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Uniformly Stable Parameterized Macromodeling
through Positive Definite Basis Funtions

Alessandro Zanco, Student Member, IEEE, Stefano Grivet-Talocia, Fellow, IEEE, Tommaso Bradde, Student
Member, IEEE, Marco De Stefano, Student Member, IEEE

Abstract—Reduced-order models are widely used to reduce
the computational cost required by the numerical assessment
of electrical performance during the design cycle of electronic
circuits and systems. Although standard macromodeling algo-
rithms can be considered to be well consolidated, the generation
of macromodels that embed in a closed form some dependence
on the design variables still presents considerable margins for
improvement. One of these aspects is enforcement of uniform
stability throughout the parameter space of interest. This paper
proposes a novel parameterized macromodeling strategy, which
enforces by construction that all macromodel poles are stable
for any combination of possibly several independent design
variables. The key enabling factor is adoption of positive definite
multivariate basis functions for the representation of model
variations induced by the parameters. This representation leads
to robust model generation from tabulated frequency responses,
at a computational cost that is dramatically reduced with respect
to competing approaches. This result arises from a number
of algebraic constraints for stability enforcement that depends
on the model complexity (number of basis functions) and not
on the model behavior as a function of the parameters. As a
byproduct, the proposed strategy lends itself to much improved
scaling with the dimension of parameter space, allowing to
circumvent the curse of dimensionality that may occur when
the number of independent parameters grows beyond few units.
To this end, we exploit representations based on positive definite
radial basis functions. The benefits of the proposed approach
are demonstrated through an extensive experimental campaign
applied to both passive and active devices and components,
comparing the performance of different model parameterizations
in terms of accuracy, time requirements and model compactness.

I. INTRODUCTION

The focus of this paper is on generation of Linear and Time-
Invariant (LTI) behavioral models of complex devices, circuits,
structures or systems, whose frequency response depends on
several independent parameters. We term these as param-
eterized macromodels. This paper builds on some existing
and well-documented model structure, and proposes a few
extensions that: i) enable generation of parameterized models
using more robust algorithms in significantly shorter time; ii)
guarantees uniform stability by construction (all model poles
are stable for any parameter combination); and iii) enables
scalability to significantly higher number of independent pa-
rameters with respect to state of the art algorithms.

There are several application scenarios that may benefit
from the proposed methodology. All these scenarios share
the common feature of one or more independent parameters
that we want to embed in the model equations. These can
be geometry, material, process, or even ambient parameters

that induce some variation on the dynamic responses of the
structure under investigation. Some of these parameters may
be design variables to be optimized for performance, while
some other parameters may be uncertain, so that compact
behavioral models may help in sensitivity studies, or even
to speed up Monte Carlo simulations [1]. We propose a
general macromodeling strategy that is applicable to all these
scenarios.

Concerning target structures, a first natural application for
which proposed methodology is adequate involves electrical
interconnects at any level of packaging, parameterized by
geometrical and material variables. These are intrinsically
passive LTI structures, for which behavioral macromodels are
required in order to enable transient system-level simulations
accounting for all parasitics and/or electromagnetic phenom-
ena that are best described in the frequency-domain [2]–[6].
The same consideration applies also to integrated or discrete
components such as inductors or capacitors, whose response
may depend not only on geometry but also on temperature and
even on biasing voltage/current, the latter to be considered
as parameters. A further generalization in scope leads to
consider active circuit blocks intended to operate under small-
signal conditions in the neighborhood of some well-defined
operating point. We include in this class Low Noise Amplifiers
(LNAs), Low Drop-Out (LDO) voltage regulators, and similar
structures [7]. In summary, the proposed parameterized macro-
modeling framework is applicable to any passive or active
physical structure that can be represented as an input-output
transfer function, which in addition to frequency depends on
additional parameters.

The subject of macromodeling, including extension to the
parameterized case is huge and growing. This subject is not
only of interest for electrical, electronic, or electromagnetic
communities, but also to wider multi- and cross-disciplinary
fields. We refer the Reader to [6], [8] for a review. In this
work, we focus on data-driven approaches, where macro-
models are derived from tabulated frequency responses [9]–
[12] (a straightforward extension would process time-domain
responses, see e.g. [13]). This is complementary to those
Model Order Reduction (MOR) approaches that construct
macromodels through compression, projection or truncation of
some pre-existing large-scale model [14]–[21]. The latter sce-
nario is typical when one builds a detailed circuit model based
on first-principle formulation and/or extraction, and then wants
to reduce the complexity of this model to a size/order that is
manageable in later system-level simulations. Recent advances
in projection-based reduction of possibly active blocks with
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guaranteed stability are documented in [22], [23], although
extension to the general high-dimensional parameterized case
is still an open problem.

This work builds on a number of pre-existing results. First,
we exploit the so-called rational barycentric model struc-
ture, originally adopted for non-parameterized models [24]
(see also [25]–[27]) and later extended to the parameterized
case [28], [29]. Second we take advantage of passivity char-
acterization results originated several decades ago from [30],
then formalized in [31] and extended in [32]–[34] to general
univariate models and [35], [36] to parameterized models.
Finally, we exploit a set of known results on sufficient con-
ditions for uniform model stability, first introduced in [37]
and extended in [38]. Additional considerations on background
material are provided in Sections II and III, where relevant
literature is reviewed in the context of proposed framework.

The main extensions proposed in this work are based on
1) adopting a parameterized rational barycentric model

structure in conjunction with positive semidefinite mul-
tivariate basis functions to represent the variations in-
duced by the parameters;

2) casting constraints related to uniform stability in terms
of model coefficients as opposed to model responses.
This point is the key enabling factor for dramatic com-
plexity reduction and improved scalability;

3) adopting mesh-free unstructured basis functions, in par-
ticular Radial Basis Functions (RBF) in the parameter
space, in order to ensure better scalability to a large
number of parameters.

Combining these three independent options allow us to per-
form a thorough experimental campaign, aimed at showing
how the parameterization strategy may influence model com-
pactness and generation runtime. Rather than proposing a par-
ticular “universal” solution, we compare different alternatives
by providing guidelines for choosing a particular strategy and
balancing model accuracy, runtime in model construction, and
scalability to high dimension. In particular, we show that using
Bernstein polynomials instead of the more standard Chebychev
polynomials enables a dramatic reduction in model generation
time when the number of parameters is limited, still retaining
polynomial accuracy. We also demonstrate scalability to higher
dimensions thanks to positive definite RBFs (extending the
Gaussian RBFs used originally in [39]), which appear to be
the only candidate for achieving uniform stability in high-
dimensional parameter spaces.

A large set of numerical results, documented for more than
ten different structures parameterized by up to ten independent
variables (plus frequency), confirms that proposed framework
has the potential to break the limits of current strategies, and
to become the method of choice for parameterized macromod-
eling.

II. BACKGROUND AND NOTATION

In the following we will denote scalars with lowercase italic
fonts x, vectors with lowercase bold fonts x, and matrices
with uppercase bold fonts X. The transpose and the hermitian
transpose of a given matrix X will be denoted as XT and

XH, with the corresponding eigenvalue and singular value
spectra λ(X) and σ(X), respectively. The operators <{}
and ={} extract the real and the imaginary parts of their
complex argument, with ∗ denoting complex conjugation.
Unless otherwise noted, the upper limit for a generic index
n is denoted with an overbar as n̄.

We start by considering a generic P -port electric, electronic,
or electromagnetic structure, whose behavior depends on a
number ρ of independent parameters, collected in vector
ϑ = [ϑ1, ϑ2, ..., ϑρ]T. Throughout this work, we will assume
that these parameters can attain values within a ρ-dimensional
hyper-rectangle Θ ⊆ Rρ defined as

Θ = [ϑ1
min, ϑ

1
max]× [ϑ2

min, ϑ
2
max]× ...× [ϑρmin, ϑ

ρ
max] (1)

and denoted in the following as the parameter space.
It is assumed that the broadband dynamic behavior of the

structure is known by means of physical or virtual measure-
ments (i.e., numeric simulations) of its frequency response,
performed at discrete frequency-parameter values (jωk;ϑm)
in a given electrical representation (e.g. scattering, impedance,
admittance),

H̆k,m = H̆(jωk;ϑm) k = 1, ..., k̄, m = 1, .., m̄. (2)

If the structure is linear and passive, then H̆(jω;ϑ) represents
its transfer matrix in the adopted representation. In case of
nonlinear and possibly active circuit blocks, we assume a well-
defined operating point, and H̆(jω;ϑ) is the corresponding
small-signal response. Thus, the proposed framework is appli-
cable only to linear or linearized models. The frequency band
of interest Ω = [0, ωk̄] is induced by the highest available
frequency sample.

We aim at obtaining a reduced order model H(s;ϑ) with a
rational dependence on the complex frequency s, so that it can
be synthesized as a set of parameterized Ordinary Differential
Equations (ODE) in state-space form, or alternatively as a
parameterized behavioral SPICE netlist, see [37] for details.
Due to this requirement, we assume the following model
structure

H(s;ϑ) =
N(s;ϑ)

D(s;ϑ)
=

n̄∑
n=0

Rn(ϑ)

s− pn(ϑ)
= (3)

=

∑n̄
n=0

∑¯̀

`=1 Rn,` ξ`(ϑ)ϕn(s)∑n̄
n=0

∑¯̀

`=1 rn,` ξ`(ϑ)ϕn(s)
.

The rational form of (3) is induced by the partial fraction basis
ϕ0(s) = 1, ϕn(s) = (s − qn)−1 where qn are given stable
“basis” poles, as in the Vector Fitting (VF) algorithm [40]
(these basis poles are either real or appear in conjugate pairs:
without loss of generality we assume here only real poles to
simplify notation). The basis poles qn are here predetermined
by a non-parameterized pole relocation based on VF, applied
to the data H̆( · ;ϑcenter) where ϑcenter is the closest available
parameter instance to the centroid of Θ.

The model structure (3) is based on a particular choice
of multivariate basis functions ξ`(ϑ) : Θ → R, which are
responsible for representing the variations induced by the
design variables. In fact, this paper documents how the choice
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of these basis functions may impact model robustness, com-
plexity, scalability, efficiency in its construction, and especially
uniform stability. The matrices Rn,` ∈ RP×P and scalars
rn,` ∈ R are unknown coefficients. These are computed by
enforcing the fitting condition

H(jωk;ϑm) ≈ H̆k,m ∀k, ∀m ∈Mt, (4)

so that the model responses approximate the data (2) over the
entire parameter space and throughout the frequency band of
interest with a controlled error. The index set Mt collects the
first m̄t samples, denoted as training samples. These samples
must be spread as uniformly as possible in the parameter
space, so that data variability is captured and exploited in
model construction. The remaining m̄v = m̄ − m̄t samples
are used for model self-validation.

Condition (4) is in fact a nonlinear fitting problem, which
is here solved through the well-established linear relaxation
process known as Parameterized Sanathanan-Koerner (PSK)
iteration [28], [29], [41]. We recall for convenience that the
PSK iteration solves a sequence of weighted least squares
problems

min

k̄∑
k=1

∑
m∈Mt

∥∥∥∥∥Nµ(jωk;ϑm)−Dµ(jωk;ϑm)H̆k,m

Dµ−1(jωk;ϑm)

∥∥∥∥∥
2

F

(5)

through iterations µ = 1, 2, . . . , until the coefficients and the
corresponding fitting error stabilize. This cost function can
be generalized from the standard Frobenius norm ‖·‖F to
more general application-specific choices, including relative
or frequency-weighted model-data error definitions [6], [42].

The number ¯̀of multivariate basis functions is crucial for a
successful model fitting. On one hand, ¯̀ must be large enough
so that the data variability is captured by the adopted basis
set. On the other hand, ¯̀ should not be too large to avoid
overfitting. We avoid such condition by ensuring ¯̀� m̄t, so
that the least squares system originating from (5) is sufficiently
overdetermined.

Some advanced adaptive algorithms exist (see [43] and
references therein) for the automated and combined deter-
mination of both model order ¯̀ and training samples m̄t.
Such methods are only adequate for ρ ≤ 3 due to curse of
dimensionality and are therefore not used here. The actual
order is here determined heuristically, by iteratively increasing
the number of basis functions until the model accuracy is
satisfactory. Should the number of training samples prove
insufficient due to overfitting constraints, then m̄t is increased
iteratively by computing new samples

Before proceeding, we remark that our implementation con-
siders a slightly more general model structure than (3), with
different orders ¯̀

N and ¯̀
D for numerator and denominator,

respectively.

III. ENFORCING UNIFORM STABILITY

A. Uniform Stability

Stability is an essential quality that must be preserved when-
ever a macromodel is exploited in time domain simulations,
although several methods have been proposed without consid-
ering stability, see e.g. the parameterized Loewner frameworks

in [11], [12]. In our parameterized setting, this requirement
translates into the enforcement of stability for any possible
parameter values in the parameter space

<{pn(ϑ)} < 0 ∀ϑ ∈ Θ . (6)

This property is here denoted as uniform stability.
In our proposed framework, the poles pn(ϑ) are not directly

available as decision variables during model construction,
since they are only implicitly parameterized by the adopted
model structure (3). Therefore, imposing uniform stability
implies the definition and enforcement of dedicated constraints
during the solution of (4) through (5). One of the main results
of this work is a strategy to reduce the number and the
complexity of such constraints, thanks to a careful choice of
the multivariate basis functions ξ`(ϑ).

B. Uniform Stability via Positive Interpolation

Over the last few years, a number of simplified approaches
have been presented to enforce uniform stability of param-
eterized models by construction, without any requirement
of numerical stability enforcement through constraints. For
instance, the methods proposed in [?], [44]–[46] avoid the
parameterization of the model poles through a model structure

H(s;ϑ) =
∑
`

α`(ϑ)H`(s) (7)

where H`(s) are non-parameterized models constructed at
each parameter data point ϑ`, with α`(ϑ) being parameter-
dependent interpolating kernels. If the individual submodels
H`(s) are stable (e.g., as obtained via VF pole relocation),
then also the interpolated model H(s;ϑ) is uniformly stable.
This approach is extremely robust. However, the model poles
are obtained as the union of all submodel poles, therefore the
model complexity is much higher than required. In addition,
the model poles are non-parameterized, as physical consid-
erations would require, but only their residues (weights) are
parameter-dependent.

The above limitations motivated various successive im-
provements. In [47], parameter-dependent frequency transfor-
mations were adopted to allow for smooth pole variations
in the parameter space. A drawback of this approach is
that pole trajectories may undergo bifurcations and are non-
smooth in general, thereby making smoothness assumptions
inadequate [48]. A further generalization based on state-space
interpolation [49] in particular coordinate systems solved this
problem while addressing also model redundancy. The latter
approach in fact leads to a model structure that is very similar
to (3) and practically coincides with (3) if the barycentric form
is adopted, as advised in [49].

C. Sufficient Conditions for Uniform Stability

Assuming model structure (3), the direct enforcement of
condition (6) is not straightforward. Although a-posteriori
purely algebraic uniform stability checks based on the feasi-
bility of a set of Lyapunov equations have been proposed [29]
for the particular case of PieceWise Linear (PWL) basis
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functions ξ`(ϑ), general a-priori conditions that are equivalent
to uniform stability of (3) are not available.

The above problems motivated the introduction of some
level of conservativism in the uniform stability enforcement.
It was shown in [37] that if the denominator D(s,ϑ) is a
(strictly) Positive Real (PR) function, which in our setting
reduces to condition

<{D(s,ϑ)} > γ <{s} > 0, ∀ϑ ∈ Θ (8)

for a given strictly positive constant γ > 0, then (6) holds, and
the model is uniformly stable. The numerical implementation
of (8) requires a careful selection of frequency-parameter
points (jω̂k, ϑ̂m) where (8) is discretized as

<


n̄∑
n=0

¯̀∑
`=1

rn,` ξ`(ϑ̂m)ϕn(jω̂k)

 > γ > 0 (9)

and enforced in combination with (5). The most straightfor-
ward approach is to select the points (jω̂k, ϑ̂m) where PR
constraints are enforced as a dense uniform grid in Ω × Θ.
This strategy is however problematic, since
• it does not guarantee not to miss localized regions where
D(s,ϑ) is not PR;

• it may lead to a very large number of constraints, whose
complexity blows up when the number of parameters ρ
increases beyond few units.

D. Uniform Stability via Adaptive Sampling

The above problems were addressed in [37], where an
adaptive sampling strategy in the parameter space was in-
troduced in order to limit the number of constraints (9).
Noting that the PR condition (8) is equivalent to requiring
that the denominator function D(s,ϑ) represents a passive
immittance submodel [50], [51], algebraic conditions based on
Hamiltonian eigenvalue perturbation were applied for checking
the passivity of D(s,ϑ) during model construction, and the
corresponding results were used to drive an adaptive sampling
based on structured mesh refinement in the parameter space,
in order to spot all regions in Θ where the real part D(s,ϑ)
is negative. Placing PR constraints in these regions leads to it-
erative optimization of model coefficients towards elimination
of such regions. An example is reported in Fig. 1, where the
automatically determined points in a 2D parameter space are
depicted with a red or green color to denote a locally unstable
or stable model. A more detailed description of the adaptive
sampling algorithm can be found in [36].

The above adaptive sampling strategy is feasible for up to
ρ = 3 parameters at most, since the computational cost for the
formulation of the constraints still scales exponentially with ρ.
This is mainly due to the fact that
• the location of these constraints depends on the model

(denominator) response while this is being computed
through iterations, and this response is defined over a
compact set Θ with dimension ρ, which needs to be
scanned for all regions where the real part of D(s,ϑ)
is negative;

Fig. 1. Adaptive sampling of a 2D parameter space at two successive PSK
iterations. Red and green dots denote, respectively, locally unstable and stable
parameter combinations. Left panel: residual local unstable parameter combi-
nations are present during iteration. Right panel: uniformly stable macromodel
obtained by adding uniform stability constraints at locally unstable parameter
points.

• the adaptive refinement is based on structured subgrid-
ding, with a number of points that inevitably scales
exponentially with ρ.

Therefore, this method is definitely not adequate for applica-
tions where the number of design parameters is medium or
large. This is the main problem we intend to overcome in this
work, as documented in Section IV.

IV. BEYOND SAMPLING TECHNIQUES

The key factor enabling to break the curse of dimensionality
implied by the above-described dense or adaptive sampling
techniques is to formulate PR constraints directly on the model
structure rather than on the response (of the denominator,
in our setting). In order to achieve this goal, we exploit
the degrees of freedom that we have in the selection of the
parameter-dependent basis functions ξ`(ϑ).

Up to now, we have not discussed in detail which basis
functions should be adopted to represent parameter variations.
Several previous publications were based on polynomial bases,
either monomials or orthogonal polynomials for improved
numerical conditioning, see e.g. [28], [29]. The most common
choice is multivariate Chebychev polynomials obtained as
cartesian products of univariate Chebychev polynomial bases,
one for each dimension of the parameter space [36], [37].
Defining ξ`(ϑ) as polynomials has the additional advantage
that the response of any lumped circuit is represented exactly
by a first-order (multi-affine) polynomial expansion of both
numerator and denominator as in (3), see [52], [53]. Therefore,
using higher-order polynomials seems to be a natural extension
to handle electromagnetic (distributed) structures or linearized
small-signal models of nonlinear active circuit blocks. The
standard multivariate Chebychev polynomials will be used in
this work as a benchmark representation, in order to illustrate
the improvements that can be enabled by using positive
definite basis functions.

Based on the preliminary results in [39], we assume in the
following that the basis functions ξ`(ϑ) are positive semi-
definite

ξ`(ϑ) ≥ 0, ∀`, ∀ϑ ∈ Θ. (10)
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With this additional property, the positive realness of D(s,ϑ)
can be shown to be implied by a set of discrete conditions
applied directly on the denominator coefficients rn,`. To
prove this statement, we first rewrite D(s,ϑ) by splitting the
contribution of the n̄r real poles qn with coefficients rn,` and
2 · n̄c complex poles αn ± jβn with coefficients r′n,` ± jr′′n,`.
We obtain

D(s,ϑ) =

n̄r∑
n=0

¯̀∑
`=1

rn,`
s− qn

ξ`(ϑ) (11)

+

n̄c∑
n=0

¯̀∑
`=1

[
r′n,` + jr′′n,`
s− αn − jβn

+
r′n,` − jr′′n,`
s− αn + jβn

]
ξ`(ϑ).

Provided that all basis poles are strictly stable, with qn < 0 and
αn < 0, enforcing that the real part of each contribution in (11)
is nonnegative leads to the following algebraic conditions{

rn,` > 0

−αn · r′n,` ± βn · r′′n,` > 0
(12)

arising from real and complex pairs, respectively. These
conditions, proved in Appendix A, are thus sufficient to
guarantee that the real part of D(s,ϑ) is also nonnegative,
as a superposition of nonnegative terms [54]. In case strict
positivity is desired, as required by (8), we have the more
stringent conditions{

rn,` > γr

−αn · r′n,` ± βn · r′′n,` > γc
(13)

where γr > 0 and γc > 0 are arbitrary positive constants.
As a result, uniform stability constraints to be enforced

with (5) can be formulated directly in terms of the model
coefficients as in (13). The number of such constraints, which
depends on the model structure and not on the model response,
is known in advance and matches the total number of basis
functions (n̄+ 1)¯̀. Moreover, no dense or adaptive sampling
is required in a possibily high-dimensional parameter space.
The drawback underlying this formulation is the increased
degree of conservativism, since (13) provide only sufficient but
not necessary conditions for the positive realness of D(s,ϑ).
Therefore, a somewhat reduced accuracy of the final model
responses with respect to the traning data samples is to be
expected.

V. CHOOSING POSITIVE DEFINITE BASES

A. Bernstein Polynomials

Bernstein polynomials have been widely used in polynomial
approximation as they are capable to uniformly approximating
continuous functions over a prescribed interval [55]. Given a
maximum degree ν̄, the Bernstein polynomials bν,ν̄(x) in the
scalar normalized variable x ∈ [0, 1] are defined as

bν,ν̄(x) =

(
ν̄

ν

)
xν(1− x)ν̄−ν , ν = 0, . . . , ν̄. (14)

These polynomials are strictly positive in their normalized
domain [0, 1], with the exception of the two zeros of order
ν and ν̄ − ν and at the edges x = 0 and x = 1, see

Fig. 2. Bernstein polynomials bν,6(x), for ν = 0, . . . , 6.

Fig. 2. As the index ν increases, the localization of the
corresponding polynomials shifts from the left to the right
edge of the domain, a fact that has been exploited in many
application fields, from computer graphics [56] down to the
construction of biorthogonal hierarchical wavelet bases with
optimal localization [57]. These characteristics make Bernstein
polynomials excellent candidates for parameterized macro-
modeling with uniform stability constraints, since positivity of
a Bernstein polynomial approximation is implied by positivity
of the corresponding coefficients

ν̄∑
ν=0

cνbν,ν̄(x) > 0, ∀x ⇐= cν > 0, ∀ν. (15)

We then define the set of parameter-dependent basis functions
ξ`(ϑ) as the Cartesian product of univariate Bernstein poly-
nomials

ξ`(ϑ) =

ρ∏
i=1

ξ`i(ϑi), ξ`i(ϑi) = b`i,¯̀i(ϑi) (16)

where index `i refers to the i-th coordinate in the parameter
space, and ` is a global linear index spanning the multivariate
basis of size ¯̀=

∏
i(1 + ¯̀

i). A few remarks are in order.

• Given a polynomial degree ¯̀
i for each i-th coordi-

nate, the approximation space provided by the Bernstein
polynomial basis is identical to the space provided by
any different polynomial basis with the same degree,
including monomials and Chebychev bases. Therefore, up
to differences in approximation errors due to the different
numerical conditioning properties of the bases, we expect
identical results if the same model generation algorithm
is run with the same data and different polynomial bases.

• Being positive definite, the Bernstein polynomials al-
low for uniform stability enforcement through con-
straints (13), which are incompatible, e.g., with Cheby-
chev polynomials.

• Being structured as a Cartesian product of univari-
ate polynomial bases, Bernstein polynomials cannot be
adopted when the number of parameters ρ is large, due
to curse of dimensionality.
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Fig. 3. Three radial basis functions tested in this work, depicted in a
2D domain. From left to right: gaussian RBF, inverse multiquadric RBF,
multiquadric RBF.

B. Radial Basis Functions

A possible approach for breaking complexity in both model
representation and numerical construction when ρ increases,
is to adopt mesh-free unstructured bases, such as Radial Ba-
sis Functions (RBF) [58]. Kernel-based approximation meth-
ods [59], and in particular, RBF-based expansions [60], gained
widespread popularity due to their excellent capabilities in re-
constructing an unknown multivariate function from a reduced
set of known scattered data. A function Φx0

(x) : Rρ → R is
defined radial if its value depends only on the distance of x
with respect to a symmetry center x0 ∈ Rρ, as

Φx0(x) = Φ(x− x0) = ϕ(‖x− x0‖), ∀x0. (17)

Although ‖·‖ may be any vector norm, in this work it is
intended as the Euclidean norm.

The possibility of arbitrarily selecting a center x0 makes
RBFs excellent candidates to approximate multivariate func-
tions based on even irregularly positioned training data
points. Even though RBFs are defined over a possibly high-
dimensional domain, their argument reduces to the scalar
quantity ‖x− x0‖. Therefore, the number of RBFs required
to construct an approximation is not related to the size of
the embedding space, but only to the variations of the target
function within its domain. Preliminary results on RBF-based
parameterized macromodels [39] already pointed that the com-
plexity of RBF approximations increases only linearly with the
parameter space dimension ρ, whereas scalability with tensor-
product polynomials is exponential, thus unsuitable for large
ρ.

Thanks to their favorable numerical properties and suitabil-
ity for proposed uniform stability enforcement, we consider
here only positive definite RBFs, characterized by Φ(x) >
0, ∀x ∈ Rρ. Among the many alternatives, this work docu-
ments tests based on the follwing three RBF classes (see Fig. 3
for an illustration and [58] for a general introduction)

1) Gaussian: Φx0;ε(x) = e−ε‖x−x0‖2

2) Multiquadric: Φx0;ε(x) = (‖x− x0‖2 + ε2)1/2

3) Inverse multiquadric: Φx0;ε(x) = (‖x− x0‖2 +ε2)−1/2

where ε is a free hyper-parameter, defined also as shape
parameter, that determines the RBFs smoothness (equiva-
lently, “size” or “width”). The optimal choice of such hyper-
parameter is still an open problem, and usually the best ε

is determined through some additional optimization [61]. All
results in this work were obtained by determining the optimal
ε for any given RBF class through a basic parameter sweep.

For any given RBF class, we define our parameterized
macromodel structure as in (3), with

ξ`(ϑ) = Φϑ̊`;ε(ϑ) (18)

where ϑ̊` denotes the center where the `-th RBF is placed. The
selection of these centers once the basis size ¯̀ is fixed provides
additional degrees of freedom to optimize model accuracy. In
this work, we consider as candidate points a subset of the
available data points for training, e.g.,

{ϑ̊`}
¯̀
`=1 ⊆ {ϑm, m ∈Mt}. (19)

The actual subset set of centers is here determined ran-
domly from the available data points. Despite this simplistic
approach, the results provided in next section will show a
remarkable accuracy for all investigated test cases. Therefore,
even without advanced optimization of hyperparameters and
distribution of RBF centers, this paper shows that naive and
simple to implement solutions already provide excellent results
and clear improvements with respect to the state of the art.

VI. NUMERICAL EXAMPLES

A. Comparing performance of different basis functions

In this section, we present an extensive set of numerical
results, with the aim of comparing the performance of the
various parameterization schemes discussed in this work, and
specifically to illustrate the advantages of positive definite
bases in the enforcement of uniform stability.

A benchmark suite of ten different structures was con-
structed, as detailed in Table I. Structures numbered 1–5
depend on ρ = 2 parameters, whereas structures 6–10 depend
on ρ = 3 parameters. These small-size parameter spaces
allow for model construction using all presented approaches,
including the standard polynomial approximation based on
Cartesian product of univariate (Chebychev) polynomials, to
be considered as a reference. The ten structures include both
linearized active circuit blocks (1–6) and passive interconnects
(7–10). Table I reports details on structure type, individual pa-
rameters with their range, and reference to the literature where
additional information on each example can be retrieved.

For each of the structures listed in Table I, we derived
uniformly stable parameterized macromodels in the form (3)
making use of 5 different basis functions ξ`(ϑ):
• multivariate Chebychev polynomials, for which uniform

stability was enforced through iterative adaptive sam-
pling, as discussed in Sec. III-D;

• multivariate Bernstein polynomials, with uniform stability
enforced through constraints (13);

• Gaussian RBFs with constraints (13);
• Multiquadric RBFs with constraints (13);
• Inverse multiquadric RBFs with constraints (13).
We evaluate the quality of the resulting macromodels by

means of three different metrics.
• The Extraction Runtime is the time required to solve 10

times the weighted least square problem (5) subject to the
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TABLE I
BENCHMARK SUITE USED FOR THE COMPARATIVE STUDY OF DIFFERENT PARAMETERIZATION SCHEMES. FOR EACH TEST CASE 1–10 THE TABLE

REPORTS DATASET INFORMATION AS: THE NUMBER OF PARAMETERS ρ, THE TOTAL NUMBER OF FREQUENCY SAMPLES k̄ FOR EACH OF THE m̄
AVAILABLE PARAMETRIC RESPONSES, AND DETAILS ON STRUCTURE TYPE, INDIVIDUAL PARAMETERS WITH THEIR RANGE, AND REFERENCES FOR

ADDITIONAL INFO.

# ρ k̄ m̄ Type Parameters Range
1 2 273 341 Buffer [7] Bias voltage (V) [0.5, 1.5]

Temperature (◦C) [20, 50]
2 2 293 231 Buffer [7] Bias voltage (V) [0.5, 1.5]

Temperature (◦C) [20, 40]
3 2 213 119 LNA [7] Bias voltage (V) [0.9, 1.2]

Temperature (◦C) [−30, 130]
4 2 235 35 LNA [7] Bias voltage (V) [0.9, 1.2]

Input Voltage (V) [0.4, 0.6]
5 2 210 231 OpAmp [62] Bias voltage (V) [1.1, 1.3]

Gain [1.01, 2]
6 3 831 935 OpAmp [62] Bias voltage (V) [1.1, 1.3]

Temperature (◦C) [−30, 130]
Gain [1.01, 2]

7 3 901 300 TL network [63] Inductance (nH) [4.5, 5.5]
Inductance (nH) [9, 11]
Capacitance (pF) [0.9, 1.1]

8 3 901 300 TL network [63] Inductance (nH) [9, 11]
Capacitance (pF) [0.45, 0.55]
Resistance (Ω) [45, 55]

9 3 901 300 TL network [63] Inductance (nH) [9, 11]
Resistance (Ω) [45, 55]
Conductor width (µm) [90, 210]

10 3 2000 216 TL filter [36] Stub length (mm) [6, 7]
Line length (mm) [9, 10]
Load Γ [0.1, 0.5]

stability constraints, necessary to generate the uniformly
stable macromodels.

• The Model Complexity, measured in terms of the total
number of free coefficients that are optimized during
model-data fitting.

• The Model Accuracy, evaluated in terms of the achieved
Root Mean Square (RMS) absolute error between model
responses and data.

In order to gain better insight, we carried out two series of
experiments.

1) A first set of models were generated by fixing the
same complexity for all basis function choices, with the
objective of comparing the achievable accuracy using
the various parameterization schemes and associated
constraints for stability enforcement.

2) A second set of models were obtained by setting a
fixed target accuracy δ = 0.01 in terms of worst-
case RMS error, which can be considered to be an
acceptable engineering accuracy. The model complexity
was therefore tuned for each individual test case to
achieve this precision.

The results of the experiments perfomed by fixing the model
complexity are reported in panels (a) and (c) of Fig. 4 for cases
1–5 and 6–10, respectively. The fixed model complexity was
predetermined so that all bases could achieve an acceptable
accuracy. Only three structures (3,9,10) resulted in errors
larger than 0.01 with multiquadric or inverse multiquadric
RBFs, but only by a negligible amount. As expected, the
Chebychev basis is the most accurate (subpanels a.1 and c.1),
since the implementation of the uniform stability constraints
through adaptive sampling is less conservative than for the

other bases. This better accuracy comes with an increased
cost in terms of runtime, which becomes impractical for the
three-dimensional cases (subpanel c.3). Even for the low-
complexity two-dimensional cases, the runtime required for
model construction with standard Chebychev bases exceeds
all other cases by one order of magnitude (subpanel a.3). This
first set of examples shows that, at a moderate loss in accuracy,
the computational cost for model construction is dramatically
reduced with proposed stability enforcement framework based
on positive definite bases.

Panels (b) and (d) of Fig. 4 report the results obtained
by setting target model accuracy to δ = 0.01. Also in this
scenario the results confirm that model extraction runtime is
dramatically reduced with positive definite bases with respect
to Chebychev polynomials (subpanels b.3 and d.3). When in-
creasing number of parameters, we also see that the number of
coefficients defining model complexity is reduced when using
mesh-free RBFs, compared to structured bases defined by
Cartesian product of polynomials (subpanels b.2 and especially
d.2). This improvement appears to be moderate for small ρ,
as in this case, but it becomes dramatic for larger ρ (see next
Sections), for which unstructured RBFs appear to be the only
viable choice for model parameterization.

B. Operational amplifier

This example describes in details one of the models pre-
sented in benchmark suite of Section VI-A, in particular test
case #6. The structure under modeling is a 3-port opera-
tional amplifier circuit block (originally presented in [62]),
parameterized by its bias voltage Vdd ∈ [1.1, 1.3]V , the
operating temperature T ∈ [−30, 130] ◦C and its gain
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Fig. 4. Performance comparison of different parameterizations for ten benchmark structures: cases 1–5 (panels a, b) with ρ = 2 parameters, and 6–10 (panels
c, d) with ρ = 3 parameters. Subpanels (a.i) and (c.i) for i = 1, 2, 3 compare performance in terms of model accuracy, complexity and runtime with a
fixed total number of model coefficients for each individual example. Subpanels (b.i) and (d.i) show results obtained by tuning model complexity so that a
prescribed model accuracy is attained.
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S(3,2) data

S(3,2) model

S(3,2) data

S(3,2) model

Fig. 5. Model responses compared with validation data for the operational
amplifier circuit block. Top panel: model with Bernstein basis functions.
Bottom panel: model with RBF basis functions.

G ∈ [1.01, 2]. The structure is characterized by a dataset of
m̄ = 935 small-signal scattering responses, arranged on a 3-
dimensional cartesian grid, ranging from 0.1 MHz to 20 GHz.
Among all these responses, one half was used to construct the
macromodels, leaving the other half for model validation.

We consider two models based on Bernstein and Gaus-
sian RBF parameterization. Both models have been extracted
with n̄ = 18 poles and are uniformly stable thanks to the
adopted positive definite parameterization. The RBF model
is constructed with ¯̀ = 35 RBFs for the numerator and
¯̀= 10 for the denominator. The Bernstein polynomial model,
which is based on a Cartesian product of univariate Bernstein
polynomial bases, is defined with orders ¯̀

1 = 2, ¯̀
2 = 1,

¯̀
3 = 2 for the three parameters, for both numerator and

denominator.

Figure 5 compares the model responses with a randomly
chosen subset of validation data for both Bernstein model (top
panel) and RBF model (bottom panel). The Bernstein-based
model has a worst-case absolute RMS error of 2.87 · 10−3

while the RBF-based model has a worst-case absolute RMS
error of 5.87 · 10−3, both evaluated on validation samples.
These results confirm that both bases are able to produce
accurate uniformly stable macromodels, despite the additional
degree of conservativism induced by the algebraic stability
constraints (13).

C1

C2

C6 R5

BFG425W

R2

R1

C3 C4

R3 R4

C5

RF in
50Ω

VSUP

RF out
50Ω

TL1

TL2

TL3

TL4 TL4

Fig. 6. A Low Noise Amplifier circuit [64].

C. Low Noise Amplifier

In this example, we show how the proposed approach can
be exploited to derive compact parameterized macromodels of
mixed lumped-distributed active circuit blocks. We consider
the LNA structure shown in Fig. 6, first presented in [64]. We
are interested in a behavioral small-signal scattering macro-
model for the two-port circuit block, where the first port is
the RF input, the second is the RF output. The bandwidth Ω
of interest is 1−10 GHz. The structure is parameterized by ten
different and independent parameters (listed in Table II), six
of which are lumped components (parasitic series inductances
and shunt capacitances of the transistor). The other four are
related to transmission line geometrical parameters.

Since the parameter space Θ has dimension ρ = 10, sparsity
is required also in the extraction of the training data samples
to be used for computing the model. This dataset was obtained
by a set of small-signal SPICE simulations, each providing a
total of k̄ = 701 linearly spaced samples in the range 1 −
10 GHz. A total of m̄ = 2000 of such frequency responses
were generated according to a Latin Hypercube distribution
in the parameter space [65]. Latin Hypercube-based sampling
have, roughly speaking, the property of uniformly filling the
available space. Thus, they are good candidates for generating
high-dimensional parametric datasets. Among all the available
samples, only m̄t = 160 (randomly selected) responses were
used for model generation, while the others were left for model
validation.

For this high-dimensional test case, only RBF-based pa-
rameterizations are feasible within the proposed uniformly
stable modeling framework. We document results based on
Gaussian RBFs, with a common shape parameter ε = 0.03.
The computed model has n̄ = 16 poles, with basis poles qn
determined through a preprocessing VF run, with a parameter-
ization induced by ¯̀= 90 for the numerator and ¯̀= 5 for the
denominator. Model extraction time was 91 seconds, requiring
only 4 iterations to reach PSK convergence. The worst case
RMS absolute error of the model with respect to the available
validation samples is 7.72 · 10−3, which is remarkable given
the very small number of coefficients compares to the size of
the parameter space. This accuracy is confirmed by Fig. 7,
which compares a set of randomly selected parameterized
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S(1,1) data

S(1,1) model

Fig. 7. Comparison of LNA model responses to corresponding raw validation
responses, randomly selected in the 10-dimensional parameter space.

model responses to the corresponding validation data.

TABLE II
LNA PARAMETERS. FIRST SIX PARAMETERS: PARASITIC INDUCTANCES

AND CAPACITANCES OF THE TRANSISTOR. THE REMAINING PARAMETERS
ARE SUBSTRATE THICKNESS, CONDUCTOR THICKNESS, CONDUCTOR

WIDTH FOR LINES TL1 , TL2 , TL3 AND CONDUCTOR WIDTH FOR LINE
TL4 .

# Parameter ϑi ϑi,min ϑi,max

1 Lb (nH) 0.88 1.32
2 Lc (nH) 0.88 1.32
3 Le (nH) 0.20 0.30
4 Ccb (pF) 0.0016 0.0024
5 Cbe (pF) 0.064 0.096
6 Cce (pF) 0.064 0.096
7 h (mm) 0.45 0.55
8 tk (µm) 1.8 2.2
9 w1,2,3 (mm) 0.225 0.275
10 w4 (mm) 0.72 0.88

D. Scalability

In this example, we show the influence of the parameter
space dimension ρ on model accuracy and especially com-
plexity, by performing a scalability study. We consider the
LNA circuit block already discussed in Sec. VI-C, and we
increase the number of parameters from ρ = 1 up to ρ = 10,
by adding one parameter at the time from the list in Table II.
For each instance with fixed ρ, a dedicated set of training
responses was obtained through repeated SPICE runs, based on
a Latin Hypercube distribution. The total number of frequency
responses was predefined as Mρ = 200 ρ, with a linear scaling
law with the parameter space dimension. The numerical results
that follow confirm that this number is sufficient to capture the
variation induced by all parameters, up to ρ = 10. Note that
if a uniform sampling were adopted, scalability in the number
of responses would have been exponential, thus impractical.

A uniformly stable parameterized macromodel of each
dataset was created using both Bernstein polynomials and
Gaussian RBFs, which appear to provide the best performance
among the tested RBFs according to the comparison of Fig. 4.
For this investigation, the dynamic order was set to n̄ = 16

Fig. 8. Model accuracy and complexity of the LNA example obtained using
Bernstein polynomials and Gaussian RBFs, for increasing parameter space
dimension ρ.

TABLE III
MAIN FEATURES OF CONSIDERED PARAMETERIZATION STRATEGIES IN

TERMS OF EXTRACTION RUNTIME, MODEL COMPACTNESS AND
ACCURACY.

Runtime Compactness Accuracy
Structured
Unsigned BAD BAD GOOD

Structured
Positive GOOD BAD MEDIUM

Unstructured
Positive GOOD GOOD MEDIUM

in all cases, and the model complexity was tuned in order to
reach a target accuracy of δ = 0.01 on the RMS absolute error.
A common value of the shape parameter ε = 0.03 was set for
all the Gaussian basis functions.

Figure 8 shows the scalability results in terms of model
accuracy and complexity. Bernstein polynomials allow the
generation of macromodels up to ρ = 6, due to an exponential
growth of model complexity that prevents applicability for
higher dimensions. As already noted, Gaussian-based models
show a slight degradation of accuracy in some of the cases,
although in all cases the achieved accuracy was better than
the prescribed threshold. The main advantage of Gaussian
RBF parameterization is evident from the bottom panel of
Fig. 8, which shows a linear increase in model complexity
when increasing ρ. These results confirm that mesh-free RBF
representations are good candidate for high-dimensional pa-
rameterization, and that proposed framework is able to extract
parameterized macromodels with excellent scalability.
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E. Summary

The previous results suggest that there is not a well-
defined and universal strategy in devising a parameterized
model structure. The best choice depends on the particular
application and structure at hand, resulting from a compromise
between conflicting requirements. Table III summarizes the
performance of the considered parameterization schemes in
terms of extraction runtime, model compactness and accuracy.
The results support the following conclusions
• Structured (polynomial) basis functions without sign con-

straints (e.g. Chebychev polynomials) appear to be the
right choice only when a high accuracy is required (rela-
tive error below 10−2) with few parameters (up to three
at most). The drawback is a possibly large computational
runtime.

• Constraining the structured basis to be positive definite
(e.g., Bernstein) polynomials leads to a dramatic re-
duction of the extraction runtime, at a cost of a slight
degradation of accuracy. The number of parameters this
parameterization can handle is a bit larger, but still small
(up to five-six).

• Mesh-free positive definite basis functions (RBFs) pro-
vide the only viable choice for uniformly stable models
with a large number of independent parameters. Overall
accuracy will depend in this case on the number of
basis functions required to fit the data variability over
the parameter space.

VII. CONCLUSIONS

This paper presented a framework for the construction of
parameterized macromodels of passive or linearized active
multiport structures. The main improvements with respect
to the state of the art are enabled by adoption of positive
definite multivariate bases to construct approximations in the
parameter space. As a result, the proposed algorithms are
able to enforce uniform stability of the macromodels through
simple algebraic constraints on the model coefficients, without
the need of time-consuming adaptive sampling loops. When
mesh-free unstructured bases are chosen, such as Radial Basis
Functions (RBF), it becomes possible to scale model com-
plexity to higher parameter dimensions, thus circumventing
the problem of curse of dimensionality. These improvements
have been demonstrated with a thorough campaign of numer-
ical simulations on several test cases. Numerical examples
demonstrate feasibility up to ten independent parameters.

There are several aspects of proposed framework that
deserve further investigations, specifically on the definition
of the individual RBF components that construct the model
parameterization. Optimization of the related hyperparameters
and the formulation of an algorithm for optimal placement
of RBFs in the parameter space as well as automated order
selection are still open issues. Progress in this direction will
be documented in a future report.

The main emphasis of this work has been on stability and
not passivity enforcement. Dedicated algorithms are available
for building guaranteed passive parameterized models (for
physically passive structures, for which this is appropriate), as

far as the number of independent parameters is limited to few
units. We refer the Reader to [6], [31], [33], [35], [36], [42],
[44]–[47], [49] When the number of parameters increases,
there are currently no robust and efficient algorithms for
checking and enforcing passivity uniformly in the parameter
space. This is still an open problem, and the subject deserves
further research efforts by the macromodeling community.
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APPENDIX

A. Derivation of Constraints (12)
We show here that constraints (12) provide sufficient con-

ditions for the positive realness of D(s,ϑ). We consider
separately the contributions from real and complex conjugate
poles in (11).

1) Real poles: Let us consider the n-th basis pole contribu-
tion restricted to the imaginary axis s = jω, which we rewrite
as

Dr
n(jω,ϑ) =

rn(ϑ)

jω − qn
, (20)

with qn ∈ R and qn < 0, and where

rn(ϑ) =

¯̀∑
`=1

rn,`ξ`(ϑ). (21)

Since ξ`(ϑ) and rn,` are real-valued, we have

<{Dr
n(jω,ϑ)} = rn(ϑ) · −qn

q2
n + ω2

. (22)

The first row in constraints (12) states rn,` > 0 for all ` =
1, . . . , ¯̀. Since ξ`(ϑ) ≥ 0, this implies that rn(ϑ) > 0 for all
ϑ and consequently

<{Dr
n(jω,ϑ)} > 0 ∀ω, ∀ϑ. (23)

2) Complex poles: Let us consider the contribution from
the n-th complex poles pair in (11), restricted to the imaginary
axis s = jω, which we write as

Dc
n(jω,ϑ) =

¯̀∑
`=1

dcn,` ξ`(ϑ), (24)

where

dcn,` =
r′n,` + jr′′n,`

jω − αn − jβn
+

r′n,` − jr′′n,`
jω − αn + jβn

(25)

and where αn < 0. We have

<{Dc
n(jω,ϑ)} =

1

2

¯̀∑
`=1

[
dcn,` + (dcn,`)

∗] ξ`(ϑ) (26)

which is nonnegative provided that

dcn,` + (dcn,`)
∗ > 0. (27)

Direct evaluation of this expression leads to the following
equivalent condition

(α2
n + β2

n)(−r′n,`αn + r′′n,`βn) + ω2(−r′n,`αn − r′′n,`βn) > 0
(28)

which is verified when the second row in (12) holds.
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3) Superposition: Combining now all individual terms
in (11), we see that constraints (12) imply

<{D(jω,ϑ)} > 0 ∀ω, ∀ϑ (29)

since obtained as superposition of nonnegative terms. Using
now the minimum principle of analytic functions, we conclude
that the analytic function D(s,ϑ) has a nonnegative real part
for <{s} ≥ 0, since the minimum real part is attained on the
imaginary axis s = jω.
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