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Abstract—In this paper we consider a side-channel attack on a
chaos-based Random Number Generator (RNG) based on power
consumption analysis. The aim of this attack is to verify if it
is possible to retrieve information regarding the internal state
of the chaotic system used to generate the random bits. In fact,
one of the most common arguments against this kind of RNGs
is that, due to the deterministic nature of the chaotic circuit on
which they rely, the system cannot be truly unpredictable. Here
we analyze the power consumption profile of a chaos-based RNG
prototype we designed in 0.35 µm CMOS technology, showing
that for the proposed circuit the internal state (and therefore
the future evolution) of the system cannot be determined with
a side-channel attack based on a power analysis. This property
makes the proposed RNG perfectly suitable for high-security
cryptographic applications.

I. INTRODUCTION

By definition, a Random Number Generator (RNG) is
a circuit capable of producing perfectly unpredictable bits,
which means that it is impossible to predict its outcome with
an accuracy greater than the one given by pure luck. These
circuits represent a fundamental primitive in many engineering
tasks. For instance they are used in all cryptographic applica-
tions where they are of paramount importance in the synthesis
of confidential keys. Indeed, it is commonly accepted that, in
any cryptographic system, a perfect randomly generated key
leads to the highest system security [1].

Testing unpredictability according to its definition is a hard
task, even from a theoretical point of view. In common prac-
tice, one can consider a generated (and supposed random) bit
sequence in order to validate the quality of a RNG, and check
it with a statistical test. Roughly speaking, this test analyzes
the bit sequence looking for regularities or recurrent patterns.
The outcome is the indication of whether the sequence can
be considered random, as well as the margin of error of this
decision [2].

In this paper we consider a prototype of a RNG designed
in 0.35µm technology employing a chaotic map [3], [4]
as source of randomness. This prototype has been already
presented by authors in [5], where it has been tested using the
common statistical tests approach. Here we test the prototype
from another point of view: we consider, along with the
generated bitstream, the power consumption of the prototype,
and verify if this additional information can be used to predict
the future evolution of the RNG. This method is similar to the
power analysis technique, introduced by Kocher in 1999 [6],
to perform side channel attacks on cryptographic devices.

Note that this analysis represents an important issue for
any chaos-based random generator. A chaotic system is by
definition a deterministic, non-linear system with a long-term
unpredictability, i.e. its evolution cannot be predicted after a
short time interval, whose length decreases as the error in
the knowledge of the initial system state increases. Despite
this property, a common argument against this architecture is
the intrinsic deterministic nature of the system. Actually, if an
external observer could gather information on the internal state
of the chaotic map (which has to be, of course, inaccessible), a
prediction of the short-term evolution of the system is possible.
Even if it is possible to theoretically prove that, with the
architecture used in the prototype, the generated bitstream does
not contain information on the actual state of the chaotic map
[7], the possibility of retrieving this information from a side-
channel attack has not yet been analyzed.

We show here that a power analysis of the prototype is not
useful to obtain information on the internal state of the system,
since the current profile of the designed chaotic system is
independent of it. This effectively ensures the unpredictability
of the system even under a side-channel attack based on
power analysis, and it is perfectly suitable for chryptographic
applications.

The paper is organized as follows. In section II we describe
the architecture of the RNG prototype in order to understand
what is the expected current profile. In section III we analyze
the RNG power consumption, showing that no relation can be
found between the current profile and the internal state of the
chaotic map, thus ensuring the effective unpredictability of the
generated bitstream. Finally, we draw the conclusions.

II. ARCHITECTURE OF THE DESIGNED RNG

The RNG analyzed in this paper has been designed in a
3.3V 0.35µm CMOS technology. A detail microphotograph
of it can be seen in Figure 1. The core of this RNG is a
chaotic map, formally a 1D discrete-time dynamical system
whose state evolution is described by:

xk = M (xk−1) (1)

with M : I �→ I while the random output bit Dk is given
through the quantization function Q : I �→ {0, 1} from the
state of the map:

Dk = Q (xk−1)
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Fig. 1. Microphotograph of the 0.35µm CMOS prototype (detail).

Fig. 2. Basic architecture of the chaos-based RNG prototype. The map state
xk is implemented with the two differential analog voltages x+

k
and x−

k
,

while the random bit is the digital signal Dk .

In the prototype the state xk of the chaotic map is imple-
mented as a differential voltage ranging in I = [−1, 1]V and
the two functions M and Q are respectively:

M(x) =

{
2x+ 2 if x ≤ − 1

2

2x if − 1
2
< x ≤ 1

2

2x− 2 if x > 1
2

Q(x) =
{

1 if − 1
2
< x ≤ 1

2
0 elsewhere

Despite the deterministic evolution of the analog state xk,
that is regulated by (1), the succession of the quantized state
Dk can be theoretically proved to be effectively a random,
unpredictable bitstream. The proof can be found in [7]; here
it is enough to recall that the only assumption required is that
the initial condition of the system is unknown and randomly
drawn according to a continuous probability density function
(that is verified assuming the initial condition is affected by
noise).

A block diagram of the prototype is depicted in Figure
2. The core of the circuit is the chaotic map, implementing
both M and Q functions, and the unity delay blocks required
to achieve the dynamic behaviour as in (1). It is designed
as a fully-differential switched capacitors circuit, a detailed
description of which can be found in [5]. Due to testing
purposes both the random generated bit Dk and the differential
analog chaotic map state xk are made available to output
pins. The buffers used to drive these output pins have to be
taken into account when analyzing the power supply current
of the circuit, since due to limitation in the standard I/O cells

Fig. 3. Prototype measurements. From top to bottom: differential analog
internal state of the chaotic map (channel A); generated random bits (channel
2); power supply current (channel 1). The probe used for the the current
sensing has a sensitivity of 5mV/mA.

Fig. 4. Typical current profile during a transients.

available for this technology, they share the power supply line
with the core circuit.

An example of waveforms generated by the prototype can
be seen in Figure 3, showing at the same time the state of the
chaotic map, the generated random bit and the current profile
on the power supply line. Note that the state of the chaotic
map is shown along with the two thresholds of the Q function:
when the state is inbetween the threshold, the random bit at
the next time step is high, while when it is outside, the next
random bit is low. Note also that, since the probe used for
sensing the power supply current requires an AC coupling,
we are observing only the dynamic power, i.e. the variations
with respect to the mean value of the current. Peaks in the
current profile are present in correspondence to each clock
edge (not shown in the figure); highest peaks can be found
when the random output bit has a transition from low to high.

To understand what is the expected current profile, let us
consider the diagram of Figure 4. At the rising edge of the
clock the analog state of the chaotic map switches with a short
transient from the value xk to the value xk+1 = M (xk),
and the output random bit from Dk = Q (xk−1) to Dk+1 =
Q (xk). During these transients, we can observe a peak in the
power supply current due to the contribution of these three
subcircuits: a) the chaotic map; b) the analog output buffers;
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Fig. 5. Example or the four kinds of dynamic current profile, separated
according to the random output bit transition.

and c) the output digital buffer. Generally, if the chaotic map
gives the highest contribution to static power supply (it is
designed only with class-A amplifiers), its contribution to the
dynamic power is not particularly high. The same behavior
can be observed for the analog buffers, while the digital
buffer requires only dynamical power. Furthermore, due to
the large capacity of the output pins, and to the single-ended
configuration, this power is expected to be quite high only
when observing a low-to-high transition. This is exactly what
we can observe in Figure 3.

III. ANALYSIS OF THE POWER SUPPLY CURRENT

As observed in Section II, due to I/O cells constraints we
have a dominant contribution to the dynamic current from the
output random bit buffer (i.e. the digital buffer). Consequently,
we can expect four kinds of current profiles, according to the
random bit transition, which have been shown in Figure 5. Two
major peaks can be observed, the first one corresponding to
the rising edge of the clock, and the second one to the falling
edge. Additionally, if we compare the two profiles associated
with the low-to-low and high-to-high transition (i.e. the cases
where there is no transition in the output random bit), we can
see they are very similar.

We can verify from prototype measurements that the dy-
namic current profile is not directly related to the analog
state of the chaotic map, but only to the generated random
bit. More precisely, and using the same symbols of Figure 4,
i.e. indicating respectively with xk and xk+1 (Dk and Dk+1)
the chaotic map state (random output bit) before and after
the transient, the current profile during the transient does not
depends directly on xk and xk+1 but only on Dk and Dk+1.
To prove this, we have to isolate the contribution given by the
Dk → Dk+1 transition considering separately the four cases
corresponding to the four transitions considered in Figure 5.
For all these cases, we have considered a scatter plot where
the internal state of the chaotic map measured from a long
acquisition is compared with the observed current profile.
Actually, to this purpose we need a numeric indicator of the
current profile, which has been chosen as the charge required
by the transient in a period T [8]:

Δqk =

∫ T

0

iD(t− kT )dt

where iD is the measured dynamic current, so Δqk is actually
a differential charge.

In order to check if any relation exists with respect to the
the state of the map before the transition (xk) and after the
transition (xk+1), we have drawn in each figure two scatter
plots, one comparing the current profile indicator Δqk with
the state xk and one with xk+1. These scatter plots can be
seen in Figure 6. Due to the limited space available, we have
included only the Figures corresponding to the cases of a high-
to-low transition (Figure 6-a) and an unchanged high bit value
(the high-to-high case, Figure 6-b). Note that in the first case
we know that Dk+1 = Q(xk) = 0, so xk has to be in the
range −1 < xk < − 1

2 or 1
2 < xk < 1; in the second case

it is Dk+1 = Q(xk) = 1, i.e. xk is compelled in the range
− 1

2 < xk < 1
2 . Conversely, in both cases, xk+1 can span in

the whole range [−1, 1].
In all plots, the charge Δqk and the map states xk and

xk+1 are apparently randomly distributed in their given range.
This means that no relation between the current profile and
the state of the chaotic map exists, and from the observation
of the current profile it is not possible to retrieve any useful
information on xk or on xk+1.

As an additional test, it may be interesting checking if a
relation exists between the observed current profile and the
successive random bit Dk+2. This test effectively plays the
role of the prediction of the following bit given the random
bitstream and the current profile.

To get an intuitive idea, let us refer to Figure 7, showing
the two distributions of the measured charge Δqk, which has
been separated in two groups according to the value of Dk+2.
Roughly speaking, given an observed transition Dk → Dk+1

(more precisely, high-to-low transition for the case of Figure
7-a, and a constant high value for the case of Figure 7-b,
exactly as in Figure 6) we want to know if the group of Δqk
giving rise to Dk+2 = 0 is distributed as the group of Δqk
giving rise to Dk+2 = 1.

Obviously, if these two distributions were defined in two
different (or slightly overlapping) regions it would be possible
to determine with a high probability if the successive random
bit Dk+2 would be high or low from the measure of Δqk. On
the contrary, as in the case of Figure 7, from two distributions
almost superimposing it would not be possible to predict if
Dk+2 would be high or low with an accuracy much greater
then the one given by pure chance. This means, by definition,
that Dk+2 is unpredictable.

To formally obtain a numerical measure of the similarity
of the two obtained distributions, and therefore of the unpre-
dictability of Dk+2, we can use the concept of entropy and
mutual information.

While the entropy of a random variable X is defined as the
average information provided by each of its realization, the
average mutual information between two random variables X
and Y is defined as the average information provided about
a realization of X by the occurrence of the realization of
Y [9]. Mathematically, given a discrete random variable X
with possible values x1, x2, . . . and associated probabilities
PX (x1) , PX (x2) , . . ., its entropy H(X), measured in bit, is
defined as

H (X) = −
∑

k

PX (xk) log2 PX (xk)
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Fig. 6. Scatter plot of the charge Δqk required during the transient compared with the state of the chaotic map before (xk) and after (xk+1) the transient,
in the case of a high-to-low random bit transition (case a) and of an unchanged high random bit (case b, referred to as high-to-high).

while the average mutual information I(X ;Y ) between the
two discrete random variables X and Y is

I (X ;Y ) =
∑

k

∑

j

PXY (xk, yj) log2
PXY (xk, yj)

PX (xk)PY (yj)

where PY is the probability distribution of Y , and PXY is the
joint probability distribution of X and Y .

If we consider Dk+2 as the random variable X , and Δqk
as Y (actually, since Δqk is a continuous random variable,
we need to discretize it in a limited number of bins in order
to apply the above definition, as already done in Figure 7),
I(X ;Y ) is the quantity of average information about Dk+2

we can get from the observation of Δqk, i.e. the indicator
of how well Δqk can be used to predict Dk+2. Note that,
according to this notation, the plots of Figure 7 represent the
two conditional probability densities PY |X , with X = 0 and
X = 1.

Assuming X and Y are unrelated, I(X ;Y ) = 0; if instead
X and Y are completely dependent, I(X ;Y ) = H(X) =
1 bit. In the two cases of the example of Figure 7 the mutual
information is measured in I = 0.03 bits for the high-to-low
transition case, and I = 0.021 bits for the high constant value
case. Very similar values are computed for the cases not shown
here. These very low values clearly show the lack of mutual
information, i.e. the impossibility to retrieve information on
Dk+2 from the observation of Δqk.

IV. CONCLUSION

In this paper we have considered a power analysis on a
prototype of a chaos-based RNG designed in 0.35µm CMOS
technology. Despite the fact that the RNG is based on a
chaotic, thus deterministic, system, where an observer gaining
access to information on the internal state of the system could
predict the short-term evolution of the RNG, we show in this
paper that it is not possible to get information on the internal
state either from the observation of the generated bitstrem, or
from a side-channel attack based on power analysis. The power
supply current trace is shown to depend only on the random
digital bit, principally for the presence of the buffer driving the
chip pad, while a dependency between the current trace and
the internal state of the chaotic map cannot be observed. This
makes the proposed RNG a high-security generator, perfectly
suitable for any cryptographic application.
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