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Abstract. In this paper an optimized deep Convolutional Neural Net-
work (CNN) for the automatic classification of Scanning Electron Mi-
croscope (SEM) images of homogeneous (HNF) and nonhomogeneous
nanofibers (NHNF) produced by electrospinnig process is presented. Specif-
ically, SEM images are used as input of a Deep Learning (DL) frame-
work consisting of: a Sobel filter based pre-processing stage followed by
a CNN classifier. Here, such DL architecture is denoted as SoCNNet.
The Polyvinylacetate (PVAc) SEM image of NHNF and HNF dataset
collected at the Materials for Environmental and Energy Sustainability
Laboratory of the University Mediterranea of Reggio Calabria (Italy) is
used to evaluate the performance of the developed system. Experimental
results (average accuracy rate up to 80.27%±0.0048) demonstrate the
potential effectiveness of the proposed SoCNNet in the industrial chain
of nanofibers production.

Keywords: Nanofibers, Sobel, Laplacian, Fuzzy, Convolutional Neural
Network

1 Introduction

Nanofibers (NF) produced by electrospinning process have gained a great deal
of interest due to their unique mechanical properties and the wide range of
potential real-world applications, including electronics [1], medicine [2], tissue
engineering [3], drug delivery [4] and so on. NF are very thin fibers and exhibit
diameters less then 100 nm. However, the fabrication of NF is very difficult to
control. Indeed, electrospun fibers may be affected by manufactoring faults due
to the instability of the polymeric jet attributable to undesirable processing pa-
rameters such viscosity, surface tension or applied voltage [5] [6]. The result is an
array of nonhomogeneous nanofibers (NHNF) where the most common problem
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is the presence of beads. Notably, beads are micro/nano aggregates that alter
the morphology and properties of the material, observed especially with low val-
ues of polymeric concentration. One of the most effective method to monitor
the quality and morphology of electrospun fibers is to examine Scanning Elec-
tron Microscope (SEM) images obtained from the NF sample under analysis.
However, visual examination of SEM images is time consuming and is not the
most efficient practice to detect and analyze potential defects in NF. In this con-
text, intelligent systems able to discriminate automatically SEM images of ho-
mogeneous nanofibers (HNF, anomalies-free) and NHNF via advanced machine
learning techniques (i.e. deep learning, DL [7]) have been emerging. DL has been
successfully employed in several applications ([8], [9], [10]) but only a few works
on anamaly detection in NF are reported in the literature. In [11], Carrera et al.
developed an one-class classification approach based on a dictionary of patches
of HNF proposed in [12]. The dictionary was applied to detect defects in a patch-
wise fashion, reporting very good performance in identifying also small defects.
In a second work [13], the authors implemented a CNN based system for detect-
ing and localizing defects in SEM images. Anomaly patches were identified via
similarity among test-patches under analysis and HNF patch of the dictionary.
Recently, Ieracitano et al. [14] proposed a DL based anamoly detection system
for classifying NHNF and HNF of PVAc nanfibers. The authors developed a deep
CNN and used raw SEM images as input of the proposed network, reporting ac-
curacy rate up to 80%. However, no data-preprocessing or validation techniques
were applied. In contrast, here, motivated by the promising results achieved
in [14], we propose an optimized DL system for discriminating SEM images of
NHNF and HNF. Specifically, the proposed DL framework consists of three main
modules: electrospinning process, SEM image pre-processing, SEM-image clas-
sification. Electrospinning process module includes electrospun NF production
and NHNF/HNF SEM images collection [14]. SEM image pre-processing mod-
ule includes the application of three different set of filters (i.e. Sobel, Laplacian,
Fuzzy) in order to detect only the edge of each image and consequently make
the classification task easier. In the SEM-image classification module, instead,
pre-processed SEM images are used as input of the deep CNN for performing the
NHNF vs HNF classification task. Experimental results showed that the Sobel
filtering was able to improve the CNN discrimination performance (accuracy of
80.27% ± 0.0048, Table 1). Here, such optimized DL based anomaly detection
system (consisting of Sobel + CNN) is denoted as SoCNNet (Figure 4).

The rest of this work is organized as follows. Section 2 introduces the pro-
posed method, including the electrospinning process, SEM-image pre-processing
and CNN based SEM-image classification. Section 3 reports the achieved results.
Section 4 concludes the paper.

2 Methodology

Figure 1 reports the proposed framework. It includes three main processing units:
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1. Electrospinnig process. PVAc nanofibers are produced through electrospin-
ning process by dissolving PVAC in Ethanol (EtOH) solvent and SEM im-
ages of HNF and NHNF are stored on a computer according to the procedure
described in [14].

2. SEM image pre-processing. Each HNF/NHNF SEM image is pre-processed
by using Sobel, Laplacian and Fuzzy filtering, capable of providing informa-
tion on the object contours of an image under analysis.

3. SEM image classification. Pre-processed SEM images are used as input of a
CNN based classifier able to discriminate HNF and NHNF images automat-
ically.

Fig. 1. Procedure of the proposed method.

2.1 Electrospinning Process

The basic set-up of the electrospinning (ES) process is schematically shown in
Figure 2. It consists of a high voltage generator, a syringe pump and a grounded
collector plane. Firstly, the polymer fluid is introduced into a glass syringe and
extruded through the spinneret by external pumping (at a constant and control-
lable flow rate) until a small droplet is formed. Then, a high voltage is applied
between the collecting (i.e. collector surface, cathode) and spinning (i.e. nee-
dle, anode) electrode. As the electric field increases, the droplet deforms into a
conical shape, known as Taylor cone [15]. Specifically, when the electrostatic re-
pulsion is greater than the surface tension of the droplet, a charged jet is ejected
from the tip of the cone towards the collector plane. During the jet emission, the
solvent evaporates and the solidified fibers are collected on the target.

It has been proven that viscosity and concentration of the polymeric solution
mainly affect the diameter and morphology of nanofibers. For example, low val-
ues of concentration cause the production of micro-particles (i.e. beads) due to
the electrospray phenomenon [16]. Other important electrospinning parameters
are applied voltage, tip-collector distance and flow-rate [17].
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Fig. 2. Set-up of the electrospinning process.

Materials. Here, Polyvinylacetate (PVAc) with average molecular weight (Mw)
of 170 * 103 g/mol and Ethanol (EtOH) are employed as polymer and solvent,
respectively. Specifically, PVAc is dissolved in EtOH solvent by using a mag-
netic stirrer until a clear fluid is achieved. The CH-01 Electrospinner 2.0 (Linari
Engineering s.r.l.) with a 20 mL glass syringe with a stainless steel needle of 40
mm length and 0.8 mm thick is used for the nanofiber production. Moreover,
it is to be noted that the spinning process is carried out at a temperature and
air humidity of 20±1 C and 40% respectively. The morphology of the produced
PVAc nanofiber is analyzed through the Phenom Pro-X scanning electron mi-
croscope (SEM) that included an energy-dispersive x-ray spectrometer. Then,
the Fibermetric software is used in order to evaluate the average diameter of the
electrospun fiber and detect the potential presence of defects (i.e. beads). The
experiments included 16 different setup, where concentration (e1), voltage e2,
flow rate e3 and tip-collector distance e4 parameter were changed one at time in
well-known working conditions: 10-25 wt.% e1; 10-17.5 kV e2; 100-300 µL/min
e3; 10-15 cm e4. Further details of the ES experiments can be found in [14].

Dataset Description. The SEM images dataset proposed in [14] was used.
Specifically, it consists of 160 SEM images labeled by an expert as image of ho-
mogeneous nanofibers (HNF) or nonhomogeneous nanofibers (NHNF). Notably,
the dataset includes 75 HNF and 85 NHNF sized 128 x 128 [14]. It is worth
mentioning that the production HNF is typically observed with high values of
voltages and concentrations; whereas, NHNF are affected by the presence of
micro or nano structural anomalies (i.e. beads) that can occur when the poly-
meric solution is made up of low values of concetrations or when the TCD is too
high. As an example, Figure 3 reports a NHNF and HNF SEM image of PVAc
electrospun nanofiber.

2.2 SEM image pre-processing

In order to make the classification task easier for the proposed classier (Section
2.3), each NHNF/HNF SEM image I(x, y), has been pre-processed by reducing
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Fig. 3. (a) SEM image of nonhomogeneous nanofibers (NHNF) due to beads. (b) SEM
image of homogeneous nanofibers (HNF).

the number of gray-scale levels but, simultaneously, maintaining the texture of
the individual image as much as possible [18]. With this goal in mind, edge de-
tection techniques are excellent candidates as they segment images based on in-
formation on the edges providing information on the object contours using some
edge-detection operators finding discontinuity in the gray levels, color, texture,
etc. the edge pixel (x, y) are pixel in which the intensity of brightness, f(x, y), of
the image changes abrutly and the edges (or segments of edge) are sets of con-
nected pixels. By means of Sobel technique [18], edge detection is achieved by of
a differential operator consisting of two convolution matrices 3× 3 with integer
values, Gx = [0 1 2; −1 0 1; −2 − 1 0] and Gy = [−2 − 1 0; −1 0 1; 0 1 2],
which convoluted with the image I calculate an approximate value of ∇f(x, y) =
[fx(x, y), fy(x, y)] = [Gx∗I, Gy∗I] indentifying the direction of greater variation
of f(x, y), θ = tan−1(fy(x, y)/fx(x, y)), together with its speed in the same direc-

tion identified by its magnitude |∇f(x, y)| =
√
fx(x, y)2 + fy(x, y)2. According

to Marr and Hildred, instead, edge detection can be implemented using the fil-

ter ∇2G, with G(x, y) = e−
x2+y2

2σ2 obtaining ∇2G = ((x2 + y2− 2σ2)/σ4)e−
x2+y2

2σ2

which represents the LoG filter (Laplacian of the Gaussian) [18]. However, to
reduce the computational complexity of LoG, usually a convolution matrix 5×5,
such as [0 0 −1 0 0; 0 −1 −2 −1 0; −1 −2 16 −2 −1; 0 −1 −2 −1 0; 0 0 −
1 0 0], is used that approximates ∇2G. Fuzzy edge detection is an alternative
approach to edge detection which considers the image to be fuzzy because, of-
ten, in most of the images the edge are not clearly defined, so that detection can
becomes very difficult. In this paper, a modified Chaira and Ray approach [19]
exploiting the fuzzy divergence between the image window and each of a set of
16 convolution matrices (3 × 3, whose elements belong to the set {0.3, 0.8} to
ensure good edge detection) which represent the edge profile of different types is
presented. Specifically, after normalizing the image I, the center of each convo-
lution matrix is place on each pixel (x, y) of I. Then, fuzzy divergence measure,
Div(x, y), between each of the elements of the image window and the template
is calculed and the minimum value is selected. This procedure is repeated for
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all of 16 convolution matrices selecting the maximum value among the 16 diver-
gence values obtained. Then, we obtain a divergence matrix on which a threshold
technique must be applied. For this purpose, in this paper a new entropic 2D
fuzzy thresholding method based on minimization of fuzzy entropy is proposed.
In particular, for each threshold T , set a square matrix W of size r centered
on (x, y) and considered another window W ′ of the same dimensions centerd on
another pixel (x′, y′), their distance is first calculed by the fuzzy divergence 4.
The average value of all the fuzzy divergences obtained by moving (x′, y′) in all
possible positions is then calculated. Moreover, we calculate the further average
value obtained by moving (x, y) in all possible position. We indicate with Meanr

the latter average value obtained. We repeat the procedure for square windows of
size r+1, obtaining Meanr+1. Then, Fuzzy Entropy depending on T , FE(T ) can
be computed as FE(T ) = ln(Meanr/Meanr+1) so that the optimum threshold,
Toptimum can be computed by means of Toptimum = arg;minT |FE(T )|. Ob-
viously, if necessary, a pre-treatment such as contrast enhancement could be
implemented to improve the image quality globally [20], [21], [22].

2.3 SEM image classification

CNN Classifier Convolutional Neural Networks (CNN) is a DL technique
capable of learning the most relevant features from the input representations
through an architecture organized hierarchically. A standard CNN includes the
following processing modules:

1. convolutional layer (CONV): where, Kj filters (sized k1 x k2) convolve with
the ith input image I (sized h x w), producing j features maps (A) of size
a1 x a2. Notably:

Aj =
∑

Ii ∗Kj +Bj (1)

where Bj represents the bias and * the convolution operation;

a1 =
h− k1 + 2p

s
+ 1 (2)

a2 =
w − k2 + 2p

s
+ 1 (3)

where s and p are the stride (or shift) and zero padding parameters, respec-
tively. Specifically, the jth filter convolves with a sub-region of the ith input
and shift over the whole input map with a stride s; whereas, p is typically
used to control the output matrix dimension by padding the input edges
with null values.

4 Fuzzy divergence can be considered as a distance because it satisfies all the axioms
of the metric spaces.
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2. activation layer (ACT): it includes a nonlinear transfer function. Specifi-
cally, ’Rectified Linear Unit” (ReLu, l(x) = max(0, x)) activation function
is typically used in CNN architecture (ACTReLU ). Indeed, it achieves very
good performance in terms of generalization and learning time [23].

3. pooling layer (POOL): it reduces the input spatial size by evaluating the
average (average pooling, POOLavg) or maximum (max pooling, POOLmax)

value of a sub-matrix conveniently selected by a filter sized f̃1 x f̃2. Here,
the POOLmax is employed. Notably, the filter slides over the input map
with stride s̃ and takes the maximum of the sub-matrix under analysis. The
results is a downsampled representation of Aj sized ã1 x ã2 with

ã1 =
a1 − f̃1

s̃
+ 1 (4)

and

ã2 =
a2 − f̃2

s̃
+ 1 (5)

The CNN typically ends with a standard fully connected (FC ) neural network
for classification purposes.

Here, the pre-processed (and raw) SEM images were used as input of the
deep CNN previously proposed in [14]. Specifically, it included five modules
of CONV+ACTReLU+POOLmax and one fully connected layer (FC ) with 40
hidden units followed by a softmax output layer to perform the NHNF vs. HNF
classification task. Each CONV layer had filters size k1 x k2 = 3 x 3, whereas
shift and padding valus of s=1 and p=1, respectively. Each POOLmax layer had
filters size f̃1 x f̃2= 2 x 2 and stride s̃=2. All the learning paramentes were
set up by following the recommnedations reported in [24]. The network was ini-
tialized through a Gaussian distribution having mean 0 and standard deviation
0.01. Moreover, the stochastic gradient descent technique with momentum= 9
* 10−1, weight decay= 10−4, learning parameter= 10−2, mini-batch=32, was
used. Further details can be found in [14].

3 Results

The evaluation performances were quantified in terms of precision (PC), recall
(RC), F-measure (FM) and accuracy (ACC):

PR =
TP

TP + FP
(6)

RC =
TP

TP + FN
(7)

FM = 2 ∗ PR ∗RC
PR+RC

(8)

ACC =
TP + TN

TP + TN + FP + FN
(9)
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where TP are the true positives: number of NHNF SEM images properly classi-
fied as NHNF; TN are the true negatives: number of HNF SEM images properly
classified as HNF; FP are the false positives: number of HNF SEM images erro-
neously classified as NHNF; FN are the false negatives: number of NHNF SEM
images erroneously classified as HNF. Moreover, the k -fold cross validation pro-
cedure (with k=15) was used. Notably, train and test sets included 70% and
30% of images (in each fold), respectively. Thus, all the outcomes are reported
as average value ± standard deviation. Table 1 reports the NHNF vs. HNF clas-
sification performance when the CNN receives as input: raw SEM images (RaC-
NNet), pre-processed SEM images with Sobel filter (SoCNNet), pre-processed
SEM images with Laplacian filter (LaCNNet) and pre-processed SEM images
with Fuzzy based filter (FuCNNet). As can be seen, the Sobel approach, SoCN-
Net (Figure 4), outperforms all the others, achieving accuracy rate up to 80.27%
± 0.048 and F-measure of 82.81% ± 0.046. To the best of our knowledge, this is
the first work on SEM images classification of HNF and NHNF of PVAc electro-
spun nanofibers by using a Sobel filter as pre-processor of a CNN architecture.
There are only a few works that used DL for the automatic anomalies detection
of SEM images. Notably, for fair comparison, we compared the results here pre-
sented with a recent work [14], where the same CNN structure and dataset was
employed, reporting a classification accuracy of 80%. However, in [14], raw SEM
images were used as input and no validation technique was applied. In contrast,
here, we observed that the performance decreased to 74.69% with raw SEM im-
ages (RaCNNet, Table 1) using the 15-fold cross validation technique and most
important the Sobel approach allowed to improve the classification performance
of about 6% (SoCNNet, Table 1).

Fig. 4. SoCNNet: optimezed CNN, consisting of Sobel filer and the deep CNN proposed
in [14].

4 Conclusion

In this research, we presented an optimized DL system for the automatic anomaly
detection in SEM images of nanofibers produced by electrospinning process.
Specifically, we improved the performance of the CNN architecture proposed
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Table 1. Classification performance of the CNN when raw SEM images (RaCNNet),
pre-processed SEM images with Sobel filter (SoCNNet), pre-processed SEM images
with Laplacian filter (LaCNNet) and pre-processed SEM images with Fuzzy based
filter (FuCNNet) are used as input. All the results are reported as average value ±
standard deviation.

Method Precision Recall F-measure Accuracy

RaCNNet 84.51% ± 7.7 × 10−2 71.46% ± 6.1 × 10−2 77.01% ± 3.3 × 10−2 74.69% ± 4.5 × 10−2

SoCNNet 83.62% ± 5.7 × 10−2 82.76% ± 8.7 × 10−2 82.81% ± 4.6 × 10−2 80.27% ± 4.8 × 10−2

LaCNNet 73.52% ± 7.6 × 10−2 68.00% ± 7.4 × 10−2 70.07% ± 3.5 × 10−2 66.54% ± 4.7 × 10−2

FuCNNet 74.20% ± 6.6 × 10−2 66.46% ± 9.5× 10−2 69.70% ± 6.5× 10−2 65.06% ± 6.6 × 10−2

in [14], used to classify images of homogeneous (HNF) and nonhomogeneous
nanofibers (NHNF), by pre-processing each SEM image through a Sobel based
filter. Here, the combination of Sobel filtering and CNN was denoted as SoC-
NNet. In order to evaluate the effectiveness of the proposed model, the images
were also pre-processed with other techniques (i.e. Laplacian and a Fuzzy based
filters) and used as input of the deep CNN. Notably, the corresponding net-
works were denoted as LaCNNnet and FuCNNet, respectively. Furthermore, for
fair comparison, raw SEM images were also the input of the CNN classifier
(RaCNNet).Comparative results showed that the proposed SoCNNet (Figure 4)
outperformed all the other systems LaCNNnet, FuCNNet and RaCNNet achiev-
ing accuracy rate up to 80.27% ± 0.048. However, it is worth metioning that this
is a preliminary study for a more accurate and versatile system. In the future,
a more accurate investigation of the applied filters will be addressed. In addi-
tion, in order to estimate the feasibility of the proposed SoCNNet a lager image
dataset produced by electrospinning process of PVAc and others polymers will
be taken into account.
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