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Hyperparameter determination in multivariate
macromodeling based on radial basis functions

Alessandro Zanco, Student Member, IEEE, Stefano Grivet-Talocia, Fellow, IEEE

Abstract—This paper introduces a simple and effective al-
gorithm for the automated selection of Radial Basis Function
hyperparameters in the context of high-dimensional multivariate
macromodeling. Numerical results show an average speedup
of at least one order of magnitude with respect to direct
hyperparameter optimization.

I. INTRODUCTION

Multivariate (parameterized) macromodels aim at reproduc-
ing the frequency behavior of complex structures through
surrogate compact dynamical systems [1], whose coefficients
depend on a number of free variables related to geometry,
material, processes, temperature, etc. Such models are usually
identified from sampled responses through a multivariate ap-
proximation, whose accuracy and compactness depend on the
specific choice of some basis function sets embedded in the
model equations.

It has been shown that Radial Basis Functions (RBFs)
provide an excellent candidate for scalability to high parameter
dimension, thanks to their mesh-free structure. RBFs are usu-
ally defined in terms of one or more hyperparameters, which
should be carefully optimized for best performance. Various
techniques exist for selecting appropriate values, usually based
on optimization of cross validation and maximum likelihood
estimators [2], [3] or direct optimization or grid search [4]–[6].
Here, we propose a simple yet very effective algorithm that,
with negligible loss of accuracy and no overhead, allows a sub-
optimal determination of hyperparameters related to Gaussian
RBFs.

II. BACKGROUND AND FORMULATION

We consider a generic P -port electronic, electrical or elec-
tromagnetic structure, whose behavior depends on ρ geometric
or physical parameters collected in vector ϑ = [ϑ1, . . . , ϑρ] ∈
Θ. The structure is characterized through its frequency re-
sponses H̆k,m = H̆(sk,ϑm) known at a discrete set of k̄
frequency sk = jωk and m̄ parameter samples ϑm. We seek
for a surrogate parametric model H(s,ϑ) such that

H(sk,ϑm) ≈ H̆k,m ∀k,m (1)

in order to approximate with a controlled error both the
parametric and the broadband frequency behavior of the data.

The model structure we use is well established [1]

H(s;ϑ) =

∑n̄
n=0

∑¯̀

`=1 Rn,` ξ`(ϑ)ϕn(s)∑n̄
n=0

∑¯̀

`=1 rn,` ξ`(ϑ)ϕn(s)
, (2)

where frequency dependence is captured by the basis func-
tions ϕ(s), which correspond to the standard partial fraction

basis associated with Vector Fitting (VF) ”basis” poles, and
parameter variability is captured by the basis functions ξ`(ϑ).
The model coefficients Rn,`, rn,` are computed through
the so-called Parameterized Sanathanan Koerner (PSK) algo-
rithm [1], [7], which is an iterative linear relaxation which
converts (1) into a sequence of linear least squares problems

Γµcµ = b, µ = 1, 2, . . . (3)

where Γµ ∈ Ck̄m̄,(P+1)(n̄+1)¯̀ contains, suitably ordered,
products of basis functions ϕn(s) and ξ`(ϑ), see [5]. The
iterations stop when the model coefficients Rn,`, rn,`, stored
in unknown vector c, stabilize.

III. PROBLEM STATEMENT

Several choices have been documented for the selection
of the parameter basis functions ξ`(ϑ), including orthogonal
polynomials, Bernstein polynomials, spectral (trigonometric)
expansions, and Radial Basis Functions (RBF) [4], [5], [8].
Only the latter enable mesh-free (unstructured) expansions
providing a good scalability to high dimension [4], [5]. There-
fore, this work focuses on Gaussian RBFs, defined as

ξ`(ϑ) = e−ε‖ϑ−ϑ`‖2 (4)

where ϑ` denotes the center and ε > 0 is the shape parameter.
Figure 1 depicts through a projection onto a single dimension
the effect of ε, which determines how “fat” (ε small) or “thin”
(ε large) is the RBF.

The approximation capability of the macromodel is strongly
dependent on ε, as well as the numerical steps needed to
construct the model (the regressor matrix Γµ = Γµ(ε) has a
strong dependence on ε). The main objective of this work is to
find a sub-optimal value of ε that provides accurate macromod-
els, with limited overhead required for its determination. In
particular, we would like to avoid a direct search on the shape
parameter, which would require repeated model construction
for different values of ε within an optimization loop.

IV. SUB-OPTIMAL HYPER-PARAMETER SELECTION

Let us consider the two asymptotic cases ε→ 0 and ε→∞.
• For ε→ 0, Gaussian RBFs become increasingly flat (see

Fig. 1). It is well known that, under suitable conditions,
RBF interpolation in this limit approaches a polynomial
accuracy [9], [10], so that the model is expected to be
very accurate. Unfortunately, as ε decreases, the condition
number of Γµ(ε) grows exponentially fast, making the
solution of (3) numerically unstable. Figure 2 illustrates
the dependence of the model-data error on ε. In case of
small ε (region A), such numerical problems are evident.
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Fig. 1. Comparison of Gaussian RBF interpolants for different shape
parameter values. Top panel (ε small): the interpolant accurately approximates
the data. Bottom panel (ε large): the basis functions are too narrow to capture
the data variability.

• When ε → ∞, the Gaussian RBF ξ`(ϑ) concentrates
more and more around its center ϑ`, until it reaches the
asymptotic limit

ξ`(ϑ) =

{
1 if ϑ = ϑ`

0 if ϑ 6= ϑ`
(5)

A corresponding model is thus expected to have perfect
accuracy only at the RBF centers, but it will be unable to
provide a continuous parameterization. As expected, the
model-data error increases (Fig. 2, region C).

Candidate sub-optimal shape parameters that minimize
model-data error are located in the region B of Fig. 2, where
they are

1) sufficiently large to avoid numerical instabilities, and
2) sufficiently small to effectively parameterize the model.

It is also advisable to minimize the condition number of Γµ(ε)
for numerical robustness, therefore, we aim at selecting the
largest admissible ε located at the interface between regions
B and C. This selection must be performed without explicitly
computing the model-data error, which in turn would require
multiple model estimation and long runtime.

As a proxy to such (inverse) condition number, we consider
the least singular value σ(ε) of Γµ(ε), whose typical behavior
is depicted in Fig. 3. It can be proved that σ(ε) increases
exponentially in regions A and B, until it stabilizes to a finite
value for large ε in region C. It is thus sufficient to identify
the corner point where the σ(ε) trajectory begins to flatten, in
a log-log scale. To this end,

1) we precompute a set of t̄ least singular values
{σ(ε1), . . . , σ(εt̄)} of matrix Γµ(ε);

Fig. 2. Model-data error vs shape parameter ε. Region A: numerical
instabilities associated with small ε. Region B: candidate sub-optimal shape
parameter values. Region C: loss of parameterization capabilities.

*
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Fig. 3. Black dots: least singular values σ(ε) samples. Red solid line: log-log
regression line evaluated on the samples ε ≤ ε∗.

2) we iteratively build a log-log regression line on the pairs

{(εt, log10 σ(εt)), t = 1, 2, . . . , ti}, i = 2, 3, . . . .

This process stops at iteration i∗ when the relative deviation
∆ of the regression line with respect to the singular value
sample ti∗+1 exceeds a predefined threshold ∆th. See Fig. 3
for a graphical illustration. The sub-optimal shape parameter
ε∗ is thus selected as

ε∗ = εti∗ (6)

The above procedure still requires the construction of the
regression matrix Γµ(ε) at each iteration, leading to a poten-
tially different ε∗ = ε∗(µ) and consequently different RBF
expansions at each iteration. This is not even necessary, since
the spectral properties of matrix Γµ(ε) are not expected to
change significantly throughout the PSK iterations. Therefore,
our proposed algorithm predetermines the sub-optimal ε∗ at
the first iteration using Γ1(ε), thus significantly improving
runtime.

A second and even more efficient implementation considers
the Kernel matrix

K(ε) =


ξ1(ϑ1) · · · ξ¯̀(ϑ1)

...
...

ξ1(ϑm̄) · · · ξ¯̀(ϑm̄)

 ∈ Rm̄×¯̀ (7)

whose size is significantly smaller than Γ1(ε), and whose
construction requires negligible time. It can be shown (details
will be presented in a forthcoming report) that the least
singular value of K(ε) is strongly related to the corresponding
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Fig. 4. Model responses (red dashed lines) compared with validation data
samples (blue solid lines)

least singular value of Γ1(ε) and, in particular, has the same
dependence with ε as depicted in Fig. 3. Therefore, our
second proposed implementation considers matrix K(ε) for
the identification of the sub-optimal ε∗.

V. NUMERICAL EXAMPLES

We illustrate the proposed approach on a 10-parameter
benchmark structure, the Low Noise Amplifier (LNA), orig-
inally presented in [11]. For details on the parameterization
see [5]. We aim at comparing the presented automated ap-
proach with a direct search on the shape parameter ε in terms
of runtime and model accuracy.

The structure is known through m̄ = 2000 frequency
responses uniformly covering the parameter space, each in-
cluding k̄ = 701 frequency samples in the range [1 Hz,
10 GHz]. The model to be constructed has n̄ = 16 poles
and is parameterized by means of ¯̀= 40 and ¯̀= 4 Gaussian
basis functions at numerator and denominator, respectively.
The RBFs centers were randomly selected among the available
samples, as in [5].

The proposed algorithm was applied to find the optimal
shape parameter ε in the range [0.001, 10]. A total of t̄ = 20
log-spaced candidate points were used, with a stopping thresh-
old ∆th = 10−2. A single model extraction required 99 s. The
overhead to estimate the sub-optimal shape parameter was 35 s
using matrix Γ1(ε) and negligible using the kernel matrix
K(ε). Both approaches led to the same ε∗ = 2.98 · 10−2,
with a corresponding model-data error 9.2 · 10−3. Figure 4
compares the model responses (red dashed lines) with data
(blue solid lines) for 10 randomly chosen validation samples.
As a comparison, a standard shape parameter optimization
based on direct search on the same set of candidate shape
parameters required 20 minutes, leading to ε = 2.60·10−3 and
a model-data error 7.9·10−3. Therefore, the proposed approach
was able to construct a sub-optimal model of comparable
accuracy with a 9.2× and 12.5× speedup, see Table I.

Extensive application to a larger set of benchmark structures
(10 different test cases depending on 1 up to 10 parameters)
led to an average speed up of about 11× using Γ1(ε) and
of 21× using K(ε). These results will be documented in a
forthcoming report.

TABLE I
PERFORMANCE OF PROPOSED SHAPE PARAMETER IDENTIFICATION IN

TERMS OF MODEL-DATA ERROR AND RUNTIME.

Method ε∗ Error Runtime(s) Speed-up
Grid search 2.60 · 10−3 7.9 · 10−3 1243 -
Proposed
with Γ(ε) 2.98 · 10−2 9.2 · 10−3 134 9.2×
Proposed
with K(ε) 2.98 · 10−2 9.2 · 10−3 99 12.5×

VI. CONCLUSIONS

In the context of high-dimensional parameterized macro-
modeling, this paper introduced a heuristic yet effective
strategy to select a sub-optimal shape parameter ε of the
Gaussian Radial Basis Functions forming the model structure.
The proposed method exploits the spectral properties of a
small-size kernel matrix as a criterion to optimize the shape
parameter. This strategy avoids a direct search, which would
require repeated model construction within an optimization
loop, and leads to accurate models in significantly reduced
runtime.

The presented approach effectively solves only one problem
in mesh-free parameterized macromodeling based on unstruc-
tured RBF expansions, but several open problems remain to
be addressed, such as the automated selection of both number
and centers of Gaussian RBFs.
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