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Abstract—This paper generalizes the concept of dissipativity
of linear models to linearized models of nonlinear circuit blocks
that may also include locally active behavior. We show that such
models can be guaranteed to behave as dissipative, provided
they are subjected to certain bounds on the small-signal input
amplitude, and provided that total voltage and current signals
(including bias) are considered in the energy balance. Potentially
severe incorrect dynamic behaviour can result from the violation
of such bounds, as illustrated through a linearized reduced-order
model of a low dropout voltage regulator.

I. INTRODUCTION

Many nonlinear circuit blocks, such as amplifiers or low-

dropout voltage regulators, are designed to operate under

small-signal conditions at well-defined bias points. In such

conditions, linearized small-signal models can safely replace

full transistor-level descriptions during system-level verifica-

tion via numeric simulations. Standard linear Model Order

Reduction procedures can be applied to compress such models

(while controlling the approximation error), hence enabling

drastic reduction in transient simulation runtime. Speedup of

up to three orders of magnitude have been reported in [1]–[4].

However, the above numerical simulation flow can be safely

adopted only when the amplitude of the small-signal inputs

is below a given threshold δ, which defines a trust region

for accuracy. For larger inputs, the accuracy of the numerical

results cannot be guaranteed, mainly due to the linearization

error in the small-signal model extraction.

In this work, we consider a second and more subtle limi-

tation arising from energy balance considerations. We show

that even if small-signal models behave as locally active

(e.g. power amplifiers), they are in fact dissipative when

their dynamics are described using total voltages and currents

(including bias terms) at all ports (including power supply

ports). Such models are henceforth called affine linearized

models. This is explained by the observation that any circuit

block that does not include independent sources is dissipative,

since energy is only provided from the external environment

through power supply. A locally active behavior arises due to

internal energy redistribution from the DC bias to the small-

signal components.

Following the theory in [5], we provide a characterization

of the energy behavior of affine linearized models. It is shown

that dissipativity holds only when the amplitude of the small-

signal input components is bounded by some threshold γ,

generally larger than the accuracy threshold δ. We refer to

this behavior as Bounded Input Dissipativity (BID). For small-

signal inputs larger than γ, dissipativity no longer holds. In

such case, a linearized model-based simulation may lead to

completely wrong results with self-sustained oscillations or

exploding signals, due to the ability of the linearized model to

provide an indefinite amount of power or energy. Therefore,

the qualitative behavior of true transistor-level circuit and its

linearized model may be dramatically different when BID does

not hold. We illustrate this concept through a simple example

of a low dropout voltage regulator, whose linearized model is

driven to instability by a small-signal input with an amplitude

that violates the limits imposed by proposed BID conditions.

II. BACKGROUND: AFFINE LINEARIZED MODELS

Let us consider a generic nonlinear dynamic M -port system,

driven by inputs u ∈ R
M with resulting outputs y ∈ R

M .

Without loss of generality, we consider a voltage-controlled

setting, so that u collects the total port voltages and y the

corresponding port currents. We assume normal sign reference

at all ports, so that the instantaneous power entering the

M -port is p(t) = u(t)⊤y(t).
We assume that the circuit block is biased by an external

power supply, set at a stable operating point. The correspond-

ing DC values of input and output are denoted as U0 and Y0,

respectively. Assuming small-signal operation, we split total

voltages and currents as

u(t) = U0 + ũ(t), y(t) = Y0 + ỹ(t), (1)

where ũ(t) and ỹ(t) are small-signal components. After a

linearization process followed by a model order reduction, one

obtains the following behavioral state-space representation

˙̃x(t) = A x̃(t) +B ũ(t), x̃(0) = 0

ỹ(t) = C x̃(t) +D ũ(t),
(2)

where the small-signal states x̃(t) are induced by the particular

algorithm used to derive the model. In this work, we use for

instance a data-driven approach [1] where the circuit block is

first characterized through its small-signal AC responses via

SPICE runs, which are then subjected to a rational approxi-

mation based on Vector Fitting [6] followed by a state-space

realization [7]. The small-signal transfer function of (2) is

H̃(s) = D + C(sI −A)−1B. (3)



Model (2) is intended to replace the complete transistor-

level circuit block in numerical simulations. Therefore, not

only the small-signal dynamics, but also the DC bias levels

must be correctly included. This is possible by augmenting (2)

by an affine term in the output equation

ẋ(t) = Ax(t) +Bu(t), x(0) = X0

y(t) = Cx(t) +Du(t) + YC ,
(4)

where

YC = Y0 − (CX0 +DU0) and X0 = −A−1BU0. (5)

We call (4) the affine linearized model. Unlike system (2), this

model operates on total voltages and currents, with the initial

condition x(0) defined by the operating point through (5).

This is the standard setting employed in all circuit simulation

environments, in particular SPICE.

III. BOUNDED INPUT DISSIPATIVITY

The total input power flow into model (4) is

p(t) = u(t)⊤y(t) = (U0 + ũ(t))⊤(Y0 + ỹ(t)), (6)

where the DC power component is P0 = U⊤
0 Y0. For all cases

of practical interest P0 > 0, so that the model receives DC

power from its environment when small-signals are zero.

The pure small-signal model (2) may be locally active,

so that the transfer function (3) is not Positive Real (this

is the case, e.g., for power amplifier circuits). It is then

conceivable that the small-signal component of the power is

p̃(t) = ũ(t)⊤ỹ(t) < 0, as an indication of being locally active.

Increasing the amplitude of ũ leads to a (quadratic) increase

of the small-signal power. Therefore, it is to be expected that

the full model (4) based on total signals (DC + small signals)

exhibits a transition in behaviour from dissipative when small

signals are turned off, to non-dissipative when small-signals

exceed an amplitude bound γ. This is precisely the concept of

Bounded Input Dissipativity that we discuss in this work.

The BID characterization requires a number of technical

arguments [5], we recall here only the main points in view of

the illustrative example of Sec. IV. Model (4) is dissipative

according to the classical definition [8] if there exists a storage

function of the state E(x) ≥ 0 (here assumed differentiable

for simplicity) such that for each solution of (4) one has

d

dt
E(x(t)) ≤ p(t) ∀t ≥ 0. (7)

Equivalently, the rate of increase of stored energy cannot

exceed the total power received from the environment.

Let us consider the class of one-sided input signals with

bounded amplitude and superimposed bias,

u(t) = U0 + ũ(t), ‖ũ(t)‖2 ≤ γ ∀t, ũ(t) ≡ 0 ∀t ≤ 0. (8)

Subject to such inputs, the states x of (4) are driven by the

system dynamics within a region that is usually denoted as

reachability set Rγ , so that x(t) ∈ Rγ for all t ≥ 0. It can be

shown that this set can be expressed as Rγ = X0+R0
γ , where

R0
γ is the reachability set of the small-signal model (2) subject

to small-signal inputs ũ. To enable further derivations, this set

is here overbounded by an ellipsoid R0
γ ⊆ {x̃ : x̃⊤Wx̃ ≤ γ2},

with matrix W ≻ 0 determined below.

In order to check dissipativity when inputs are restricted

through (8), it is sufficient to produce a storage function E(x)
in the domain Rγ and enforce (7). Inspired by the linearity

of (4) (see also [5]) we consider as possible candidates,

quadratic storage functions

E(x) =
1

2
x⊤Px+ q⊤x (9)

where P = P⊤ is a symmetric matrix (not necessarily sign

definite), and q is a vector. This choice enables a direct

and convenient algebraic characterization of BID conditions,

generalizing the celebrated Kalman-Yakubovich-Popov (KYP)

Lemma [9]–[11]. Our main result is expressed as the following

Theorem 1: [5] The affine linearized system (4) is BID

with input amplitude level γ > 0, if a matrix P and a vector q

exist such that the following inequality holds

z̃⊤Σ0(P )z̃ + 2θ0(P, q)
⊤z̃ + φ0 ≤ 0,

∀x̃, ũ : x̃⊤Wx̃ ≤ γ2, ũ⊤ũ ≤ γ2
(10)

where

Σ0 =

[

A⊤P + PA PB − C⊤

B⊤P − C −D −D⊤

]

, z̃ =

[

x̃

ũ

]

θ0 =

[

A⊤(PX0 + q)− C⊤U0

B⊤(PX0 + q)−D⊤U0 − Y0

]

,

φ0 = −2U⊤
0 Y0,

(11)

and W ≻ 0 is a matrix that obeys the matrix inequality for

some scalar α ≥ 0,
[

A⊤W +WA+ αW WB

B⊤W −αI

]

� 0. (12)

We remark that setting U0 = 0 and q = 0 reduces (10)

to the standard KYP Lemma, which deals with γ = ∞, i.e.

the standard notion of dissipativity for linear systems. The ad-

vocated generalization includes additional non-homogeneous

terms that represent the DC power contribution (term φ0) and

the coupling between DC and AC powers (term θ0).

Theorem 1 provides purely algebraic conditions expressed

in terms of Linear and Bilinear Matrix Inequalities, whose

verification can be performed through dedicated solvers. Three

different algorithms are presented and discussed in [5]. In

practice, one can first fix a value for γ and then verify whether

the conditions in Theorem 1 are feasible for that value. An

iterative search on γ can then be performed to find the largest

γmax for which BID can be established. When exceeding

this amplitude, the system may not behave as dissipative and

numerical simulation issues could very easily be expected. An

illustrative example follows.

IV. AN EXAMPLE

We consider a basic system simulation involving a Low

Drop-Out (LDO) regulator circuit based on the design pre-

sented in [12] and implemented in a 40 nm CMOS process. A



Fig. 1. Transient voltage of the LDO obtained with transistor-level circuit
(red) and reduced model (blue). Top panel: model response diverges when
Bounded-Input Dissipativity is lost (around t = 0.1 s). Bottom panel: zoomed
view for early time.

linearized reduced order model of order 9 was generated from

small-signal AC responses of a full layout extraction including

parasitics, considering the operating point

U0 =

[

VDD

−IL

]

=

[

1.1V
−1.02mA

]

, Y0 =

[

IDD

VL

]

=

[

1mA
0.594V

]

,

where VDD is the DC input voltage and IL is the DC load cur-

rent. The allowed small-signal bound for model dissipativity,

γmax = 0.062, is computed in 3 s. Both model (few kB netlist

size) and transistor-level circuit (30 MB netlist size) were used

in a system-level transient simulation, that included a diode

in combination with an input capacitor in order to prevent

possible reverse currents that could damage the regulating

device [13]. As the load current fluctuations increase beyond

γmax, the model starts to inject energy into its terminations

(Fig. 2). This energy flow causes an uncontrolled increase of

the input voltage, and consequently, of the regulated voltage

at Port 2 (Fig. 1, top panel, blue line). This phenomenon is not

observable when the actual transistor-level circuit is employed

in the simulation (Fig. 1, top panel, red line), despite the

response of the model being extremely accurate with respect

to the transistor-level circuit (Fig. 1, bottom panel).

V. CONCLUSIONS

Linearized models of active circuit blocks can be safely

employed in system-level transient simulations only when the

amplitude of the small-signal inputs are constrained to a well-

defined trust region. Beyond accuracy considerations, we have

shown that the concept of Bounded Input Dissipativity and

the associated conditions may lead to an a priori determi-

nation of the maximum input bound γmax that guarantees a

Fig. 2. Transient load current applied to the LDO. The amplitude of the
small-signal current ı̃L undergoes a jump at t = 0.1 s such that its amplitude
exceeds the maximum allowed BID bound γmax.

physically-consistent energy behavior of the linearized models.

We suggest that such conditions should be embedded in next-

generation circuit and system solvers that employ behavioral

reduced-order models of active circuit blocks, in order to

provide automated self-consistency checks at runtime. This

might avoid running models outside their validity limits, thus

preventing designers to draw incorrect conclusions about the

behavior of their systems.
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