by a blue arrow.

• Step d: The STL Development Plan (SDP) is produced in

this phase, is then important to define the number of

Development Units (DU) composing the project. A DU is a

team composed by at least one test engineer and an

appropriate computation system where the development

process is computed; here we assume that initially there is a

unique DU in the development process, and that a DU is able

to develop only a portable and a non-portable test program

Processor 1

Month 15th

Unit 1:
-1a
-1b

Unit 2:
-2a

Processor 3

Month 23th

Unit 1:
-1a
-1b
-1c

Unit 2:
-2a
-2b

Time

Processor 2

Month 19th

Unit 1:
-1a
-1b

Unit 2:
-2a
-2c

Processor 4

Month 25th

Unit 1:
-1a
-1b
-1c
-1d

Unit 2:
-2a

Unit 3:
-3a
-3b
-3c

Processor 5

RTL p. 1 GATE p. 1 SW p. 1

RTL p. 2 GATE p. 2 SW p. 2

RTL p. 3 GATE p. 3 SW p. 3

SW p. 4RTL p. 4 GATE p. 4

RTL p. 5 GATE p. 5 SW p. 5

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

M10 M13 M14M15 M19 M23 M25 M29

Month 29th

Unit 1:
-1a
-1b
-1d
-1e

Unit 3:
-3a
-3b

Figure 3: Family tree example

 8

every month, or even two non-portable test programs but

never two portable test programs.

The development plan creation is divided in two phases: in

the first one, an initial SDP is proposed ordering the

development of the tests with respect to the release date of the

processors to the market and the classification reported in step

b, as the one reported in Figure 4. In this figure, the test

development of the portable and non-portable parts for every

unit are represented together; for example, for the processor 1

(P1), the development of the test programs for the feature a,

of the unit 2, is performed during M12 for both parts: the

portable P and non-portable N.

At this point, the second phase starts incorporating the

information about the portable classification made in step c.

Processor 1

Month 15th

Unit 1:
-1a
-1b

Unit 2:
-2a

Processor 3

Month 23th

Unit 1:
-1a
-1b
-1c

Unit 2:
-2a
-2b

Time

Processor 2

Month 19th

Unit 1:
-1a
-1b

Unit 2:
-2a
-2c

Processor 4

Month 25th

Unit 1:
-1a
-1b
-1c
-1d

Unit 2:
-2a

Unit 3:
-3a
-3b
-3c

Processor 5

Month 29th

Unit 1:
-1a
-1b
-1d
-1e

Unit 3:
-3a
-3b

RTL p. 1 GATE p. 1 SW p. 1

RTL p. 2 GATE p. 2 SW p. 2

RTL p. 3 GATE p. 3 SW p. 3

SW p. 4RTL p. 4 GATE p. 4

RTL p. 5 GATE p. 5 SW p. 5

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

M10 M13 M14 M15 M19 M23 M25 M29

Legend:

Shared

Exclusive

Shared New

Figure 5: Portable classification of the processors family

P2

P3

1aP 1bP 2aP

M10 M11 M12 M13 M14 M15 M16

P1

M17 Time

1cP

M18 M19 M20 M21 M22

1aN 1bN 2aN

1aN 1bN 2aN 2cNE

P4

P5

1dP 3aP 3bP

1aN 1bN

1cN

2aN

2bNE

1aN

1bN 1dN

1cN 2aN

3aN

3bN

3cNE

1aN

1bN

1dN

1eNE

3aN

3bN

M23 M24 M25 M26

Figure 6: SDP for a unique DU

 9

For every unit, the portable part must be developed before the

non-portable part.

Thus, the following algorithm is applied to the original

development order:

1. Allocation of the portable part of the

shared new units considering the processor

delivering time. In this allocation, given

2 portable tests to develop, the priority

is given to the one with the nearest

delivering time

2. Allocation of the non-portable units in the
remaining free slots considering:

a. The portable part should be already

developed;

b. Given 2 non-portable test to develop,

the priority is given to the one with the

nearest delivering time

Applying this algorithm to the example in Figure 4, let us with

the development plan provided in Figure 6. In the figure, the

portable and non-portable parts are represented using blue and

red elements, respectively; in addition, the green elements

represent the development of non-portable test programs for

exclusive features that need not share the results later to other

processors.

The development must consider the case in which the number

of DU increase, for example, it may happen that at the very

early development steps, the number of DU is only one, but

after a while, when a parallel process is necessary, the number

of DU is increased to two or even more resources if available.

The same example described previously is developed

considering additional DU in Figure 7. During the definition

of the development plan, the order of development of the

individual tests for the individual features of each unit is

modified to anticipate the development of the units classified

as shared according to the previous algorithm. It is expected

that the resulting test programs are then ported to the other

processors of the same family. Porting a test program to

processors containing reduced units need minor efforts since

the test program is a reduced set of the original one. In

contrast, for the units classified as increased, the test

programs need additional test programs that are specific for

testing only the new functionalities. At the end of the

generation process, every portable test program is combined

with a non-portable test program.

The purpose of this second non-portable test program is to

compensate for small FC drop on the considered unit. In order

to accomplish with the marketing times offered by the

microcontroller producers, it is very important to synchronize

the development of the STL with the final production steps of

any microcontroller in the family.

For the sake of simplicity, it is assumed that any development

process needs the same time unit ∆T, in this case represented by

1 month, and as reported in the Figure 7 for example, in M13

and M14 a second and third DU are introduced to the

development team. It is possible to notice that in the time M14

one portable test program, two exclusive and three non-portable

sub-test programs are developed simultaneously.

During the last step of the proposed algorithm, the test program

structure is created for any one of the units belonging to the

processor family. Figure 8 shows the structure of the test

program for Unit 1 of the example. The whole test program for

the Unit 1 needs to consider the five different features that the

unit may count with in any processor implementation. In Figure

8, the portable sub-tests are shown in blue, while the non-

portable sub-tests are shown in red. In Figure 8 are reported in

P2

P3

1aP 1bP 2aP

M10 M11 M12 M13 M14

P1

Time

1cP

M15

1aN 1bN

2aN

1bN1aN

2aN

2cNE

P4

P5

1dP 3aP 3bP

1aN

1bN

1cN

2aN

2bNE

1aN 1bN 1dN

1cN 2aN

3aN

3bN

3cNE

1aN

1bN

1dN

1eNE

3aN

3bN

DU1 DU1 DU1 DU1 DU2 DU1 DU2 DU3 DU1 DU2 DU3 DU1 DU1 DU1

M16 M17

DU1 DU2

M18

DU3

M19

Figure 7: SDP for increasing DUs

 10

green the exclusive sub-test. Initially, the test program is

developed for the Processor 1 (P1) feature a and b as discussed

previously, and then ported to the Processor 2 (P2) and

Processor 3 (P3). For any processor, it is necessary to develop

a non-portable sub-test independently. In the Processor 3 (P3)

a new portable sub-test for the feature c is developed similarly.

The test program for the feature d is developed for the

Processor 4 (P4) and ported to Processor 5 (P5).

P2 a bTP

u
n

it
1

a b

P3 a bTP

u
n

it
1

a b

P4 a bTP

u
n

it
1

a b d d

P5 a bTP

u
n

it
1

a b d d e

P1 a bTP

u
n

it
1

a b

c c

c c

Figure 8: Test program structure for a common unit in the processor
family

IV. CASE STUDY

This section introduces the case study. Different STLs have

been developed, according to the proposed approach, for testing

different automotive processors produced by

STMicroelectronics. The STLs of the different processors have

been developed with the approach proposed in Section III.

Initially, this section provides an overview of the SPC58

processor family. Afterwards, this section reports the most

important features of some of the SPC58 family processors.

A. The SPC58 processor family

The SPC5X processors developed by STMicroelectronics are

specifically developed for the automotive sector and for the

different applications required by this sector. The last family

designed by STMicroelectronics is the SPC58, it is available to

the ECU development engineers since 2016. In this new family,

there are numerous processors operating in a multicore context.

The introduction of multicore architectures allows greater data

computing on the ECU, it is necessary to meet the new needs of

the automotive market. Today, the vehicles have sophisticated

management and control systems for their parts; such as the

engine, the suspension and the management of safety systems

on board. Moreover, in the new vehicles, there is great

importance to the infotainment applications. The aim of the

infotainment applications is improving and facilitating the

driving experience. Moreover, with the future introduction of

the autonomous guide, the necessary computational abilities on

the ECU remains a great technological challenge. The SPC58

family processors are based on the 32 bits Power-PC

architecture able to work up to 200MHz. They have large flash

memory, from 1MB up to 10MB, and different types and sizes

of RAM memory. The RAM memory shared between all cores

and the private local RAM memory for each core. These

different RAM memories are accessible by the cores with

different time latency. The processors are equipped with

numerous communication channels; such as the CAN bus, the

LINFLEX bus, the UART, the USB interface and the Ethernet

interface. In the SPC58 architecture the cores, peripherals and

memories are divided over several AMBA BUS; to guarantee

the best performance in terms of access speed. The Hardware

Security Module (HSM) is introduced in the SPC58 family for

managing the security aspects of the communication interfaces.

The SPC58 family is segmentation in more lines of products

[51]. The processor of the A and M lines are specifically

developed for the engine propulsion control and for the

transmission control. The A-line and M-line processors are high

performance processor to managing complex real-time control

software. The Digital Signal Processing (DSP) features are

available on these processors. The processors of the P and L

lines are used to managing the electrical sensors and to

elaborate the measured performed by the acquisition systems.

They are equipped with different 12 bits Analog-Digital

Converter (ADC) able to work at high speed. The processors of

the D, B and C lines are thinking to the network and low power

applications. The description of the SPC58 family processors

considered is shown in Figure 9, it is temporally organized.

Figure 9 shows the period in which the processor and the

MCAL software package are available to the customer.

Moreover, the processor construction technology, the

maximum work frequency and the number of the cores present

are shown in Figure 9.

Figure 9: Roadmap of the developed processors of the SPC58 family

B. Compare the processors of the SPC58 family

This subsection provides a description of the cores used in the

SPC58 family processors. Moreover, the features of the core

units are also compared. In this paper the processors Eiger,

Bernina and Chorus are considered.

1) Eiger

The Eiger processor (SPC58NEx) [52] is a multicore processor

equipped with 6MB of flash memory, 600KB of shared RAM

and 64KB of local RAM for each core. The processor is

 11

organized in two AMBA BUSs on which the different

peripherals are connected. The processor is equipped with three

cores (core a, core b and core c) of different type. All the cores

are based on a double issues pipeline with five stages each, and

all cores are able to execute the ISA Variable-Length Encoding

(VLE) [53] assembly instructions and the Book-E [54]

compatible VLE assembly instructions. In addition, the core a

also supports the Lightweight Signal Processing (LSP) [55]

instructions. All the cores are equipped with 32 General-

Purpose Register (GPR) at 32-bit each, and some Special-

Purpose Registers (SPR) used for configuring the core features.

Moreover, all cores are equipped with an Embedded Floating-

Point Unit (EFPU2) and a Performance Monitor unit. The

Performance Monitor is used for profiling the core activities at

run-time, it is composed of 4 counters able to count different

events. The Nexus3 debug module is present in both core types.

The core b is equipped with 8KB of first-level (L1) instruction

cache memory and 4KB of first-level (L1) data cache memory;

while the core a has 8KB of L1 instruction cache. All cores

have a Memory Protection Unit (MPU) and don't have the

virtual Memory Management Unit (MMU), which was present

in the previous STMicroelectronics processor family. The main

features of the core a and core b are shown in Table 1. The

Eigher processor belongs to the A-line devices.

 Eiger

(core b)
Eiger
(core a)

Bernina
(core a)

Chorus
(core a)

#pipeline Dual issues Dual issues Dual issues Single

issues

#stage of

pipeline

5 5 5 4

ISA VLE,
Book-E

VLE,
Book-E,

LSP

VLE,
Book-E, LSP

VLE,
Book-E

#GPR 32 registers
(32 bit each)

32 registers
(32 bit each)

32 registers
(32 bit each)

32
registers

(32 bit

each)

#SPR 109 registers
(32 bit each)

108 registers
(32 bit each)

111 registers
(32 bit each)

99
registers

(32 bit
each)

Data cache 4KB - 8KB -

Instruction

cache

8KB 8KB 16KB -

Debug unit Nexus3 Nexus3 Nexus3 Nexus3

BTB 8 entries 8 entries 8 entries 4 entries

FPU EFPU2 EFPU2 EFPU2 EFPU2

Performance

monitor

71 events 69 events 71 events 57 events

MMU - - - -

MPU 24 entries
configurable

24 entries
configurable

24 entries
configurable

-

Table 1: The features of the SPC58 cores

2) Bernina

The Bernina processor (SPC58NNx) [56] is a multicore

processor equipped with 6MB of flash memory, 512KB of

shared RAM and 128KB of local RAM for each core. Two

AMBA BUSs are present in the Bernina processors. The

processor is equipped with three cores of the same type (called

core a, core b and core c), and additional two cores used in

lockstep configuration. The core a is based on a dual issues

pipeline with five stages each. The VLE, Book-E and LSP

assembly instructions are available in Bernina. In this core,

there are 8KB of L1 data cache and 16KB of L1 instruction

cache. The main features of the Bernina’s core are shown in

Table 1. The Bernina processor belongs to the A-line devices.

3) Chorus

The Chorus processor (SPC582Bx) [56] is a single-core (core

a) processor equipped with 1MB of flash memory and 96KB of

RAM. A single AMBA BUS is present in the processor. Core

a is based on a single issue with four stages each. The VLE and

Book-E assembly instructions are available in core a. In this

core, there are not data cache and instruction cache. The main

features of the core a are shown in Table 1. The Chorus

processor belongs to the C-line devices.

C. Compare the core and the units of the SPC58 family

This subsection compares the main features of the cores used in

the processors previously described. In Table 2 the features of

different units of the core are compared. The processor's

development roadmap analyzed in Figure 9 is considered. In

general, the units inside of the Eiger core b are classified as

reduction compared to the Eiger core a. A similar consideration

is possible for the units of the Chorus core a respected to the

Eiger core b. Instead, the units of the Bernina core a are

classified as increases compared with the Eiger core a. From

Table 2, it can be seen that the Branch Target Buffer (BTB) unit

remains almost unchanged for all processors, except for the

Chorus where the number of entries is halved. The BTB is

based on the Branch Instruction Cache (BTIC). It consists of a

small cache memory contain two information: the address of

the conditional jump instructions and the statistical prediction

of the branch executed. The entries are populated and updated

in accord with the Least-Frequently Used (LFU) approach,

where the less frequently used entry is overwritten. The BTB

has one SPR used to config the unit, to enable and disable the

BTB, or to invalidate all entries. The BTIC implementation is

architecturally transparent, so it does not have to be saved

during the context switch.

In all the cores there is only one divider unit shared between the

two pipelines. In the cores that manage the LSP instructions, the

divider operates at 64 bits, in the other cores it operates at 32

bits. Table 2 shows the number of clock cycles needed to

perform a single division. The number of clock cycles is

variable, it depends on the implementation of the divisor unit

and depends on the number of low logical bits present in the

operands of the division. In the proposed architecture, the whole

processor stalled while the division is performed. As the

division unit, the multiplier unit is also shared between the two

pipelines. However, each multiplication instruction is always

executed in two clock cycles. In the cores that manage the LSP

instructions, the multiplier is considerably more complex and it

is able to perform a considerable number of different types of

multiplication instructions. Moreover, in the cores with the LSP

ISA instructions are management, the multiplier operates at 64

bits; while in the other cores it operates at 32 bits. It should be

noted that two distinct multipliers are present internally in the

ISA LSP cores. The first multiplier is used to managed the VLE

multiplications instructions that perform 32 bits multiplication,

while the second multiplier is used for LSP instructions. In the

LSP instruction multiplier is also present a hardware

 12

accumulator used by some particular instructions. A decoder

unit is integrated into the multiplier, it is able to decode the LSP

multiplication instruction. The register file consists of 32

generic registers (GPR) equal for all processors of the Power-

PC architecture, while the number of special registers (SPR)

depends on the number of peripherals and their functionalities.

All the registers are physically implemented in 32 bits, but in

the cores that handle the LSP instructions, there is the

possibility of concatenating two registers to obtain a 64-bit

logic register. The register file has three read ports and two

write ports in the cores that implementing the VLE and Book-

E instructions, while the ports are four in reading and four in

writing in the cores that implementing the LSP instructions. In

accord with the EABI standard [33], the R1 register is used as

Stack Point. The R2 and R13 registers are used to access the

Small Data Area (SDA) memory regions. The SDA regions are

used managing the global variables and the global constants.

The registers from R3 to R10 are volatile and they are used for

passing the parameters to the functions written in C language.

Moreover, the register R3 is used for the return value of the C

functions. The volatile registers do not need to be saved in the

stack frame during the context switch or when a function is

called. Instead, the registers from R14 to R31 are non-volatile

and must be saved in the stack frame.

The shifter unit is able to performed shift and rotate instructions

to right or to left. It can operate on 32 bits register in cores that

handle the VLE instructions, or 64 bits register in cores that

handle the LSP instructions. Each pipeline is equipped with its

own shifter unit. Similarly to the shifter units, the adder units

are also duplicated. There is the adder unit for each pipeline.

The adder performs the operations in one single clock cycle.

Whit the VLE instructions the adder units performing operation

at 32 bits. In the cores that manage the LSP instructions, the

adder unit is adapted to work with data of 64 bits.

 BTB DIVIDER MULTIPLIER REGISTER FILE SHIFTER ADDER

Eiger

(core a)

Features

1) 8 entries

2) BTAC
3) LFU

1) 3-24 clock

cycle for a
division

2) 64 bits integer
divider

1) Multiplier with

64 bits output
2) Multiplier with

32 bits input
3) Accumulator

4) Own decoder

unit
5) Two internal

multipliers: 16
bit and 32 bits

1) 32 GPR

2) 76 SPR
3) Concatenation of

two registers for
management the

LSP instructions

1) 64 bits

rotate and
shift

left/right
operation

1) 64 bits

and 32
bits adder

#Instruction

LSP - 1 457 0 16 24

VLE - 22 4 8 8 8

Book-E - 8 8 20 4 20

#SPR used 1 - - - - -

Eiger

(core b)

Features

1) 8 entries

2) BTAC
3) LFU

1) 6-16 clock cycle

for a division
2) 32 bits integer

divider

1) Multiplier with

32 bits output
2) Multiplier with

16 bits input

1) 32 GPR

2) 77 SPR

1) 32 bits

rotate and
shift

left/right
operation

1) 32 bits

adder

#Instruction

LSP - - - - - -

VLE - 22 4 8 8 8

Book-E - 8 8 20 4 20

#SPR used 1 - - - - -

Bernina

(core a)

Features

1) 8 entries
2) BTAC

3) LFU

1) 6-24 clock cycle
for a division

2) 64 bits integer

divider

1) Multiplier with
64 bits output

2) Multiplier with

32 bits input
3) Accumulator

4) Own decoder
unit

5) Two internal

multipliers: 16
bits and 32 bits

1) 32 GPR
2) 79 SPR

3) Concatenation of

two registers for
management the

LSP instructions

1) 64 bits
rotate and

shift

left/right
operation

1) 64 bits
and 32

bits

adder

#Instruction

LSP - 1 457 0 16 24

VLE - 22 4 8 8 8

Book-E - 8 8 20 4 20

#SPR used 1 - - - - -

Chorus

(core a)

Features

1) 4 entries
2) BTAC

3) LFU

1) 7-35 clock cycle
for a division

2) 32 bits integer
divider

1) Multiplier with
32 bits

2) Multiplier with
16 bits

1) 32 GPR
2) 67 SPR

1) 32 bits
rotate and

shift
left/right

operation

1) 32 bits
adder

#Instruction

LSP - - - - - -

VLE - 22 4 8 8 8

Book-E - 8 8 20 4 20

#SPR used 1 - - - - -

Table 2: The features of the different units inside of the cores

 13

V. EXPERIMENTAL RESULTS

This section reports the experimental results for the SPC58

processor family produced by STMicroelectronics. The features

of the family and the features of its processors have been

described in Section IV. In particular, the first subsection

reports the Fault Coverage figures for the different units of the

cores of the different processors, in accord with the proposed

porting methodology described in Section III. Furthermore, the

development times of the STLs and the fault-simulation times

are also reported. Later, some interesting examples of the

reduction units are discussed and analyzed. Afterwards, the

efficiency of the ATPG-base and Evolutionary-base approaches

are discussed. Finally, the ISA contribution is analyzed.

A. Portable STL results

In order to demonstrate the effectiveness of the proposed

methodology discussed in Section III, the FC values obtained

using the same portable test programs on the different

processors are reported. In particular, the results for BTB,

Divider, Multiplier, Register File, Shifter, and Adder are

analyzed.

1) BTB

A possible BTB test methodology is proposed in [28]. In [28]

the test is performed by performing a sufficient number of

conditional branches used to load the BTB entries. After that

the BTB has been initialized, a new sequence of branches is

performed to verify the BTB prediction. The test methodology

proposed in [28] is portable because it is developed with the

deterministic approach. It considers the BTB to a functional

point of view and it is independent of its synthesis. The structure

of the test programs is shown in Figure 10. The test program is

implemented considering the sizes of the different RAM

memories present in the different processors, the space

available for each test program is shown in Figure 10. The

algorithm proposed in [28] is adapted to the memory size of

each processor. The numbers of possible permanent stuck-at

faults for each BTB unit of the different core are shown in Table

3, while the Fault Coverage figure for each processor is shown

in Table 4. The first column, called FC, reports the Fault

Coverage obtained considering all possible BTB faults. The

second column (FC increm.) considers the incremental fault-

simulation approach. In the incremental approach, the faults

previous detected by other test programs are not again

considerate during a new fault-simulation campaign. The last

column reports the time necessary to perform the fault-

simulation of the single test program considering all faults

present in the UUT. The FC total value report the fault coverage

obtained considering the union of all test programs. While the

FC total and cascade value report the final FC. FC total and

cascade value also includes the contribution of non-portable

test programs eventually implemented. It is possible to note that

no other test program introduces a cascade phenomenon on the

FC of the BTB, and no other non-portable test programs are

implemented for the BTB unit. Analyzing the FC values

obtained with the same test program on all processors, it is

possible to note a constant FC value around 70% for the Eiger

core a, the Eiger core b and the Bernina core a, as shown in

Table 4. It is possible to see from Table 2 that the BTBs unit of

these three cores have the same features. It should be noted that

at the GATE level these three BTBs are different because the

number of faults is significantly different as shown in Table 3.

 Eiger

(core a)
Eiger

(core b)
Bernina

(core a)
Chorus

(core a)

BTB 21,434 16,506 19,892 11,037

Divider 34,013 18,928 35,018 20,337

Multiplied 73,638 29,717 63,962 32,868

Register file 146,217 82,518 140,654 68,217

Shifter 12,422 3,132 17,115 3,136

Adder 14,762 6,446 19,758 3,972

Table 3: Number of faults for each unit of each core

Figure 10: BTB test program structure

The BTB unit of the Chorus core a is classified as REDUCED,

compared to the BTB of the other cores considered in this

family. In the Chorus core a, the number of BTB entries is

halved. Only for this core, it is necessary to modify the test

program. It is necessary to reduce the number of branches

performed to initialize the BTB, and the number of branches

performed to verify the predictions of the BTB. The test method

proposed in [28] is easily scalable with respect to the number of

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

TEST PROGRAMS FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]

BTB1 63.38 +63.38 168 57.76 +57.76 195 63.40 +63.40 227 53.43 +53.43 98

BTB2 50.71 +6.24 161 45.65 +9.82 174 54.98 +6.20 206 42.13 +7.06 88

BTB3 27.41 +2.28 85 14.81 +1.92 92 19.54 +1.34 161 18.54 +3.83 41

FC total 71.90 69.50 71.16 64.32

FC total and cascade 71.90 69.51 71.16 64.33

Table 4: The BTB case

 14

BTB entries. The FC reduction is due to the decrease of the

memory available in the Chorus processor, as discusses in sub-

section B.3 of the Case Study. The variety of the memory

addresses that can be loaded in the BTB entries is considerably

lower in the Chorus processor.

2) DIVIDER

The test programs for the division unit consider divisions

executed between the checkerboard patterns (0x0000, 0xFFFF,

0xAAAA, 0x5555, 0xCCCC, 0x3333) and numbers of power

of two (2, 4, 8, 16,). The use of these generic patterns does

not require the calculation of ATPG patterns valid only for a

specific implementation of the divisor, as discussed in Section

III. The structure of the test programs is shown in Figure 11.

Two sub-tests have been implemented, one considering the

VLE instructions on 32-bit operands and one considering those

with 64-bit operands. Furthermore, a non-portable test program

was implemented using the ATPG approach.

The Fault Coverage value obtained on the different processors

of the family under examination is about 78% (77% Eiger core

a, 83% Eiger core b, 76% Bernina core a, 77% Chorus core a),

as shown in Table 5. In the Eiger core a and Bernina core a,

the test methodology is extended to 64-bit patterns using LSP

instructions. On the other cores, the VLE instructions with 32-

bit patterns are used. It is interesting to note that the DIV3 test

Figure 11: Divider, multiplier, shifter, and adder test programs

structure

program on the Chorus processor does not give a useful

contribution to the final FC, this test program was discarded in

the final STL. In order to increase the FC of the dividers, some

non-portable test programs are implemented with the ATPG

approach. The contribution of these test programs is indicated

by comparing the FC total value with the FC total and cascade

value of Table 5.

3) MULTIPLIER

As introduced in section IV.C, the multiplier unit for the Eiger

core a and Bernina core a acquires many features compared to

the Eiger core b. Moreover, the multiplier of the Eiger core a

has similar features to the multiplier of the Chorus core a. The

structure of the test programs is shown in Figure 11. Two sub-

tests have been implemented, one considering the VLE

instructions on 32-bit operands and one considering those with

64-bit operands. Furthermore, a non-portable test program was

implemented using the ATPG approach. The first set of test

programs developed to test the Eiger core a multiplier is

developed. Afterwards, a second set of test programs able to

detect the faults present in the new version of the multiplier is

implemented. The features of the two versions of the multiplier

are shown in Table 2, while the number of faults is shown in

Table 3. It is possible to note that the number of the possible

faults present in the multipliers of the Eiger core a and Bernina

core a is doubled compared to the number of the possible faults

present in the multipliers of the Bernina core b and Chorus core

a. This remarkable difference in the number of faults is due to

the hardware added in the LSP version of the multiplier. In

analogy to the divider unit, the multiplier unit is also tested with

a checkerboard pattern and numbers of power of two. Different

VLE and LSP instructions are used to apply the test patterns.

From Table 9, it is possible to notice an FC of about 90% on the

multiplier (87% Eiger core a, 91% Eiger core b, 92% Bernina

core a, 91% Chorus core a). Furthermore, it can be seen a

considerable influence of the LSP test program on the FC total

value. The impact of the LSP test program is around 28% on

FC total value, the LSP test program is present only in the LPS

version of the multiplier for the Eiger core a and Bernina core

a. Some test programs with the ATPG approach are developed

to increase the FC of multipliers on different processors. The

influence of these additional non-portable test programs is

about 5%.

4) REGISTER FILE

The Register File of these processors is internally divided into

numerous subunits. The Control Register sub-unit contains the

status registers and control registers of the core, the Decode

sub-unit contains the logic able to address each register, the

Exception Register sub-unit contains the status register and

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

TEST PROGRAMS FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]

DIV1 41.96 +41.96 111 60.10 +60.10 49 39.09 +39.09 65 55.88 +55.88 58

DIV2 57.96 +19.16 114 42.24 +3.02 48 53.33 +19.86 66 64.25 +14.45 62

DIV3 64.08 +10.69 109 45.37 +2.08 47 57.91 +9.81 62 50.24 +0.14 61

DIV4 59.29 +2.00 104 76.34 +2.27 48 51.88 +6.41 63 56.27 +4.85 62

MUL_DIV 37.00 +3.84 123 66.80 +16.04 63 28.72 +1.66 91 46.93 +2.13 75

FC total 77.65 83.51 76.83 77.31

FC total and cascade 79.23 86.78 78.01 82.20

Table 5: The DIVIDER case

 15

interrupt management registers used during an interrupt

request. The General Register sub-unit contains the 32 GPR

registers, while the Mem Mux sub-unit contains the Register

File logic interface. In [27] a possible test methodology for the

Register File is discussed. The methodology proposed in [27] is

able to detect the faults present in some of the sub-units of the

Register File, in particular in the General Register. The Control

Registers sub-unit, the Decode sub-unit, and the Mem Mux sub-

unit are partially tested in [27]. The test methodology proposed

in [27] for the Register File is based to write and to read the

checkerboard pattern in all registers. The registers are

subdivided into two groups. In each group, the encoding of all

registers has a hamming distance higher than one bit with

respect to each other. The structure of the test program for the

register file is shown in Figure 12. The results of Table 10 show

the overall FC of the Register File, while the results of Table 6

and Table 7 shows the FC for its sub-units. Table 6 and Table 7

considering two different test programs set, Table 6 considering

only the RF_MEM test program, while Table 7 considering the

whole STL. The methodology proposed in [27] is implemented

in the RF_MEM test program.

Other test programs have a great influence on the final FC of

the Register File, as can be seen by comparing Table 6 with

Table 7. Table 8 shows the number of faults for each sub-unit

Register
File

sub-unit

Eiger

(core a)
Eiger

(core b)
Bernina

(core a)
Chorus

(core a)

Control
Register

68.98% 65.27% 67.17% 66.80%

Decoder 73.59% 69.23% 74.06% 74.84%

Exception

Register

3.25% 2.89% 3.14% 2.97%

General

Register

99.98% 91.48% 94.26% 98.50%

Mem Mux 79.45% 82.68% 77.46% 81.28%

Glue logic 97.16% 98.58% 98.12% 98.61%

FC total 59.95% 62.54% 60.07% 70.21%

Table 6: The FC obtained by the RF_MEM test program on the

Register File sub-units

of the Register File. Only the General Register sub-unit is

considered for the porting approach. The methodology

proposed in [27] is independent by the implementation of the

Register File, it is portable from one processor to another

processor of the same processor family; this methodology can

be used, in another non-portable test program, also for testing

the SPR registers classified as exclusive. It is possible to note in

Table 7 that the FC figure of the General Register sub-unit of

the Register File maintains a good FC value on all cores, the

test program used in all cores is always the same.

Register

File

sub-unit

Eiger

(core a)

Eiger

(core b)

Bernina

(core a)

Chorus

(core a)

Control
Register

97.43% 90.27% 92.90% 91.15%

Decoder 100.00% 94.04% 99.13% 92.80%

Exception

Register

89.14% 80.08% 85.55% 100.00%

General
Register

99.98% 91.48% 94.26% 98.50%

Mem Mux 97.13% 97.47% 98.79% 95.99%

Glue logic 99.89% 100.00% 98.97% 99.53%

FC total 97.43% 90.27% 97.15% 92.90%

Table 7: The FC obtained by the whole STL on the Register File sub-

units

Register
File

sub-unit

Eiger

(core a)
Eiger

(core b)
Bernina

(core a)
Chorus

(core a)

Control

Register

3,129 2,253 2,708 2,065

Decoder 2,546 1,308 3,042 924

Exception
Register

15,914 10,337 15,181 9,410

General

Register

50,864 20,762 52,579 23,176

Mem Mux 69,414 45,508 63,826 31,218

Glue logic 4,350 2,350 3,318 1,424

FC total 146,217 82,518 140,654 68,217

Table 8: The number of faults for each sub-unit of the Register File

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

TEST PROGRAMS FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]

MUL 55.21 +55.21 144 90.28 +90.28 84 53.04 +53.04 255 89.62 +89.62 89

MUL_DIV 40.02 +2.79 237 62.77 +1.49 119 37.32 +10.76 341 59.74 +1.50 132

MUL_LSP 48.16 +29.21 156 - - - 49.53 +28.49 278 - - -

FC total 87.21 91.77 92.29 91.12

FC total and cascade 91.76 98.23 92.30 97.88

Table 9: The MULTIPLIED case

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

TEST PROGRAMS FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]

RF_MEM 59.98 +59.98 659 62.54 +62.54 541 60.07 +60.07 504 70.21 +70.21 498

FC total 59.98 62.54 60.07 70.21

FC total and cascade 97.43 90.27 97.15 92.90

Table 10: The REGISTER FILE case

 16

Figure 12: Register file test program structure

5) SHIFTER

The same considerations of the divider unit and the multiplier

unit can be replicated for the shifter unit. Some shift operations

with checkerboard patterns are performed on 32-bit and 64-bit

registers. The VLE instructions are used on the 32-bit registers

in the Eiger core b and Chorus core a, while the LSP

instructions are used on the 64-bit registers in the Bernina core

a and Chorus core a.

The structure of the test program for the shifter is shown in

Figure 11. The FC obtained from the same test program on all

the cores being examined is around 84%, as it shows in Table

11 (80% Eiger core a, 85% Eiger core b, 82% Bernina core a,

89% Chorus core a). Also for the shifter unit, other non-

portable test programs are implemented with the ATPG

approach. Considering also the non-portable test programs'

contribution, a high FC on the shifters is reached.

6) ADDER

The test methodology proposed for adder units is based on the

sum of checkerboard test patterns. Furthermore, some sum

operations between the very large numbers and the small

numbers are implemented to detect the faults present in the

adder's carry paths. The structure of the adder test program is

shown in Figure 11. The FC obtained on the adder units with

the same test program is about 85%, as it shows in Table 12

(87% Eiger core a, 90% Eiger core b, 88% Bernina core a, 84%

Chorus core a). The FC of the adder units is influenced by a

high cascade effect given by the other test programs. This

benefic effect on the FC is due to how the signature is

constructed in the test programs. As discussed in Section B.2 of

the Background, the signature is obtained by accumulation, i.e.

sum operation, of the partial results generated during the test

program. These sum operations contributed to the detection of

the faults present in the adder, the effect of the cascade on the

FC is shown in Table 12.

B. Other Test programs for SHARED units

With reference to the portable classification of the units

discussed in Section III.B, it is possible to classify the Logic

Instruction unit and the Exception Control unit as SHARED.

The functionalities of the Logic Instruction unit and the

functionalities of the Exception Control unit remain equal for

all the processors of the SPC58 family. Two portable test

programs can be developed for the Logical unit and for the

Exception Control unit. The test program able to detect the

faults present in the Logic Instruction unit uses AND, OR, NOT

and XOR logic operations between checkerboard patterns.

The Exception Control unit is tested as described in [5]. The

methodology proposed in [5] consists of voluntarily triggering

interruptions and verifying that the correct Interrupt Service

Routine (ISR) is performed for each interruption source.

The test methods proposed for the Logic Instructions unit and

for the Exception Control unit are developed with the

deterministic approach, these methodologies are independent of

the synthesis at the gate level of the units. As it is possible to

see from Table 13 and Table 14, the same test programs

developed for a single processor of the family have been used

on all processors of the family. The FC values of the Logic

Instruction unit and of the Exception Control unit remains

almost unchanged on all different cores.

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

TEST PROGRAMS FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]

SHIFTER 80.90 +80.90 83 85.26 +85.26 32 82.01 +82.01 47 89.48 +89.48 21

FC total 80.90 85.26 82.01 89.48

FC total and cascade 83.04 99.69 89.03 99.59

Table 11: The SHIFTER case

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

TEST PROGRAMS FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]
FC [%]

FC

increm.

[%]

Time

[Hour]

ADDER1 87.53 +87.53 38 90.63 +90.63 14 88.69 +88.69 49 84.89 +84.89 9

FC total 87.53 90.63 88.69 84.89

FC total and cascade 93.46 94.41 93.56 93.25

Table 12: The ADDER case

 17

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

 #Faults FC[%] #Faults FC[%] #Faults FC[%] #Faults FC[%]

Program Counter 37,793 70.85 20,411 66.25 32,113 66.49 20,203 65.95

Divider 34,013 79.23 18,928 86.78 35,018 78.01 20,337 82.20

Logic Instruction 4,172 89.94 3,232 95.08 3,360 93.74 2,288 92.48

Multiplier 73,638 91.76 29,717 98.23 63,962 92.30 32,868 97.88

Shifter 12,422 83.04 3,132 99.69 17,115 89.03 3,136 99.59

Exception Control 15,297 50.63 10,363 47.54 13,695 55.28 9,834 55.37

BTB 21,434 71.90 16,506 69.51 19,892 71.16 11,037 64.33

Register File 146,217 97.43 82,518 90.27 140,654 97.15 68,217 92.90

Fetch Unit 47,460 85.76 25,622 880.52 39,373 71.63 15,782 63.53

Forward 134,091 75.85 44,679 78.67 115,287 77.65 29,632 87.39

Decode Unit 66,566 53.28 30,141 69.61 101,900 67.29 19,005 63.65

Load/Store Unit 17,879 72.51 10,631 71.89 22,712 82.83 15,669 73.05

Brinc Unit 1,296 95.91 - - 1,338 92.37 - -

Merge Unit 4,044 90.48 - - 4,136 91.32 - -

Saturate Unit - - - - 16,404 73.00 - -

Adder Unit 14,762 93.46 6,446 94.41 19,758 93.56 3,972 93.25

Control Logic 50,309 74.82 28,591 78.71 58,202 73.01 19,463 70.64

Performance
Monitor

2,620 87.90 880 100 3,096 86.82 564 90.25

Glue Logic 31,216 72.90 13,204 77.45 21,507 68.45 10,363 79.07

TOTAL 715,229 80.07 345,001 80.98 729,522 80.26 282,370 80.40

Table 13: The final FC of each processor

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

 #TP Memory

occupation
[Bytes]

Duration

[C.C.]

#TP Memory

occupation
[Bytes]

Duration

[C.C.]

#TP Memory

occupation
[Bytes]

Duration

[C.C.]

#TP Memory

occupation
[Bytes]

Duration

[C.C.]

Program Counter 0 - - 0 - - 0 - - 0 - -

Divider 8 6,280 11,600 8 4,668 10,479 8 6,280 11,600 8 6,280 11,600

Logic Instruction 1 690 350 1 690 350 1 690 350 1 690 350

Multiplier 5 3,800 2,700 5 2,900 2,100 5 3,800 2,700 5 2,900 2,100

Shifter 2 2,200 2,900 2 720 800 2 2,200 2,900 2 720 800

Exception

Control
5 8,100 28,000 5 8,100 28,000 5 8,100 28,000 5 8,100 28,000

BTB 3 3,000 32,700 3 3,000 32,700 3 3,000 32,700 3 2,600 7,438

Register File 2 4,100 2,650 2 4,100 2,650 2 4,100 2,650 2 4,100 2,400

Fetch Unit 1 2,700 2,315 1 2,700 2,315 1 2,700 2,315 1 1,800 1,980

Forward 1 1,600 1,540 1 1,600 1,540 1 1,600 1,540 1 978 1,100

Decode Unit 3 7,000 33,550 3 7,000 33,550 3 7,000 33,550 3 2,800 21,200

Load/Store Unit 1 920 1,200 1 920 1,200 1 920 1,200 1 920 1,200

Brinc Unit 1 1,300 820 0 - - 1 1,300 820 0 - -

Merge Unit 2 4,400 3,350 0 - - 2 4,400 3,350 0 - -

Saturate Unit 2 - - 0 - - 2 2,190 5,180 0 - -

Adder Unit 2 1,600 1,300 2 1,450 1,200 2 1,600 1,300 2 1,150 860

Control Logic 0 - - 0 - - 0 - - 0 - -

Performance

Monitor
2 3,000 2,700 2 3,000 2,700 2 3,000 2,700 2 2,600 2,500

TOTAL 41 49,690 127,675 36 40,848 119,584 41 49,880 132,855 36 35,638 92,328

Table 14: The STL features of each core

 Eiger (core a) Eiger (core b) Bernina (core a) Chorus (core a)

 #IST-TP IST-C [%] #IST-TP IST-C [%] #IST-TP IST-C [%] #IST-TP IST-C [%]

Book-E 7 94.88 7 94.88 7 94.88 7 94.88

VLE 8 94.81 8 94.81 8 94.81 8 94.81

LSP 9 94.55 - - 9 94.55 - -

TOTAL 24 94.56 15 94.85 24 94.56 15 94.85

Table 15: The ISA test programs

 18

C. Chorus core a single issue case

This paragraph is dedicated to the Chorus processor. This

processor is obtained from the Eiger processor, as shown in

Figure 9. In particular, the Chorus core a is obtained removing

some features by the Eiger core b, as discussed in Section IV.

This processor, belonging to the low power line of the SPC58

family, consists of a single pipeline and a limited number of

peripherals. The porting phase is considerably simplified for the

Chorus processor due to the presence of only one pipeline in

the Chorus core a. All the test programs in the dual issue

processors are implemented to apply the same test patterns to

both pipelines. For example, the sum operations that performed

the test to the adder unit are performed twice; the first time to

test the adder unit of the first pipeline and a second time to test

the adder unit of the second pipeline [27][57]. Therefore, in the

test programs, it is possible to disable the replicas of the sub-

tests associated with the test of the unit of the second pipeline.

As the reader can see from the final FC results reported in Table

13, the removal of the sub-test replicas does not affect the final

FC of the internal units of the Chorus processor. The FC values

of the units of the Chorus core a remain in line with the FC

values of the other processors. However, it has a significant

decrease in the number of test programs and their duration, as

shown in Table 14.

D. Fault Coverage results discussion

Overall, the Tables 4-5-9-10-11-12 show how the proposed

porting methodology is effective for processors belonging to

the same family. Furthermore, it suggests that the development

of the test programs in a portable way is more efficient. In other

words, the test programs are developed respect the STL

Development Plan (SDP) and the test program structure

identified with the proposed approach.

All the experiments were performed on a server equipped with

two XEON ES-2620V3 processors operating at 2.4GHz with

64GB of RAM available. All the fault-simulations are

performed with 15 parallel processes. The time required to

execute each fault-simulation has been reported in hours in each

table. Table 13 shows the detail about the FC and the number

of faults present in each unit and for each core. The last row

reports the total number of faults present in the core and the

final FC of the whole core. Instead, Table 14 shows for each

unit of each core the number of test programs developed (#TP),

the memory occupation and the duration in clock cycle.

E. Developed time

Figure 13 shows the development times of the STLs for the

considered cores. As discussed in Section II.D and in Section

III.C, it is possible to develop STL only once the gate-level

synthesis is complete. The STL development starting when the

gate level synthesis is completed and the verification phase of

the physical device is passed. While the development of the

STL ends when the FC of the core is at least 80%. This value

is calculated by the microcontroller manufacturer in accordance

with the ASIL D ISO26262 standard [58].

Interestingly, about 7 months are needed to develop the STL for

the first core. Subsequent processors require less development

time because they benefit from portable tests developed for the

previous processors. In general, for each new processor remains

necessary to develop some test programs for the units classified

as exclusive. Moreover, the non-portable test programs required

to be developed for increasing the FC; typically, new ATPG test

patterns must be generated for the non-portable test programs.

Non-portable tests are used to fill the small FC drop if present.

This is particularly evident in the case of the Chorus processor;

the Chorus STL is obtained by disabling many of the STL sub-

tests developed for the Eiger core b. The times reported in

Figure 13 consider the fault-simulation times, and the processor

setup time, i.e. the time required to configure the development

environment for the processor. Figure 14 also shows the period

of introduction of the processor on the market. This period

represents a deadline defined by company marketing. It can be

seen that the development of the STLs falls within these

deadlines.

Considering the ISO26262, the Single-Point Fault Mode

(SPFM) is used for the single permanent stuck-at fault. The

80% threshold was calculated by the manufacturer considering

the silicon area surface of the core respect to the total surface of

the device. A 99% FC on the overall microcontroller is finally

obtained with the combination of STL with different

approaches (like ECC, lockstep or other Hardware- and

Software-based safety mechanisms) applied to all the

components included in the microcontroller. In this paper, only

the development of STLs for the processor has been considered.

Given that to reach ASIL D levels, the processor cores have to

run in Lockstep configuration, the STL approach is

indispensable to intercept misbehaviors at early time, before

their effects are leading to a processor failure noticed by the

lockstep. At microcontroller level, it is also correct to consider

that the processor is just a minor part of the silicon area, and

final ASIL numbers are also related to the other modules, such

as the embedded memories and peripherals. Typically, the

memories are tested resorting an ECC, while the peripherals can

be tested with dedicated Hardware-based or Software-based

approaches, as discussed in [59], [60], [61].

Figure 14 shows a projection of STL development using the

strategy proposed in [5]. In Figure 14, it is possible to see that

the core b of Eiger and Bernina do not respect the deadlines.

Figure 13: Portable STL developed time

 19

Figure 14: STL developed time with the approach proposed in [5]

Comparison between ATPG-base and Evolutionary-base

approaches.

In order to demonstrate the inefficiency of the ATPG

approach in terms of test program portability, some non-

portable test programs developed for the Eiger core a was fault-

simulated on the other cores of other processors. For the same

purpose, also some test programs developed with the

evolutionary approach are assessed on other processors. The

test programs developed for the divisor and multiplier units are

considered. Table 16 shows the FC results obtained for the

divider unit and for the multiplier unit. The test programs have

been developed for the Eiger core a; afterwards, the same test

programs are evaluated on the other cores

It is possible to see from Table 16 that the test programs

developed with the two non-portable approaches introduce a

good fault coverage value only on the core for which they were

developed; there is a significant loss of FC on the other cores.

 Eiger

(core a)

Eiger

(core b)

Bernina

(core a)

Chorus

(core a)

Divisor unit

ATPG 65.42% 23.58% 12.59 26.02%

Evolutionary 68.50% 15.89% 9.57 21.64%

Multiplier unit

ATPG 70.87% 28.15% 22.06% 27.59%

Evolutionary 75.57% 19.57% 19.89% 18.61%

Table 16: ATPG-based approach and the evolution-based approach

F. ISA coverage

As discussed in Subsection B.2 of the background, the

Instruction Self-Test is an alternative metric used for the

functional testing of the processors. This metric is based on the

execution of all ISA instructions at least once. The IST test

programs are easily portable because they are developed in a

functional way. Table 17 shows the number of IST Programs

(#IST-TP) developed for each processor and the related IST

Coverage (IST-C). The purpose of this section is to show the

contribution of the IST programs on the processor's FC. Two

experiments are performed for this analysis; the first

experiment performs a comparison between the IST Program

and the stuck-at Test Program concerning the Logical

Instructions unit. The second experiment compares the FC

obtained on the Decoder unit considering all the IST test

programs and all test programs developed to detect the stuck-at

faults. The experiments were performed on the Bernina core a.

1) Logic Instruction unit experiment

In the first experiment, the IST program on logic instructions is

fault-simulated on the whole core. Followed, the test program

developed to detect the stuck-at faults on the Logic Instructions

unit is fault-simulated on the whole core. The two fault-

simulation results are compared, and the intersections between

the different groups of faults are reported in Figure 15.

The number of possible permanent stuck-at faults of Bernina

core a is 729.522 (as indicated in Table 15), the developed STL

provides a FC of 80.26% (equal to 585.514 faults detected).

Figure 15 shows also the number of faults detected by the Logic

instruction unit test program and by the IST logic instruction

test program. It is possible to see that all the faults detected by

the IST logic instruction program are also detected by the STL.

Figure 15: ISA Logic Instruction unit results

Figure 15 provides also a comparison between the Logic

instruction unit test program and the IST logic instruction

program. The great majority of the faults are detected from both

programs. However, there are 18,383 faults detected from the

IST program. In any case, the STL detected also the faults

detected from the IST test program. This first experiment

demonstrates the ineffectiveness of IST programs to detect

permanent stuck-at faults.

These results were performed using the Fault List Analyzer

Tool (FLAT) [36] which allows of comparing the results of

different fault simulations.

2) Decoder unit experiment

In the second experiment, two fault-simulations are performed

on the Decoder unit with two different sets of programs. The

first set includes all IST programs; while the second set includes

only the test programs able of detecting the stuck-at faults in the

Decoder unit. For the Bernina core a, three test programs have

been implemented for the Decoder unit, as indicated in Table

 20

16. Among the many possible approaches to test the Decoder

unit, the test programs developed are implemented with the

approach proposed in [29]. In [29] the legal and the illegal

instructions are considered to detect the decoder's faults.

Figure 16: ISA Decoder unit results

From Figure 16, it is possible to notice that all the faults

detected by the IST programs are already detected by the three

specific test programs for the Decoder unit of the Bernina core

a. Therefore, the IST programs do not introduce any effect on

the FC of the Decoder unit. Furthermore, this experiment shows

that the IST metric is not able to detect all the possible stuck-at

faults present in the Decoder units.

The two experiments performed to demonstrate the

ineffectiveness of the IST approach. The IST test programs do

not introduce a real contribution to the final FC of the STL,

these programs can be disabled.

VI. ISSUES ABOUT THE INDUSTRIAL CASES

This section reports some problems encountered during the

development of the STL and some problems encountered

during the integration of the STL with the software environment

of the customers. Furthermore, some precautions and checks

actuated during the development of the test programs are

explained in this section.

A. Memory RAM used

As discussed in Section B.2 of the Background, the test

programs can be classified as intrusive and non-intrusive [32].

With reference to RAM memory, non-intrusive test programs

do not write or read from the RAM memory, while intrusive

tests access to the RAM memory. The intrusive test programs

are executed at boot-time, before the operating system are

executed. Often in the automotive sector, the ECUs are never

really switched off when the vehicle is switched off, but the

ECUs are placed in a low power state. When the vehicle

switched on, the ECUs return in execution state without a real

restart. There is not the real boot phase of the OS. Therefore,

the intrusive test programs are executed in the presence of data

in RAM memory, these data must not be corrupted or altered.

The RAM memory regions used by the test programs are

known, the integrity of these regions is management by the

customer's software environment during the intrusive test

execution.

B. Multicore processor

Many processors of the SPC58 family operated in a multicore

scenario, and some of them used different core types. This

aspect introduced the problem to execute the same STL in

parallel on different cores of the same type. Also, the problem

of executing different STL libraries, for different core types, in

the same processor is present. The different STLs must not be

influenced by each other, in particular about the use of the RAM

memory. A possible approach to parallelize the STLs avoiding

the RAM memory conflicts is proposed in [62][63].

C. External debugger

The Nexus debug unit of the SPC58 family processors can work

in two different operating modes; External Debug Mode (EDM)

when the external debug is connected, usually via the JTAG

port, or in Internal Debug Mode (IDM) when the external debug

is not connected. The IDM configuration is used in many of the

test programs because the IDM allows to test the interrupt

management unit. The Performance Monitor, inside of the

Nexus [52][56][64] , is used to increases the observability of

the faults. When the external debug is connected, the test

programs that use the Nexus in IDM must be disabled. An

automatic control has been implemented to verify the presence

of the external debugger and to disable the tests that used the

Nexus. There is no loss of the ability of the STL to detect the

faults by disabling these tests since the external debug is

connected by the human operator in the workshop for the

vehicle maintenance checks. On the field, the external debug is

not connected and all the tests are normally performed.

D. STL optimization

At the end of the development of the STL, it is possible to

perform an optimization of the tests. The STL can be optimized

respect to different parameters; in particular, with respect to the

FC, the STL time execution, and its occupation in the flash code

memory. A special tool, called Fault List Analyzer Tool

(FLAT) [36], has been used to analyze and optimize the STL.

The FLAT considers different quality indexes able to evaluate

the individual test programs and find an optimal solution, with

respect to the parameters to be optimized. The FLAT use and

its operations are illustrated in [36].

E. STL verification check and final test

During the development of the test programs, it is necessary to

verify the EABI standard complied. Moreover, it is necessary

to have relevance about the RAM memory locations used by the

test program. The Monitor tool is implemented to verify the

correct saving and recovery of the core registers. Moreover, the

Monitor tool keeps track of the writing operations in the RAM

memory executed by each test program. The Monitor tool is

used during the development of the test program; it is activated

during RTL logic simulations before invoking the test program

and immediately after its return. When the Monitor tool is

called, it stopping the logic simulation. The GPR registers and

the whole RAM memory are dumped. The dump is executed

before invoking the test program and when the test program

return; these two dumps are compared. In the comparison

phase, the presence of different values in the registers indicates

an error in the EABI stack frame of the test program.

 21

F. Test program signature building

The strategy used to build a test program signature has a

significant impact on the performance and the effectiveness of

the test program. In the literature, several strategies have been

proposed. In this subsection, we briefly discuss the two most

used. The strategy based on the Multiple-Input Shift Register

(MISR) is computationally very expensive, if implemented via

software, but it has a low aliasing. The aliasing is the situation

in which a test program running on a defective unit produces a

signature equal to the expected. This phenomenon occurs due

to an escape of one or more faults, as discussed in [65], [66],

[67]. In other words, some faults detected by the test patterns

are masked during the construction of the signature. So due to

aliasing, some potentially detectable faults are not detected by

the test program. As discussed in [68], the MISR strategy is

composed of a Flip-Flop chain alternating with numerous X-

OR logic gates. This algorithm can be easily implemented in

hardware, but requires many logical steps to be implemented in

software. For this reason, it is typically used in hardware-based

testing approaches.

The second possible strategy considered is based on the sum of

the partial results obtained during the test. In [67], a possible

hardware implementation is discussed; however, this algorithm

can be easily implemented in software using subsequent sums

operations. Compared to the MISR approach, the sum and

accumulation approach is much less computationally

expensive, but has higher aliasing, as discussed in [66].

However, for very short test programs that include few test

patterns, the aliasing introduced with the accumulation strategy

is negligible [66]. The portable test programs, described in this

paper were implemented exploiting the accumulation strategy.

VII. CONCLUSION

The paper offers a wide background on the different in-field and

on-line testing methodologies used in the modern industrial

processors, with particular emphasis on the STL approach.

Subsequently, the paper analyzes the problem of developing

different STLs for different processors of the same family. An

approach for developing portable test programs is proposed in

this paper. The first aim of the proposed approach is to reduce

the loss of Fault Coverage due to porting a test program from

one processor to another of the same family. The second aim of

the proposed approach is to reduce the development time of the

test programs. To demonstrate the effectiveness of the proposed

approach, it is applied to a real industrial case study. In

particular, on the SPC58 family processors developed by

STMicroelectronics for automotive safety-critical applications.

This paper does not consider the development of STL for

processors belonging to different processor families. In general,

processors of different families do not have common features

that allow an easy porting of test programs. Moreover, some

considerations regarding the use of the Instruction Self-Test

metric are reported. Finally, some practical considerations

related to industrial development problems have been reported

and analyzed. Overall, this work has required more than 3 years

of research in collaboration with STMicroelectronics.

REFERENCES

[1] U. Abelein, H. Lochner, D. Hahn, and S. Straube, "Complexity, quality

and robustness - the challenges of tomorrow's automotive electronics,"
2012 Design, Automation & Test in Europe Conference & Exhibition

(DATE), Dresden, 2012, pp. 870-871.
[2] U. Backhausen et al., "Robustness in automotive electronics: An

industrial overview of major concerns," 2017 IEEE 23rd International

Symposium on On-Line Testing and Robust System Design (IOLTS),
Thessaloniki, 2017, pp. 157-162.

[3] Infineon, “Automotive application guide,” sensors microcontroller and
power devices used an automotive field, 2019, testing on

https://www.infineon.com/dgdl/Infineon-Automotive-Application-

Guide-2019-ABR-v01_00-
EN.pdf?fileId=5546d462584d1d4a015891808e617573

[4] S. Jeon, J. Cho, Y. Jung, S. Park, and T. Han, "Automotive hardware
development according to ISO 26262," 13th International Conference

on Advanced Communication Technology (ICACT2011), Seoul, 2011,
pp. 588-592.

[5] P. Bernardi, R. Cantoro, S. D. Luca, E. Sanchez, and A. Sansonetti,

“Development flow for on-line core self-test of automotive
microcontrollers,” IEEE Transactions on Computers, vol. 65, no. 3, pp.

744–754, March 2016.
[6] H. Gall, "Functional safety IEC 61508 / IEC 61511 the impact to

certification and the user," 2008 IEEE/ACS International Conference on

Computer Systems and Applications, Doha, 2008, pp. 1027-1031.
[7] ISO26262, “Road vehicles – functional safety,” 2011

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-1:v1:en
[8] https://www.synopsys.com/support/training/signoff/tmax1-fcd.html

[9] https://www.synopsys.com/verification/simulation/z01x-functional-

safety.html
[10] E. Fujiwara, “Code Design for Dependable Systems: Theory and

Practical Application,” New York, NY, USA, Wiley, 2006
[11] J. Teifel, "Self-Voting Dual-Modular-Redundancy Circuits for Single-

Event-Transient Mitigation," in IEEE Transactions on Nuclear Science,

vol. 55, no. 6, pp. 3435-3439, Dec. 2008.
[12] J. Yeh, K. Cheng, Y. Chou and C. Wu, "Flash Memory Testing and Built-

In Self-Diagnosis with March-Like Test Algorithms," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 26, no. 6, pp. 1101-1113, June 2007.
[13] C. L. Chen and M. Y. Hsiao, "Error-Correcting Codes for Semiconductor

Memory Applications: A State-of-the-Art Review," in IBM Journal of

Research and Development, vol. 28, no. 2, pp. 124-134, March 1984.
[14] Thatte and Abraham, “Test generation for microprocessors,” IEEE

Transactions on Computers, vol. C-29, no. 6, pp. 429–441, June 1980.
[15] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, and Y. Zorian,

“Deterministic software-based self-testing of embedded processor

cores,” in Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’01. Piscataway, NJ, USA: IEEE Press, 2001,

pp. 92–96.
[16] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda,

“Microprocessor software-based self-testing,” IEEE Design Test of

Computers, vol. 27, no. 3, pp. 4–19, May 2010.
[17] G. Theodorou, N. Kranitis, A. Paschalis and D. Gizopoulos, "Software-

Based Self-Test for Small Caches in Microprocessors," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 33, no. 12, pp. 1991-2004, Dec. 2014, doi:

10.1109/TCAD.2014.2363387.
[18] https://www.st.com/en/embedded-software/stm32-classb-spl.html and

https://www.st.com/content/ccc/resource/sales_and_marketing/presenta
tion/product_presentation/group0/e6/0c/d5/34/97/d2/45/6f/China_ST_

MCU_Technical_Day_3_SPC5_Ecosystem_Introduction/files/China_S
T_MCU_Technical_Day_3_SPC5_Ecosystem_Introduction.pdf/jcr:con

tent/translations/en.China_ST_MCU_Technical_Day_3_SPC5_Ecosyst

em_Introduction.pdf
[19] https://www.hitex.com/tools-components/software-

components/selftest-libraries-safety-libs/
[20] http://www.cypress.com/file/249196/download

[21] https://www.renesas.com/us/en/products/synergy/software/add-

ons/s7g2-iec60730-self-test-library.html
[22] http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf

[23] https://www.arm.com/products/development-tools/embedded-and-
software/software-test-libraries

[24] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, "DaemonGuard:

O/S-assisted selective software-based Self-Testing for multi-core

 22

systems," 2013 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFTS), New York

City, NY, 2013, pp. 45-51.

[25] E. Sanchez, "Increasing reliability of safety critical applications through
functional based solutions," 2018 13th International Conference on

Design & Technology of Integrated Systems In Nanoscale Era (DTIS),
Taormina, 2018, pp. 1-1.

[26] P. Bernardi, S. De Luca, D. Piumatti, S. Regis, E. Sanchez, and A.

Sansonetti, "On the in-field testing of spare modules in automotive
microprocessors," 2017 IFIP/IEEE International Conference on Very

Large Scale Integration (VLSI-SoC), Abu Dhabi, 2017, pp. 1-6.
[27] P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, A. Sansonetti, and G.

Squillero, "Software-Based Self-Test Techniques for Dual-Issue

Embedded Processors," in IEEE Transactions on Emerging Topics in
Computing.

[28] D. Changdao, M. Graziano, E. Sanchez, M. Sonza Reorda, M. Zamboni
and N. Zhifan, "On the functional test of the BTB logic in pipelined and

superscalar processors," 2013 14th Latin American Test Workshop -

LATW, Cordoba, 2013, pp. 1-6.
[29] P. Bernardi et al., "On the in-field functional testing of decode units in

pipelined RISC processors," 2014 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),

Amsterdam, 2014, pp. 299-304.
[30] R. Cantoro, D. Piumatti, P. Bernardi, S. De Luca, and A. Sansonetti, "In-

field functional test programs development flow for embedded FPUs,"

2016 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), Storrs, CT, 2016, pp. 107-

110.
[31] F. Corno, E. Sanchez, and G. Squillero, "Evolving assembly programs:

how games help microprocessor validation," in IEEE Transactions on

Evolutionary Computation, vol. 9, no. 6, pp. 695-706, Dec. 2005.
[32] P. Beranrdi, R. Cantoro, A. Floridia, D. Piumatti, C. Pogonea, A.

Ruospo, E. Sanchez, S. De Luca, A. Sansonetti, “Non-Intrusive Self-Test
Library for Automotive Critical Applications: Constraints and

Solutions,” 2019 IEEE Design, Automation and Test in Europe (DATE),

Florence, Italy, 25-29 March 2019
[33] “Power PC Embedded Application Binary Interface (EABI): 32-Bit

Implementation,”
https://www.nxp.com/docs/en/application-note/PPCEABI.pdf

[34] A. Floridia, E. Sanchez and M. Sonza Reorda, "Fault Grading

Techniques of Software Test Libraries for Safety-Critical Applications,"
in IEEE Access, vol. 7, pp. 63578-63587, 2019.

[35] P. Bernardi, M. Grosso, E. Sanchez and O. Ballan, "Fault grading of
software-based self-test procedures for dependable automotive

applications," 2011 Design, Automation & Test in Europe, Grenoble,
2011, pp. 1-2.

[36] P. Bernardi, D. Piumatti and E. Sanchez, "Facilitating Fault-Simulation

Comprehension through a Fault-Lists Analysis Tool," 2019 IEEE 10th
Latin American Symposium on Circuits & Systems (LASCAS), Armenia,

Colombia, 2019, pp. 77-80.
[37] A. Floridia and E. Sanchez, “Hybrid on-line self-test strategy for

dualcore lockstep processors,” in 2018 IEEE International Symposium

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Oct 2018, pp. 1–6.

[38] P. Bernardi, L. M. Ciganda, E. Sanchez, and M. Sonza Reorda, “Mihst:
A hardware technique for embedded microprocessor functional on-line

self-test,” IEEE Transactions on Computers, vol. 63, no. 11, pp. 2760–

2771, Nov 2014.
[39] P. Bernardi, R. Cantoro, L. Gianotto, M. Restifo, E. Sanchez, F. Venini,

and D. Appello, “A dma and cache-based stress schema for burn-in of
automotive microcontroller,” in 2017 18th IEEE Latin American Test

Symposium (LATS), March 2017, pp. 1–6.

[40] T. F. Hsieh, J. F. Li, K. T. Wu, J. S. Lai, C. Y. Lo, D. M. Kwai, and Y.
F. Chou, “Software-hardware-cooperated built-in self-test scheme for

channel-based drams,” in 2017 International Test Conference in Asia
(ITC-Asia), Sept 2017, pp. 107–111.

[41] A. Floridia, G. Mongano, D. Piumatti, E. Sanchez, "Hybrid on-line self-
test architecture for computational units on embedded processor cores,"

in 2019 International Symposium on Design and Diagnostics of

Electronic Circuits and Systems (DDECS), April 2019
[42] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis and D.

Gizopoulos, "Hybrid-SBST Methodology for Efficient Testing of
Processor Cores," in IEEE Design & Test of Computers, vol. 25, no. 1,

pp. 64-75, Jan.-Feb. 2008, doi: 10.1109/MDT.2008.15.

[43] “Specification of CommunicationAUTOSAR CPRelease 4.3.1,”
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_SWS_COM.pdf

[44] “Embedded systems,” Carlo Brandolese, William Fornaciari, Pearson
Prentice Hall, 2007, ISBN 9788871923420

[45] A. Salem, "Formal verification of digital circuits," 4th IEEE
International Workshop on System-on-Chip for Real-Time Applications,

Banff, Alta., Canada, 2004, pp. 15-15.

[46] “Specification of I/O Hardware Abstraction AUTOSAR CP Release
4.3.0,”

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
3/AUTOSAR_SWS_IOHardwareAbstraction.pdf

[47] “STMicroelectronics Automotive MCU Technical Day,” 2017,

https://www.stmicroelectronics.com.cn/content/ccc/resource/corporate/
company/divisional_presentation/group0/25/a7/3b/ad/c4/dd/49/7b/13_

AUTOSAR_Solution_Introduction_ST_MCU_KPIT/files/13_AUTOS
AR_Solution_Introduction_ST_MCU_KPIT.pdf/_jcr_content/translatio

ns/en.13_AUTOSAR_Solution_Introduction_ST_MCU_KPIT.pdf

[48] “SPC5 MCAL overview,” ZHANG Livia, STMicroelectronics, 2017,
https://www.st.com/content/ccc/resource/corporate/company/divisional

_presentation/group0/e7/97/fc/c6/d6/68/46/ce/8_SPC5_MCAL_overvie
w_Zhang_Livia/files/8_SPC5_MCAL_overview_Zhang_Livia.pdf/_jcr

_content/translations/en.8_SPC5_MCAL_overview_Zhang_Livia.pdf
[49] “Intel Unveils Sunny Cove, Gen11 Graphics, Xe Discrete GPU, 3D

Stacking,” Paul Alcorn December 12, 2018. Web article available on

https://www.tomshardware.com/reviews/intel-sunny-cove-gen11-xe-
gpu-foveros,5932-4.html

[50] Intel public financial reports information available on
https://www.intc.com/investor-relations/financials-and-filings/earnings-

results/default.aspx

[51] “SPC5 32-bit microcontroller Series featuring Power Architecture,”
January 2016, document available on

https://www.st.com/content/ccc/resource/sales_and_marketing/presenta
tion/product_presentation/81/61/89/8b/77/1b/42/5f/SPC5_Family_Over

view.pdf/files/SPC5_Family_Overview.pdf/jcr:content/translations/en.

SPC5_Family_Overview.pdf
[52] RM0391 STMicroelectronics Reference manual of

SPC58xEx/SPC58xGx 32-bit Power Architecture microcontroller for
automotive ASILD applications, STMicroelectronics, August 2018,

available on

https://www.st.com/content/ccc/resource/technical/document/reference
_manual/b9/33/31/8b/31/d0/4f/f6/DM00148989.pdf/files/DM00148989

.pdf/jcr:content/translations/en.DM00148989.pdf
[53] UM0438 User manual Variable-Length Encoding (VLE) extension

programming interface manual, STMicroelectronics, July 2007,
available on

https://www.st.com/content/ccc/resource/technical/document/user_man

ual/ac/f2/bf/01/73/d8/48/e0/CD00161395.pdf/files/CD00161395.pdf/jcr
:content/translations/en.CD00161395.pdf

[54] RM0004 Programmer’s reference manual for Book E processors,
STMicroelectronics, May 2015, available on

https://www.st.com/content/ccc/resource/technical/document/reference

_manual/8b/6f/4e/d6/72/82/45/78/CD00164807.pdf/files/CD00164807.
pdf/jcr:content/translations/en.CD00164807.pdf

[55] Lightweight Signal Processing APU (LSP APU) Reference Manual,
Document Number: LSPAPURM Rev. 3, 12/2012, available on

http://cache.freescale.com/files/microcontrollers/doc/ref_manual/LSPA

PURM.pdf
[56] "SPC582B60x, SPC582B54x, SPC582B50x 32-bit Power Architecture

microcontroller for automotive ASIL-B applications," Datasheet,
available on https://www.st.com/en/automotive-

microcontrollers/spc582b60e1.html#resource

[57] P. Bernardi et al., "Software-based self-test techniques of computational
modules in dual issue embedded processors," 2015 20th IEEE European

Test Symposium (ETS), Cluj-Napoca, 2015, pp. 1-2.
[58] Kyung-JungLee, Young-HunKi, and Hyun-SikAhn, “Automotive ECU

Design with Functional Safety for Electro-Mechanical Actuator
Systems,” World Academy of Science, Engineering and

TechnologyInternational Journal of Computer and Systems Engineering

Vol:7, No:7, 2013, available on
https://waset.org/publications/16464/automotive-ecu-design-with-

functional-safety-for-electro-mechanical-actuator-systems
[59] Burim ALIU, “Design and Implementation of a Self-test Concept for an

Industrial Multi-core Microcontroller,” Institut f ür Technische

Informatik Technische Universit ät Graz, May 2012, available on:

 23

https://diglib.tugraz.at/download.php?id=576a76434c02d&location=br
owse

[60] A. Apostolakis, M. Psarakis, D. Gizopoulos and A. Paschalis, "A

Functional Self-Test Approach for Peripheral Cores in Processor-Based
SoCs," 13th IEEE International On-Line Testing Symposium (IOLTS

2007), Crete, 2007, pp. 271-276
[61] M. Grosso, W. J. H. Perez, D. Ravotto, E. Sanchez, M. S. Reorda and J.

V. Medina, "A software-based self-test methodology for system

peripherals," 2010 15th IEEE European Test Symposium, Praha, 2010,
pp. 195-200

[62] A. Floridia, D. Piumatti, E. Sanchez, S. De Luca, and A. Sansonetti,
"Parallel software-based self-test suite for multi-core system-on-chip:

Migration from single-core to multi-core automotive microcontrollers,"

2018 13th International Conference on Design & Technology of
Integrated Systems In Nanoscale Era (DTIS), Taormina, 2018, pp. 1-6.

[63] A. Floridia et al., "Deterministic Cache-based Execution of On-line Self-
Test Routines in Multi-core Automotive System-on-Chips," 2020

Design, Automation & Test in Europe Conference & Exhibition

(DATE), Grenoble, France, 2020, pp. 1235-1240
[64] SPC58xNx 32-bit Power Architecture® microcontroller for automotive

ASILD applications (Reference manual RM0421, DocID028528),
STMicroelectronics, available on https://www.st.com

[65] Z. Jianwu, S. Yibing and Li Yanjun, "Aliasing Probability for Single
Input Linear Feedback Signature Registers," 2007 8th International

Conference on Electronic Measurement and Instruments, Xi'an, 2007,

pp. 3-995-3-999
[66] I. Voyiatzis, "On reducing aliasing in accumulator-based compaction,"

2008 3rd International Conference on Design and Technology of
Integrated Systems in Nanoscale Era, Tozeur, 2008, pp. 1-12

[67] I. Voyiatzis, "Aliasing Reduction in Accumulator-Based Response

Verification," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 33, no. 11, pp. 1746-1750, Nov.

2014
[68] S. R. Aruna and K. S. Neelukumari, "MISR architectures to remove

unknown values in output response compaction," International

Conference on Information Communication and Embedded Systems
(ICICES2014), Chennai, 2014, pp. 1-4

