
07 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Reinforcement Learning Algorithms for Online Single-Machine Scheduling / Li, Yuanyuan; Fadda, Edoardo; Manerba,
Daniele; Tadei, Roberto; Terzo, Olivier. - (2020), pp. 277-283. (Intervento presentato al convegno FedCSIS)
[10.15439/2020F100].

Original

Reinforcement Learning Algorithms for Online Single-Machine Scheduling.

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.15439/2020F100

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2849704 since: 2021-04-28T22:58:58Z

Springer

Reinforcement Learning Algorithms for Online
Single-Machine Scheduling

Yuanyuan Li∗, Edoardo Fadda†, Daniele Manerba‡,
Roberto Tadei† and Olivier Terzo∗

∗LINKS Foundation - Advanced Computing and Applications, 10138 Torino, Italy
Email: {yuanyuan.li, olivier.terzo}@linksfoundation.com

†Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy
Email: {edoardo.fadda, roberto.tadei}@polito.it

‡Department of Information Engineering, University of Brescia, 25123 Brescia, Italy
Email: daniele.manerba@unibs.it

Abstract—Online scheduling has been an attractive field of
research for over three decades. Some recent developments
suggest that Reinforcement Learning (RL) techniques have
the potential to deal with online scheduling issues effectively.
Driven by an industrial application, in this paper we apply
four of the most important RL techniques, namely Q-learning,
Sarsa, Watkins’s Q(λ), and Sarsa(λ), to the online single-machine
scheduling problem. Our main goal is to provide insights on
how such techniques perform. The numerical results show that
Watkins’s Q(λ) performs best in minimizing the total tardiness
of the scheduling process.

I. INTRODUCTION

Production scheduling is one of the most important aspects
to address in many manufacturing companies (see [1]). The
optimization problems arising within production scheduling
can be of static or dynamic type (see [13]). In contrast with the
static case, in which specifications and requirements are fully
and deterministically known in advance, in the dynamic one,
additional information (e.g., new orders, changes of available
resources) may arrive during the production process itself. In
this paper, we will consider the latter case, commonly called
online scheduling, mainly fostered by our experience on an
industrial project (Plastic and Rubber 4.01) in which frequent
occurrences of unexpected events call for more dynamic and
flexible scheduling (see [15]).

In particular, we will focus on online single-machine
scheduling problems with release dates and preemption
allowed, in which the objective is to minimize the total
tardiness. Let us consider a set J of jobs that are released
over time. As soon as a job arrives, it is added to the end
of a waiting queue. For each job j ∈ J , let dtj be its due
time and ctj its completion time. The goal of the problem is to
arrange the jobs of the queue, so to minimize the total tardiness
calculated as Γ =

∑
j∈J taj , where taj := max{0, ctj−dtj}.

The motivation of studying a single-machine problem relies

1Plastic&Rubber 4.0. Piattaforma Tecnologica per la Fabbrica
Intelligente (Technological Platform for Smart Factory), URL:
https://www.regione.piemonte.it/web/temi/fondi-progetti-europei/fondo-euro\
\peo-sviluppo-regionale-fesr/ricerca-sviluppo-tecnologico-innovazione/piatta\
\forma-tecnologica-fabbrica-intelligente

on the fact that, in the plastic and rubber manufacturing, the
process of transforming raw material into a final product just
goes through one or two machines. On the other hand, even for
those manufacturing requiring multiple-machine scheduling
problems, each machine represents a basic block of a chain.
Thus improper usage of a machine can slow down the whole
production process.

The easiest way to deal with scheduling in a dynamic
context is the use of the so-called dispatching rules. These
rules first prioritize jobs waiting for being processed and
then select the job with a greedy evaluation whenever a
machine gets free (see Section II for more details). While
most dispatching rules simply schedule on a local view
basis, other smarter approaches can be used to provide better
results in the long run. For instance, Reinforcement Learning
(RL) is a continuing and goal-directed learning paradigm,
and it represents a promising approach to deal with online
scheduling. The potential of RL on online scheduling has
been revealed in several works (see, e.g., [10], [19], [26]).
However, while most works compare a single RL algorithm
with commonly-used dispatching rules, they lack in comparing
different RL algorithms. A research question naturally arises:
how do different RL algorithms perform on online scheduling?

Motivated by investigating the applicability of RL
algorithms on online single-machine scheduling in detail,
in this work, we will compare the following approaches’
performance:

• a random assignment (Random) which simply selects a
job randomly;

• one of the most popular dispatching rules, namely the
earliest due date (EDD) rule;

• four RL approaches, namely Q-learning, Sarsa, Watkins’s
Q(λ), and Sarsa(λ).

Furthermore, we will test the algorithms under different
operating conditions (e.g., the frequency of job arrivals).
Watkins’s Q(λ) seems the most promising method in most
of the cases. Therefore, we contribute the literature on two
different aspects: getting insights on the compared methods,

and giving practitioners suggestions on selecting the best
method against the specific situation. Notice that comparing
and evaluating different algorithms against various aspects
and performance indicators is a commonly adopted research
methodology (see, e.g., [2], [5], [6], [7], [8], and [11]).
The specific comparison of RL algorithms can be found, for
instance, in the game field. In [23], the authors compared two
RL algorithms (Q-learning and Sarsa) through the simulation
of bargaining games. Even though the two algorithms
present slight differences, they might have essentially different
simulation results, as reflected in our experiment (see Section
IV).

Finally, we also propose some preliminary results obtained
by the use of Deep Q Network (DQN), which utilizes the
power of neural networks to approximate the value function
(see [17] for a review about DQN). However, our experiments
will show that DQN is better suited for high-dimensional
inputs. In contrast, with smaller input settings, DQN has a
longer training time and obtains results that are far from the
performance of Watkins’s Q(λ).

The rest of the paper is organized as follows. Section II
is dedicated to a general overview of RL techniques, while
Section III introduces and reviews some previous works using
RL approaches on scheduling problems. Section IV describes
the algorithmic framework for the online single-machine
problem. Section V defines the simulation procedure, and the
simulation results from three different types of experiments
(Section VI). Finally, in Section VII, the paper concludes with
a summary of the findings and some future lines.

II. REINFORCEMENT LEARNING

RL is a branch of Machine Learning that improves
automatically through experience. It comes from three
main research branches: the first relates to learning by
trial-and-error, the second relates to optimal control problems,
and the last relates to temporal-difference methods (see [21]).
The three approaches converged together in the late eighties
to produce the modern RL.

RL approaches can be applied to scenarios in which a
decision-maker called agent interacts with a set of states called
environment by means of a set of possible actions. A reward
is given to the agent in each specific state. In this paper, we
consider a discrete time system, i.e. defined over a finite set
T of time steps with its cardinality being called time horizon.
As shown in Figure 1, at each time step t ∈ T , an agent
in state St takes action At, then, the environment reacts by
changing into state St+1 and by rewarding the agent of Rt+1.
The interaction starts from an initial state, and it continues
until the end of the time horizon. Such a sequence of actions
is named an episode. In the following, E will represent the set
of episodes.

Each state of the system is associated with a value function
that estimates the expected future reward achievable from
that state. Each state-action pair (St, At) is associated with
a so-called Q-function Q(St, At) that measures the future

reward achievable by implementing action At in state St. The
agent’s goal is to find the best policy, which is a function
mapping the set of states to the set of actions, maximizing
the cumulative reward. If exact knowledge of the Q-function
is available, the best policy for each state is defined by
maxaQ(St, a).

Fig. 1. The agent-environment interaction in RL [21].

To estimate the value functions Q(s, a) and discover the
optimal policies, three main classes of RL techniques exist
Monte Carlo (MC)-based, Dynamic Programming (DP)-based
methods, and temporal-difference (TD)-based methods. Unlike
DP-based methods, which require complete knowledge of
all the possible transitions, MC-based methods only require
some experience and the possibility to sample from the
environment randomly. TD-based methods are a sort of
combination of MC-based and DP-based ones: they sample
from the environment like in MC-based methods and
perform updates based on current estimates like DP-based
ones. Moreover, TD-based methods are also appreciated for
being flexible, easy to implement, and computationally fast.
For these reasons, in this paper, we will consider only
RL algorithms belonging to the TD-based methods. Even
if several TD-based RL algorithms have been introduced
in the literature, the most used are Sarsa (an acronym
for State-Action-Reward-State-Action), Q-learning and their
variations, e.g. the Watkins’s Q(λ) method and the Sarsa(λ)
(see [24]).

III. LITERATURE REVIEW

Since online scheduling has been an active field for several
decades, an in-depth analysis of the literature review is out of
scope for the present paper. Thus, in this section, we recall
some of the most traditional approaches to online scheduling,
and we review the main applications of RL to this problem.

Differently from tailored algorithms (heuristic and exact
methods), which might require effort in implementation and
calibration over a broad set of parameters, dispatching rules
are widely adopted for online scheduling for their simplicity
(see, e.g., [14]). For instance, the earliest due date (EDD)
dispatching rule is one of the most commonly used ones in
practical applications [22]. EDD simply schedules first the job
with the earliest due date. Again, in [12], the authors propose
a deterministic greedy algorithm known as list scheduling
(LS), which simply assigns each job to the machine with the
smallest load. For more details, we refer the reader to the
work [18] that classified over one hundred dispatching rules.

In [4], the authors designed a deterministic algorithm and
a randomized one for online machine sequencing problems
using Linear Programming techniques. At the same time,
in [16], the authors proposed an algorithm to make jobs
artificially available to the online scheduler by delaying the
release time of jobs.

In online scheduling, a decision-maker is regularly
scheduling jobs over time, attempting to reach the overall best
performance. Therefore, it is reasonable that RL represents
one of the possible techniques able to exploit such a setting.

In [10], the authors interpreted job-shop scheduling
problems as sequential decision processes. They try to improve
the job dispatching decisions of the agent by employing an
RL algorithm. Experimental results on numerous benchmark
instances showed the competitiveness of the RL algorithm.
More recently, in [26], the authors modeled the scheduling
problem as a Markov Decision Process and solved it through
a simulation-based value iteration and a simulation-based
Q-learning. Their results clearly showed that such RL
algorithms could achieve better performance concerning
several dispatching heuristics, disclosing the potential of
RL application in the field. In the context of an online
single-machine environment, in [25], the authors compared
the performance of neural fitted Q-learning techniques using
combinations of different states, actions, and rewards. They
proved that taking only the necessary inputs of states and
actions is more efficient.

While all the discussed works revealed the competitiveness
of RL on scheduling problems, a further comparison of the
performance among various RL algorithms is still missing in
the scheduling literature. With the knowledge of the available
studies showing the potential of RL and the demand from the
industrial application, we are motivated to compare different
RL approaches’ performance on online scheduling for getting
more insights. In particular, we carry out experimental studies
on four of the most commonly used model-free RL algorithms,
namely Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ). Our
comparison methodology is inspired by [25], in which the best
configuration for minimizing maximal lateness is pursued. In
our work, instead, we aim at minimizing the total tardiness of
the scheduling process. Moreover, another major difference
with their work lies in the way we evaluate the results.
While they used the result from one run, our results come
from 50 runs with different random seeds, and two different
time step sizes are tested (the interaction between agent and
environment is checked in each step). Also, we further test
a neural network-based RL technique showing that it is not
necessary to use such a combination when the state space is
limited.

IV. REINFORCEMENT LEARNING ALGORITHMS FOR
ONLINE SCHEDULING

In this section, we describe the algorithmic framework used
to deal with our online single-machine scheduling problem. In
particular, we provide several variants based on different RL
techniques.

A. States, actions, and rewards

To be approached by RL techniques, we define our problem
setting along the lines used in [25]. In particular:
• state: a state is associated with each possible length of

the jobs in the waiting queue;
• action: if not all the jobs are finished, the action is

either to select one new job from a specific position of
the waiting queue and start processing it (we recall that
preemption is allowed), or to continue processing the job
which has been already assigned to the machine in the
previous step;

• reward: since RL techniques aim at maximizing rewards
while our problem aims at minimizing the total tardiness,
we set the reward of a state as the opposite value of its
total tardiness.

When the action implies the selection of a job from a certain
position in the waiting queue, it is important to decide the
order in which jobs are stored inside the queue. Therefore, we
implemented three possible ordering of jobs which provide
very different scheduling effects:
• jobs are unsorted (UNSORT), i.e., they have the same

order as the arrivals;
• jobs are sorted by increasing value of due time (DT);
• all unfinished jobs are sorted by increasing the value of

the sum of due time and processing time (DT+PT).
For instance, by using DT, if the action is to select a job in the
second position of the queue, the job with the second earliest
due time will be processed.

B. RL algorithms adopted

We have decided to implement four different RL algorithms,
namely Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ). They
are described in the following. Here are some notations used:
• s state;
• a action;
• S set of nonterminal states;
• A(s) set of actions possible in state s;
• St state at t;
• At action at t;
• Rt reward at t.

1) Q-learning: Q-learning is a technique that learns the
value of an optimal policy independently of the agent’s action.
It is largely adopted for its simplicity in the analysis of the
algorithm and for the possibility of early convergence proofs
by directly approximating the optimal action-value function
(see [24] and [21]). The updating rule for the estimation of
the Q-function is:

Q(St, At)← Q(St, At)+

α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]. (1)

The Q(St, At) function estimates the quality of state-action
pair. At each time step t, the reward Rt+1 from state St
to St+1 is calculated and Q(St, At) is updated accordingly.
The coefficient α is the learning rate (0 ≤ α ≤ 1); it

determines the extent that new information overrides the old
information. Furthermore, γ is the discount factor determining
the importance of future reward and finally, maxaQ(St+1, a)
is the estimation of best future value.

The values of the Q-function are stored in a look-up table
called Q table. Figure 2 displays an example of Q table storing
Q-function values for states from 0 to 10 (in row) and actions
from selecting Job 1 to Job 5 (in column). By overlooking

Fig. 2. An example of Q table.

the actual policy being followed in deciding the next action,
Q-learning simplifies the analysis of the algorithm and enabled
early convergence proofs.

2) Sarsa: Sarsa is a technique that updates the estimated
Q-function by following the experience gained from executing
some policies (see [20] and [21]). The updating rule for the
estimation of the Q-function is:

Q(St, At)← Q(St, At)+

α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]. (2)

The structure of formula (2) is similar to (1). The only
difference is that (2) considers the actual action implemented
in the next step At+1, instead of the generic best action
maxaQ(St+1, a).

As for Q-learning, also in Sarsa the values of the Q-function
are stored in a Q table. Despite the more expensive behaviour
with respect to Q-learning, Sarsa may provide better online
performances in some scenarios (as shown by the Cliff Walking
example in [21]).

3) Watkins’s Q(λ): Watkins’s Q(λ) is a well-known variant
of Q-learning. The main difference with respect to classical
Q-learning is the presence of a so-called eligibility trace, i.e.
a temporary record of the occurrence of an event, such as the
visiting of a state or the taking of an action. The trace marks
the memory parameters associated with the event as eligible
for undergoing learning changes. A trace is initialized when
a state is visited or an action is taken, and then the trace gets
decayed over time according to a decaying parameter λ (with
0 ≤ λ ≤ 1). Let us call et(s, a) the trace for a state-action pair
(s, a). Let us also define an indicator parameter 1xy that takes
value 1 if and only if x and y are the same, and 0 otherwise.
Then, for any (s, a) pair (for all s ∈ S , a ∈ A), the updating
rule for the estimation of the Q-function is:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) (3)

where

δt = Rt+1 + γmax
a′

Qt(St+1, a
′)−Qt(St, At) (4)

and

et(s, a) = γλet−1(s, a) + 1sSt1aAt (5)

if Qt−1(St, At) = maxaQt−1(St, a), and 1sSt
1aAt

otherwise.
As the reader can notice, by plugging Eq. (4) into Eq. (3),

we obtain an equation similar to (1) but with the additional
eligibility term that increments the value of δt if the state and
action selected by the algorithm are one of the eligibility states.
In the rest of the paper we use Q(λ) referring to Watkins’s
Q(λ).

4) Sarsa(λ): Similarly to Q(λ), the Sarsa(λ) algorithm
represents a combination between Sarsa and eligibility traces
to obtain a more general method that may learn more
efficiently. Here, for any (s, a) pair (for all s ∈ S, a ∈ A),
the updating rule for the estimation of the Q-function is:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) (6)

where

δt = Rt+1 + γQt(St+1, At+1)−Qt(St, At) (7)

and
et(s, a) = γλet−1(s, a) + 1sSt

1aAt
(8)

Unlike Eq. (5), there is no other condition (set the eligibility
traces to 0 whenever a non-greedy action is taken) added. A
deeper discussion about the interpretation of the formulas is
given in [21].

V. SIMULATION PROCEDURE

In order to perform the comparison under interest, we create
an online scheduling simulation procedure as described in
Algorithm 1.

Algorithm 1 Online scheduling simulation through RL
algorithms
Require: |E| number of episodes; |T | number of time-steps;

1: Initialize Q(s, a) = 0,∀ s ∈ S, a ∈ A;
2: for η ← 1 to |E| do
3: Initialize S
4: for t← 1 to |T | do
5: if new jobs arrive then
6: Update waiting list L
7: end if
8: if L is not empty then
9: Take At in St, observe Rt, St+1

10: Calculate At+1 and update Qt
11: St ← St+1, At ← At+1

12: end if
13: end for
14: end for

We first update Q tables through a training phase then use
the Q tables to select actions in the test phase.

The arrival time of job j are distributed according to an
exponential distribution, i.e., Xj ∼ exp(r) with the rate
parameter valued r = 0.1. It is simulated in this way: at the
first time step, a random number of jobs (from 1 to 6 jobs)
and an interval time (following the exponential distribution)
are generated. Once a job is generated (simulating the arrival
of the job), it will be put into the waiting queue immediately.
Then at the next time step, if the interval time is passed,
new jobs will be generated and put into the waiting queue;
meanwhile, a new interval time will be created. Otherwise,
nothing is created. Then the same procedure repeats till
reaching a final state.

For the settings regarding RL algorithms:
• In the policy, ε = 0.1 enabling highly greedy actions

while keeping some randomness in job selections;
• In the value function, α = 0.6, i.e., there is a bit higher

tendency to explore more possibilities while a bit lower
in keeping exploiting old information, whereas γ = 1.0,
which means it strives for a long-term high reward;

• In the eligibility traces, λ is 0.95, a high decaying value
is leading to a longer-lasting trace.

It is worth noting that all the algorithms considered are
heuristics. Thus they focus on finding a good solution
in a short amount of time by finding a balance between
intensified and diversified explorations of the solution space.
Nevertheless, the plain implantation of the algorithms above
does not ensure enough diversification. For this reason, it is
common to use a ε-greedy method. Thus, with probability
ε, exploration is chosen, which means the action is chosen
uniformly at random between the available ones. Instead, with
probability 1− ε, exploitation is chosen by taking the actions
with the highest values greedily. After knowing the way to
balance exploration and exploitation, we need to define a
learning method for finding out policies leading to higher
cumulative rewards.

In an episode, we start a new schedule by initializing state
S and terminates when either reaching the maximum steps or
no jobs to process. To simulate real-time scheduling, for each
episode, we check the arrivals of new jobs and update the
waiting queue if there are, then we choose the action A, and
calculate the reward R and the next state S′ accordingly. The
Q functions are updated according to the exact RL algorithms
used. The same procedure is carried out in both training and
test phases except that in the test. The Q table is not initialized
with empty values but obtained from the training phase.

Let us see a training example with Q-learning to see for the
same schedule how the reward is accumulated, and objective
value evolves with more episodes passing by. In Fig. 3, the
graph on the bottom shows after around 80 episodes, the
reward reaches the maximum and holds steady. Accordingly,
the objective value - total tardiness drops more slowly after
around 80 episodes. While the reward keeps stable, total
tardiness continues dropping to around 4,0000. To summarize,
using total tardiness as a reward is useful, but it is still

challenging to represent the trend of the objective value
adequately.

Fig. 3. The changes to reward and the objective value (total tardiness) of 100
episodes.

VI. NUMERICAL EXPERIMENTS

In this section, we propose three different experimental
results. Section VI-A compares the performance among
random assignment (Random), EDD, and the four RL
approaches implemented. Section VI-B investigates the
possible impact of different operating conditions (i.e.,
frequency of jobs arrivals) on the RL approaches. Finally,
Section VI-C compares Q(λ) and DQN.

The algorithms have been implemented in Python 3.6. To
avoid possible ambiguities, we locate the related code in a
public repository2. All the experiments are carried out on an
Intel Core i5 CPU@2.3GHz machine equipped with 8GB
RAM and running MacOS v10.15.4 operating system.

A. RL algorithms vs Random and EDD
To check if considering different time horizons leads to

different results, we consider two experiments in which the
time horizon T is set to 2500 and 5000, respectively. For
each of the settings, we ran 50 tests with different random
seeds. For each algorithm Θ, we call ΓζΘ the total tardiness
achieved in simulation ζ . Furthermore, we define ρζΘ to be
the percentage gap between the total tardiness achieved by the
best algorithm and by algorithm Θ during run ζ, i.e.,

ρζΘ =
ΓζΘ

minζΘ ΓζΘ
. (9)

2URL: https://github.com/Yuanyuan517/RL_OnlineScheduling.git

To compare the different algorithms, we consider the average
value of ρζΘ concerning all the runs.

The simulation results with the algorithms (under different
job orders, time horizons) are displayed in Table I, where
avg(ρζΘ), std(ρζΘ) are respectively the mean and standard
deviations of ρζΘ. The best value among all the combinations

TABLE I: Experiment cases of the algorithms with different
settings

|T |=2500 |T |=5000
Algorithm Jobs order avg(ρζΘ) std(ρζΘ) avg(ρζΘ) std(ρζΘ)

Random - 2.59 0.50 3.06 0.69
EDD - 7.67 1.76 9.19 1.47
Q-learning UNSORT 2.15 0.43 2.04 0.35
Q-learning DT 1.45 0.28 1.29 0.20
Q-learning DT+PT 1.44 0.30 1.25 0.18
Sarsa UNSORT 2.55 0.53 2.47 0.39
Sarsa DT 1.65 0.40 1.76 0.36
Sarsa DT+PT 1.66 0.47 1.68 0.33
Sarsa(λ) UNSORT 4.42 0.93 5.04 0.93
Sarsa(λ) DT 7.04 1.35 7.73 1.34
Sarsa(λ) DT+PT 3.08 1.03 7.70 1.33
Q(λ) UNSORT 2.04 0.42 2.01 0.40
Q(λ) DT 1.11 0.18 1.13 0.17
Q(λ) DT+PT 1.19 0.26 1.09 0.14

of algorithms and jobs order policies for each time horizon is
highlighted in bold font.

While [25] shows EDD gets a better result than RL to
minimize the maximum tardiness, with the new objective
of minimizing total tardiness in our experiments, all RL
algorithms get better results than EDD.

As shown in Table I, the size of running time steps
influenced the result on job order but does not influence the
algorithm. And for the case with 2500 steps, the configuration
Q(λ) plus DT gets the best result, instead for 5000 steps, the
configuration Q(λ) plus DT+PT gets the best result.

Besides, we find with the sorting choice DT+PT that
all algorithms get smaller average values except for the
configuration Q(λ) with 2500 steps. Comparatively, a
randomly sorting job leads to a much worse result.

B. Q(λ) performance against different job arrival rates

Another test is on the operating condition - the frequency of
job arrivals for the two best combinations Q(λ) plus DT and
Q(λ) plus DT+PT, which is controlled by the rate parameter
r. To understand whether the value of r affects performance,
we experimented with 2 more values, i.e. r = {0.05, 0.2} in
addition to the previous one r = 0.1.

In Table II, the results are also normalized by following Eq.
(9) with 50 tests and |T | = 2500 for each test. As shown in
the table, with small r = 0.05, r = 0.1 (indicating jobs arrive
much less frequently than the last one), the version with jobs
ordered by DT performs better. When jobs arrive much more
frequently, the version sorted by DT + PT wins. Hence a
careful selection of algorithms and settings according to the
operating conditions matters.

TABLE II: Experiment cases of the rate parameter with best
settings from Q(λ).

Jobs order r avg(ρζΘ) std(ρζΘ)

DT 0.05 1.14 0.18
DT+PT 0.05 1.17 0.55
DT 0.10 1.10 0.17
DT+PT 0.10 1.17 0.26
DT 0.20 1.17 0.28
DT+PT 0.20 1.12 0.24

C. Comparison between Q(λ) and DQN

In the third test we compare a four-layer DQN and
Q(λ) plus DT+PT, i.e. the better performing RL algorithm
according to Table I. Figure 4 shows such a comparison. The
result is from running 50 tests and |T | = 5000 in each test. The
horizontal axis represents the total tardiness and the vertical
axis shows the probability the objective value falls in. The
dark yellow area indicates the overlapping between Q(λ) and
DQN .

Fig. 4. The comparison between Q(λ) and DQN on the total tardiness of
50 runs with different seeds representing different schedules.

We can see Q(λ) has much higher probability with smaller
objective value, which indicates Q(λ) outperforms DQN .
Taking into account the time spent in training DQN is almost
10 times of Q(λ), Q(λ) is a better option, especially for
guaranteeing a flexible and adaptive scheduling in realtime.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we compared four RL methods, namely
Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ), with
EDD and random assignment on an online single-machine
scheduling problem. The experiments show that:
• better scheduling performance is achieved by the RL

method Watkins’s Q(λ), especially when the action
concerns the selection of jobs sorted by due date for the
smaller time horizon (|T | = 2500) and the selection of
jobs sorted by due date and processing time for bigger
time horizon (|T | = 5000).

• the tests on r disclose the combination of Q(λ) and job
orders have different performances in various operating
conditions.

• slight difference in algorithms can profoundly change the
results.

Besides, with limited input, using DQN is too costly
for extended running time and energy spent in adjusting
parameters to guarantee a good result. The results above
indicate careful analysis should be done from different
angles (running time, operating conditions, average results
from multiple experiments) for making a wiser selection of
algorithms.

Furthermore, with multiple machines, more transitions
must be considered, which need more representational state
information. Thus it will be impossible to store values of all
state-action pairs in a Q table. DQN may take a leading
role then. As indicated by the work [9], unpredictable changes
may happen at different places in the state-action space, and
more care should be taken to avoid instabilities of DQN . One
techniques that can acheive this goal is the usage of kernel
function (see [3]), this builds a future research avenue.

ACKNOWLEDGEMENT

This research was partially supported by the Plastic and
Rubber 4.0 (P&R4.0) research project, POR FESR 2014-2020
- Action I.1b.2.2, funded by Piedmont Region (Italy), Contract
No. 319-31. The authors acknowledge all the project partners
for their contribution.

REFERENCES

[1] Brucker P (2010) Scheduling Algorithms, 5th edn.
Springer Publishing Company, Incorporated

[2] Castrogiovanni P, Fadda E, Perboli G, Rizzo A (2020)
Smartphone data classification technique for detecting
the usage of public or private transportation modes. IEEE
Access 8:58,377–58,391, DOI 10.1109/ACCESS.2020.
2982218

[3] Cerone V, Fadda E, Regruto D (2017) A robust
optimization approach to kernel-based nonparametric
error-in-variables identification in the presence of
bounded noise. In: 2017 American Control Conference
(ACC), IEEE, DOI 10.23919/acc.2017.7963056, URL
https://doi.org/10.23919

[4] Correa JR, Wagner MR (2009) Lp-based online
scheduling: from single to parallel machines.
Mathematical Programming 119(1):109–136

[5] Fadda E, Plebani P, Vitali M (2016) Optimizing
monitorability of multi-cloud applications. pp 411–426,
DOI 10.1007/978-3-319-39696-5_25

[6] Fadda E, Perboli G, Squillero G (2017) Adaptive
batteries exploiting on-line steady-state evolution
strategy. In: Squillero G, Sim K (eds) Applications
of Evolutionary Computation, Springer International
Publishing, Cham, pp 329–341

[7] Fadda E, Manerba D, Tadei R, Camurati P, Cabodi G
(2019) KPIs for Optimal Location of charging stations

for Electric Vehicles: the Biella case-study. In: Ganzha
M, Maciaszek L, Paprzycki M (eds) Proceedings of
the 2019 Federated Conference on Computer Science
and Information Systems, IEEE, Annals of Computer
Science and Information Systems, vol 18, pp 123–126,
DOI 10.15439/2019F171, URL http://dx.doi.org/10.
15439/2019F171

[8] Fadda E, Manerba D, Cabodi G, Camurati P,
Tadei R (2020) Comparative analysis of models and
performance indicators for optimal service facility
location. Transportation Research part E: Logistics and
Transportation Reviews (submitted)

[9] François-Lavet V, Fonteneau R, Ernst D (2015) How
to discount deep reinforcement learning: Towards new
dynamic strategies. arXiv preprint arXiv:151202011

[10] Gabel T, Riedmiller M (2008) Adaptive reactive
job-shop scheduling with reinforcement learning agents.
International Journal of Information Technology and
Intelligent Computing 24(4):14–18

[11] Giusti R, Iorfida C, Li Y, Manerba D, Musso S,
Perboli G, Tadei R, Yuan S (2019) Sustainable
and de-stressed international supply-chains through the
synchro-net approach. Sustainability 11:1083, DOI 10.
3390/su11041083

[12] Graham RL (1966) Bounds for certain multiprocessing
anomalies. Bell System Technical Journal
45(9):1563–1581, DOI 10 . 1002 / j . 1538-7305 . 1966 .
tb01709.x

[13] Graves SC (1981) A review of production scheduling.
Operations Research 29(4):646–675, DOI 10.1287/opre.
29.4.646

[14] Kaban A, Othman Z, Rohmah D (2012) Comparison
of dispatching rules in job-shop scheduling problem
using simulation: a case study. International Journal
of Simulation Modelling 11(3):129–140, DOI 10.2507/
IJSIMM11(3)2.201

[15] Li Y, Carabelli S, Fadda E, Manerba D, Tadei R, Terzo O
(2020) Machine learning and optimization for production
rescheduling in industry 4.0. The International Journal of
Advanced Manufacturing Technology pp 1–19, DOI 10.
1007/s00170-020-05850-5

[16] Lu X, Sitters R, Stougie L (2003) A class of on-line
scheduling algorithms to minimize total completion time.
Operations Research Letters 31(3):232–236, DOI 10.
1016/S0167-6377(03)00016-6

[17] Mnih V, Kavukcuoglu K, Silver D, Graves A,
Antonoglou I, Wierstra D, Riedmiller M (2013) Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:13125602

[18] Panwalkar SS, Iskander W (1977) A survey of scheduling
rules. Operations Research 25(1):45–61, DOI 10.1287/
opre.25.1.45

[19] Sharma H, Jain S (2011) Online learning algorithms
for dynamic scheduling problems. In: 2011 Second
International Conference on Emerging Applications of
Information Technology, pp 31–34

[20] Singh S, Jaakkola T, Littman ML, Szepesvári C
(2000) Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine learning
38(3):287–308, DOI 10.1023/A:1007678930559

[21] Sutton RS, Barto AG (2018) Reinforcement learning: An
introduction. MIT press

[22] Suwa H, Sandoh H (2012) Online scheduling in
manufacturing: A cumulative delay approach. Springer
Science & Business Media

[23] Takadama K, Fujita H (2004) Toward guidelines for
modeling learning agents in multiagent-based simulation:
Implications from q-learning and sarsa agents. In:
International Workshop on Multi-Agent Systems and

Agent-Based Simulation, Springer, pp 159–172, DOI 10.
1007/978-3-540-32243-6_13

[24] Watkins CJCH (1989) Learning from delayed rewards.
Thesis Submitted for Ph.D., King’s College, Cambridge

[25] Xie S, Zhang T, Rose O (2019) Online single machine
scheduling based on simulation and reinforcement
learning. In: Simulation in Produktion und Logistik 2019,
Simulation in Produktion und Logistik 2019

[26] Zhang T, Xie S, Rose O (2017) Real-time job shop
scheduling based on simulation and markov decision
processes. In: 2017 Winter Simulation Conference
(WSC), IEEE, pp 3899–3907, DOI 10.1109/WSC.2017.
8248100

