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Abstract—Air quality, especially particulate matter, has re-
cently attracted a lot of attention from governments, industry,
and academia, motivating the use of denser air quality monitoring
networks based on low-cost sensing strategies. However, low-
cost sensors are frequently sensitive to aging, environmental
conditions, and pollutant cross-sensitivities. These issues have
been only partially addressed, limiting their usage.

In this study, we develop a low-cost particulate matter monitor-
ing system based on special-purpose acquisition boards, deployed
for monitoring air quality on both stationary and mobile sensor
platforms. We explore the influence of all model variables, the
quality of different calibration strategies, the accuracy across
different concentration ranges, and the usefulness of redundant
sensors placed in each station. The collected sensor data amounts
to about 50GB of data, gathered in six months during the
winter season. Tests of statically immovable stations include an
analysis of accuracy and sensors’ reliability made by comparing
our results with more accurate and expensive standard β-
radiation sensors. Tests on mobile stations have been designed to
analyze the reactivity of our system to unexpected and abrupt
events. These experiments embrace traffic analysis, pollution
investigation using different means of transport and pollution
analysis during peculiar events.

With respect to other approaches, our methodology has been
proved to be extremely easy to calibrate, to offer a very high
sample rate (one sample per second), and to be based on an
open-source software architecture. Database and software are
available as open source in [1].

Index Terms—WSN, Pollution Measurement, Open-source.

I. INTRODUCTION

Conventional approaches to track the air quality are based
on very sparse networks of static reference-grade detectors.
The spatial coverage of these networks has been limited by
the high cost of instrumentation. From the one side, micro-
balance Particulate Matter (PM) monitoring stations are very
accurate, but they are large and cost on the order of 50K-100K
dollars. On the other one, portable light-scattering based PM
detectors have varying accuracy and costs between 300-2K
dollars [2]. Moreover, air pollutant concentrations often exhibit
significant spatial variability depending on local sources and
features of the built environment, which may not be well
captured by the existing sparse monitoring networks. As a
consequence, there has recently been a significant increase
in developing and applying low-cost sensor-based technology
which could enable much denser air quality networks at a
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comparable cost with the existing ones (see, for example,
Giusto et al. [3]). These sensing nodes can be adopted not
only in city-wide applications, but they can also be used
in more strategic, location-aware deployments [4] or even
to monitor the conservation state of historic buildings [5].
Furthermore, mobile monitoring enables participatory sensing
approaches, which in turn are well-suited to address many of
the above aspects, as they intrinsically involve empowering
citizens by providing individuals with low-cost measurement
devices. Unfortunately, mobile sensing devices have also sev-
eral drawbacks. Among these disadvantages, we recall their
necessity to be battery-supplied and their limited processing
capability. These limitations present challenges that can be
overcome only adopting persistent engineering solutions [6],
[7].

Following the previous considerations, in this work we
design, build, and verify a low-cost, open-source air-quality
system which is based on special-purpose acquisition boards,
it is deployed on stationary and mobile platforms, and it is
devised for participatory sensing strategies. We follow article
18.5 of Italian Decree 155/2010 on the dissemination of
air quality data, which absorbs EU directive 2008/50/CE.
Therefore we declare, in the acknowledgment section, that our
data cannot be considered as official.

First of all, we describe the design of our sensor platforms.
Each station contains 4 particulate matter (PM10 and PM2.5)
sensors plus single sensors for temperature, humidity, and
pressure. Each platform is powered by a Raspberry Pi Zero
Wireless board. This configuration enables our application to
work with a quite high sampling rate (i.e., one sample per
second) which is able to accurately follow sudden atmospheric
phenomena. We deployed about 100 sensors, both on station-
ary and mobile platforms, for a period of 5 months, from
October 2018 to February 2019. We focused upon the city
center of Turin (located in the north-west region of Italy) inside
and outside the limited traffic area to reflect the variation in
traffic density, driving speed, and street configuration. For the
sake of completeness, we also included in our experiments a
recreational area (i.e., a park) with very low traffic density
at its border. The monitoring hours cover the entire day,
with specific experiments running from 11.00 a.m. to 05.00
p.m. The collected database amounts to about 50GB of data,
corresponding to about 700·106 data tuples.

Secondly, we describe the entire software architecture. Our
application manipulates a heterogeneous set of input data
coming from our sensor stations and the reference platforms.
The public air quality station uses expensive instruments deliv-
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ering very accurate measures. Unfortunately, these samples are
available only from very sparse locations and they are gathered
only once per hour. We also collect public weather data to
study the relationship between the air quality as assessed by
our sensor stations and other weather information. To store
multiple kinds of data sources in a uniform format, we store
them in a my-SQL database.

Thirdly, once the database has been collected, we con-
centrate on data calibration and data validation. As far as
calibration is concerned, accurate and precise calibration mod-
els are particularly critical to the success of dense sensor
networks deployed in urban areas of developed countries. In
these situations, pollutant concentrations are often at the low
end of the spectrum of global pollutant concentrations, and
poor signal-to-noise ratio and cross-sensitivity may hamper
the ability of the network to deliver reliable results. Keeping
in mind this consideration, we perform our calibration phase
with great care, using both the Multivariate Linear Regression
Model and the Random Forest machine learning algorithm [8],
[9]. The latter one, to the best of our knowledge, has been
rarely applied to low-cost air quality monitor calibrations.
Moreover, we compare the results gathered with different
calibration phases and we validate them over different periods
to assess the quality of the result in time.

Finally, we perform some mobile tests. These include testing
a semaphore capability of managing traffic and the connection
with pollution, the pollution level to which dwellers are
exposed during their daily mobility (using different means of
transport), and the effect of sudden events on the air quality
(such as wind and the New Year’s eve fireworks). Even if
the results gathered in these scenarios often seem to confirm
common conjectures on pollution levels, in some specific case
they represent unexpected situation deserving further analysis.

A. Contributions

To sum up, the main contributions of our work are the
following:

• A special-purpose designed air-quality station, hosting
several low-cost sensors, with simple hardware and soft-
ware architectures, and a quite high sample rate (one
sample per second).

• A careful deployment of our stations in the city center,
for a period of over 5 months. This provides valuable
training and testing data for our models, enabling a long-
term evaluation of the entire system.

• Results on several calibration strategies with related val-
idation data over different periods of time.

• Several experiments to investigate the air-quality on mo-
bile and dynamic related events. These experiments are
enabled by our high sample rate, well suited to analyze
fast transient phenomena such as the pollution variation at
the traffic light, or the dynamic pollution variation during
New Year’s fireworks.

• A completely open-source architecture. The entire hard-
ware architecture, software implementation, and the entire
data-set collected during 5 months are made available [1].

B. Roadmap
The rest of this paper is structured as follows. Section II

describes the related work about air quality monitoring. Sec-
tion III presents an overview of our system hardware and
software architecture. Section IV describes our acquisition
methodology and our measurement sites. Section V and Sec-
tion VI focus on the calibration and validation strategy adopted
for our sensor stations. Sections VII and VIII illustrate data
gathered by stationary and mobile station boards, respectively.
Section IX reports some final considerations and discussion on
the lessons that can be learned from our analysis. Finally, Sec-
tion X concludes the paper with some summarizing remarks
and it gives some directions for future works.

II. RELATED WORKS

Urban air pollution has attracted great attention in recent
years as it has been shown to be of a significant risk to city
dwellers. At present, air pollution concentrations are mainly
collected by environmental or government authorities using
networks of fixed monitoring stations. Fixed stations obtain
flawless air quality data, as they can provide very accurate
measurements at the deployment locations. However, these
stations usually require significant investments and human
resources to be built and maintained. Thus, several alternatives
have been proposed over the years.

Randall [10] demonstrates that coarse-grained information
about air quality of the Earth’s surface can be obtained by
remote sensing using satellites. Although a large-scale area
can be easily covered by only one satellite, the accuracy of
this strategy highly depends on factors like weather conditions
and land-use characteristics. Following Kawamoto et al. [11],
a satellite-routed sensor system can increase accuracy, as data
can be accumulated by a large number of sensor terminals,
then gathered by the satellite, and finally transferred to the
ground station. The problem of data collisions may be solved
by adopting a “divide and conquer” approach to collect data
on demand. The method achieves efficient data collection from
numerous sensor terminals and it minimizes all operational
delays in the system. Nevertheless, the cost of any solution
exploiting satellites remains extremely high.

In order to find an alternative, cheaper than the previous
strategies, to the problem of air pollution, many recent works
concentrate on deploying low-cost sensors. A large number
of publications have reported the use of stationary or mobile
laboratories with low-cost sensors to collect air quality data
for specific purposes. For example, it has been shown that
distributed or mobile personal measurement devices equipped
with cheap commercial off-the-shelf dust sensors can reach
meaningful accuracy at a cost one to two orders of magnitude
lower than the one of current hand-held solutions [12]. The
same study also shows that participatory sensing, where co-
located measurements are shared across different devices, can
help reaching a high measurement accuracy. Moreover, the
participatory sensing paradigm includes also subjective per-
ceptions, such as posts by citizens on Online Social Network
(OSN) platforms, which can enrich the mere sampling of the
data [13]. Overall, two main research topics can be identified:
Managing a distributed network for local sensing and develop-
ing low-cost sensors of air pollutants. These topics are deeply
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investigated in recent scientific literature, as discussed in the
following paragraphs.

A network of vehicles carrying sensors for a flexible air
quality monitoring is called a vehicular sensor network (VSN).
For example, a VSN may consist of a set of cars equipped with
gas sensors, wireless connection, and GPS receivers. Gathering
big data efficiently in such densely distributed sensor networks
is challenging. Adjusting the data sampling rates of cars can
balance monitoring accuracy and communication cost as it
prevents the transmission of similar data collected from close
positions, thus alleviating network congestion [14]. Moreover,
the wireless transmission should be optimized to avoid ex-
cessive energy consumption. The network is usually divided
into sub-networks because of limited wireless communication
range. In this case, a proper clustering algorithm increases
energy efficiency of data gathering by managing the mobile
sink routing in the sub-networks [15]. Evidence shows that
there are other successful implementations of VSNs aside from
cars. For example, bicycles can carry sensors for air pollution
monitoring [16], [17]. It is shown that even a limited set
of mobile measurements makes it possible to map locations
with systematically higher or lower ultra-fine particles and
PM10 concentrations in urban environments. Unfortunately,
the use of semi-professional equipment to monitor PM10

levels makes this experiment unsuitable for low-cost urban
sensing scenarios. A different implementation exploits smart
devices integrating sensors to build an architecture for people-
centric environmental sensing platforms [18]. Smart objects
and virtual node technology establish closed loops of interac-
tions among people and physical devices. By aggregating on-
demand user data from smart devices, it is possible to measure
the space-time distribution of particulate matter. A case study
of particulate matter exposure in New York City illustrates the
potential application of such a system.

There are several issues in developing low-cost sensors for
air pollution management in cities, among which, reliability,
sensitivity, selectivity (different gases can contribute to the
response of the sensors), stability, longevity of operation
before replacement [19]. Low sensitivity and poor signal
quality can be addressed with sliding window and a low pass
filter [20]. This approach is adopted in a real case study, where
a wireless network of low-cost particle sensors is deployed
in a woodworking shop. Data quality can be improved by
identifying outliers in raw measurement data and inferring
anomalous events. This task can be achieved by means of an
anomaly detection framework composed of four modules [21]:
Time-sliced anomaly detector (detecting spatial, temporal, and
spatio-temporal anomalies in real-time sensor measurement
data stream), a real-time emission detector (detecting poten-
tial regional emission sources), a device ranker (providing a
ranking for each sensing device), and a malfunction detection
(identifying malfunctioning devices).

Finally, particular attention must be paid to calibration, as
this is a necessary step to obtain accurate measures. Zim-
merman et al. [9] proposes a multi-pollutant sensor package,
which measures CO, NO2, O3, and CO2, on which they
compare three different calibration methods: Laboratory uni-
variate linear regression, empirical multiple linear regression,
and machine-learning-based calibration models using random

forests. The evaluation reveals that only the sensors calibrated
with random-forest approach meet the US EPA Air Sensors
Guidebook [22] recommendations of minimum data quality
for personal exposure measurement. A similar study by Bigi
et al. [8] investigates the medium-term performance of a set
of NO and NO2 electrochemical sensors using three different
calibration approaches: Multivariate linear regression, support
vector regression, and random forest. The behavior of the
sensing devices over time and after a relocation was stud-
ied. It was noted that the performance of many algorithms
strongly depends on the comparability of calibration and
on the deployment area. The suitability of the devices for
mapping intra-urban pollution gradients of NO and NO2 was
also studied. The devices could not reliably map small intra-
urban gradients, thus they are not suitable for cleaner urban
areas. Nevertheless, they can quantitatively resolve intra-urban
concentration gradients on a hourly basis in higher polluted
cities. Time and cost of the calibration of low-cost sensors can
be reduced by firstly selecting sensors with similar responses.
Then, a single on-site calibration for one sensor could be used
for all sensors as the computed percent differences in the field
are similar to laboratory results [23].

Although mobile sensing can be successfully applied to
measure concentration of gases, such as ozone [24], and
ultra-fine particles [25], it is more frequently adopted in
monitoring air pollutants like PM2.5. For example, AirCloud
is a cloud-based monitoring system for PM2.5 concentration
using affordable sensors [26]. At the front-end, two types
of Internet-connected particulate matter monitors are adopted,
i.e., AQM and miniAQM, with a mechanical structure opti-
mized for inlet air-flow. On the cloud-side, a novel air quality
analytic engine calibrates the sensed data to improve accuracy.
Overall, the project enables the adoption of low-cost sensors
based on light-scattering for public air quality monitoring.
In Mosaic, another low-cost urban PM2.5 monitoring system
based on mobile sensing, monitoring nodes are first built with
a novel constructive airflow-disturbance design based on a
carefully tuned airflow structure and a GPS-assisted filtering
method [27]. Then, the buses used for system deployment are
selected by a novel algorithm that achieves both high coverage
and low computation overhead.

III. SYSTEM OVERVIEW

This section includes a description of our architecture from
several points of view, going from the hardware and software
architecture, to the communication protocols.

A. Hardware Architecture

We target the following key characteristics for our system:
(1) rapid and easy prototyping capabilities, (2) flexibility in
connection scenarios, and (3) cheapness but also robustness of
components. As each board has to include a limited number
of modules, to facilitate our prototype development, we select
the Raspberry Pi (RPi) [28] single-board computer as the
monitoring board. Due to our constraints in terms of cost,
size, and power consumption, we chose the Zero Wireless [29]
version based on the ARM® 11 microprocessor. All sensors
will be plugged to it as shown in Fig. 1.
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The basic operating principle of the system is the following.
The data gathered from the sensors are stored in the MicroSD
card of the RPi board. At certain time intervals the RPi tries
to connect to a Wi-Fi network and, if such a connection is
established, it uploads the newly acquired data to a remote
server. The creation of the Wi-Fi network is achieved using
a mobile phone set to operate a personal hot-spot, while
on the remote server the database storing all the performed
measurements resides.

B. Software Architecture
Wi-Fi connectivity was one of the requirements for the

system, but at the same time, the system itself should not
produce unnecessary electromagnetic noise, possibly impact-
ing the operating ability of the host’s appliances. To reduce
the time in which the Wi-Fi connection was active, the Linux
OS was set to activate the specific interface at predefined time
instants in order to connect to the portable hot-spot. Once
connected to the network, the system performed the following
tasks: (1) synchronization of the system and Real-Time Clock
with a remote Network Time Protocol (NTP) server [30], (2)
synchronization of the local samples directory with the remote
directory residing on the server. The latter task is performed
using the UNIX rsync utility, which has to be installed on
both machines.

To gather data from the sensors, a C program has been
implemented, which runs continuously with a separate process
reading from each physical sensor plugged to the board and
writing on the MicroSD card. It has to be noted that for what
concerns the PM sensors, since the UART communication had
to take place using GPIOs, a Pigpiod daemon [31] has been
exploited, to create digital serial ports over the Pi’s pins.

The directories on the remote server are a simple copy
of the MicroSD cards mounted on the boards. Data in these
directories have been inserted in a MySQL database with the
structure depicted in Fig. 2.

C. Mechanical Design and Hardware Components
In order to easily stack more than one device together, a

3D printed modular case has been designed. Several enclosing

PM 2.5/10

RH%

Pressure

Temperature

Core board

Cloud Database

Wi-FiLTE Cell

Fig. 1: Architecture of the proposed system. The data coming
from the sensors are first stored in Raspberry Pi, and then
transferred to a remote server over the Wi-Fi network.

frames can be tied together using nuts and bolts, with the use
of a single cap on top. Fig. 3 shows the 3D board design,
together with the final sensor and board configurations.

Each platform is equipped with 4 PM sensors (a good
trade-off between size and redundancy), 1 Temperature (T)
and Relative Humidity (HT) sensor and 1 Pressure (P) sensor.
As our target is to capture significant data sampling for the
particulate matter we adopt the following sensors:

• The Honeywell® HPMA115S0-XXX [32] as PM sensor.
As one of our targets is to evaluate these sensors’ suit-
ability for air pollution monitoring applications, we insert
4 instances of this sensor in every single platform. This
sort of redundancy allows us to detect strange phenomena
and to avoid several kinds of malfunctions, making more
stable the overall system.

• The DHT22 [33] as temperature and relative humidity
sensor. This is very widespread in prototyping applica-
tions, with several open-source implementations of its
library, publicly available on the internet [34].

• The Bosch® BME280 [35] as a pressure sensor. This is
a cheap but precise barometric pressure and temperature
sensor which comes pre-soldered on a small PCB for easy
prototyping.

The system also includes a Real Time Clock (RTC) module
for the operating system to retrieve the correct time after a
sudden power loss, i.e., the DS3231 module. The DS3231
communicates via I2C interface and has native support from
the Linux kernel.

As a last comment, a Printed Circuit Board (PCB) was
designed to facilitate connections and soldering of the various
sensors and other components.

IV. DATA ACQUISITION AND MEASUREMENT SITES

Our data acquisition campaign was carried out during
autumn and winter, from October 2018 to February 2019,
in the city of Turin in the north-west region of Italy. We
deployed our stations to include a wide range of environments,
such as residential boroughs, commercial areas, and parks.
Each location corresponds to a particular GPS coordinate, POI
(Point Of Interest), and sensor readings. Fig. 4 shows a map
of the city of Turin. It represents the deployment positions of
the stationary stations of some of our sensors and the paths
followed by a few other sensor platforms during the analysis
of dynamic and mobile events. Blue pins represent stationary
sensors outside and inside the limited traffic zone. The orange
pin represents the traffic light position in which we performed
some dynamic analysis. The green path shows the roadway
followed by our sensors on a bus, in a car, on a bicycle, and on
foot. The red pin indicates the position of the ARPA reference
station.

Fig. 5 focuses on the PM2.5 pollutant levels registered
by all our stationary sensors, when placed inside the ARPA
station, over a period of 5 months. Fig. 5a plots the readings
of all sensors before calibration but with all plots vertically
shifted to start from the same initial position. Plots consider
our original data sample rate, i.e., one reading per second.
This sample rate is definitely high, allowing us to analyze
pollution levels both statically ad dynamically, in terms of
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MEASURE

PK measureID int (auto)

FK sensorID int

timestamp int (POSIX)

data float

geoHash string

altitude float

PHYSICAL_SENSOR

PK phSensorID int

vendor string

model string

serialNumber string

firstUse int (POSIX)

description description

UNIT_OF_MEASURE

PK unitID int

unitOfMeasure string

BOARD_SENSOR_CONNECTION

PK timestamp int (POSIX)

PK phSensorID int

boardID int

boardPin int

LOGIC_SENSOR

PK sensorID int

FK phSensorID int

FK unitID int

acquisitionTime int (msec)

description string

BOARD_CONFIG

PK configID int (auto)

FK boardID int

FK paramID int

timestamp int (POSIX)

value string

PARAM_TYPE

PK paramID int(auto)

descritpion string

BOARD

PK boardID int

vendor string

model string

serialNumber string

Fig. 2: ER-diagram of the database, in Crow’s Foot notation.

(a) (b) (c) (d)

Fig. 3: Board design, sensors, and final measuring station. The stackable modular 3D printed case (a), a single sensor board
with 4 sensors (b), the set of boards used during the calibration phase (c), and ARPA Rubino monitoring station (d).

Fig. 4: The pins represent the following objects: The ARPA
reference station (red), the stationary sensors outside and
inside the limited traffic zone (blue), the traffic light (orange),
The green path shows the roadway followed by our sensors
during the dynamic analysis.

air pollution spatio-temporal variation. Fig. 5b represents the
reference sensor readings with the mean values of all our
sensors and the mean standard deviation, i.e., the mean values
incremented and decremented by the standard deviation. To
make the graph more readable than the one of Fig. 5a, we
report daily averaged values. Fig. 6 reports the same data of
Fig. 5b, i.e., the daily mean of the reference readings and of
our sensor readings, within a scatter X-Y plot. The coefficient
of determination (as computed by the SciKitLearn Python
library [36] r2_score) is equal to 0.8267.

V. THE CALIBRATION PHASE

As low-cost sensors are prone to cross-sensitivities with
other ambient variables [9], one of the main primary require-
ments in ambient measurement is their calibration. In general,
temperature and relative humidity follow linear patterns, and
linear regression has been the main technique used for low-
cost sensors. Multivariate linear regression (MLR) analysis has
been used to investigate several aspects of the air pollution
over the years. For example, Chaloulakou et al. [37] used
the regression models to investigate the complex relationships
between the meteorological and time period parameters as
factors controlling the PM levels. However, even if a sensor
is calibrated, non-linearities sometimes appear due to the
impurity and aging of low-cost sensing techniques. In these
cases, accurate and precise calibration models are particularly
critical, and there has been increasing interest in more sophisti-
cated algorithms for low-cost sensor calibration [8]. Moreover,
as reported by several researchers [38]–[40] artificial neural
networks may give more accurate results than the multivariate
linear regression model, mostly for PM10 forecasting, even
though the difference is often not remarkable. As a con-
sequence, we experimented with three different calibration
methods, namely Multivariate Linear Regression (MLR), Ran-
dom Forest (RF), and the Support Vector Regression (SVR)
model. As the last two methods delivered close results, we
just concentrate on MLR and RF in the sequel.

A. Calibration Strategies

1) The Multivariate Linear Regression (MLR) Model: In
Multivariate Linear Regression Models, regression analysis is
used to predict the value of one or more responses from a
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Fig. 5: Collected data for all statically deployed sensors (in the ARPA station) measuring PM2.5 (48 overall) for a period
of 5 months (from October 2018 to February 2019). All sensors are uncalibrated but their initial offset is modified to make
graphs coincide in the origin. Fig. 5a reports the time series for all sensors. Fig. 5b plots the reference, the mean and the mean
standard deviation (mean ± SD) for all our sensors.
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Fig. 6: Scatter plot comparing the reference data with our
sensor mean represented in Fig. 5b.

set of predictors. Let (x1, x2, . . . , xn) be a set of predictors
(dependent variables) believed to be related to a response
(independent) variable Y . The linear regression model for the
j-th sample unit has the form

Yj = β0 + β1 · xj1 + β2 · xj2 + . . .+ βr · xjr + εj

where εj is a random error and the βi are unknown (and fixed)
regression coefficients. The value β0 is the intercept. With n
independent observations, we can write one model for each
sample unit or we can organize everything into vectors and
matrices as:

Y = X · β + ε.

The training data are used to calculate the model coefficients,
and the model performance is evaluated on withheld testing

data. Separate MLR models are usually developed for each
sensor and each measure.

2) The Random Forest (RF) Model: A Random Forest
Model is a machine learning algorithm for solving regression
or classification problems. It works by constructing an ensem-
ble of decision trees using a training data set. The mean value
from that ensemble of decision trees is then used to predict
the value for new input data.

To develop a random forest model, we must specify the
maximum number of trees that make up the forest, and each
tree is constructed using a bootstrapped random sample from
the training data set. The origin node of the decision tree is
split into sub-nodes by considering a random subset of the
possible explanatory variables. The training algorithm splits
the tree based on which of the explanatory variables in each
random subset is the strongest predictor of the response. This
process of node splitting is repeated until a terminal node is
reached.

The user can specify the number of random explanatory
variables considered at each node, the maximum number of
sub-nodes or the minimum number of data points in the node
as the indication to terminate the tree.

B. Our Calibration Process

As PM2.5 is heavily influenced by meteorology fac-
tors, we exploit the dependencies between the sensor er-
ror and meteorology factors. More specifically, the Honey-
well® HPMA115S0-XXX Particulate Matter sensor has a
relatively high precision (±15µg/m3 from 0 to 100 µg/m3 ),
considered the extremely low price and the technology used.
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Nonetheless, it is required to calibrate the collected data to
remove possible offsets and linearity errors.

For that reason, during the calibration period, all sensors
have been placed near the stationary ARPA station in the city
of Turin, which exploits the β-radiation technology to provide
high precision measures. ARPA provides hourly average data
which have been used as a reference for all data collected
from the sensor boards. Please note that hourly-average data,
obtained with β-radiation approach, are fully consistent with
gravimetric sensor measurements.

As far as the boards are concerned, we first apply different
filters to remove outliers and possible undesired data. Then, we
compute the window average with variable width to smooth
the samples. After that, we group the values collected on a
per-second basis to have hourly measures directly comparable
with the ARPA values. Most samples fall in the ±15µg/m3

range, which is reasonable considering the sensitivity of the
sensor. Finally, we perform calibration on the hourly aver-
age samples. As previously introduced in this section, we
consider Multivariate Linear Regression and Random Forest.
Nevertheless, we apply three types of MLR, i.e., using only
the temperature, only the humidity, and both temperature and
humidity. In all cases, the calibration using RF considers using
both temperature and humidity.

VI. THE VALIDATION PHASE

A. Validation Strategies

The way to quantify the accuracy of a fitting model is
by minimizing some error function that measures the misfit
between the output and the response function for any given
value of the data set. In the following, we will use several
metrics defined as in the SciKitLearn Python library [36].
We will indicate with yi the true value of the i-th sample, ŷi
the corresponding predicted value, and ȳ as the mean of the
true samples:

• The coefficient of determination is the proportion of the
variance in the dependent variable that is predictable from
the independent variable:

R2(y, ŷ) =
∑nsamples−1

i=0 (ŷi−ȳ)2∑nsamples−1

i=0 (yi−ȳ)2
(1)

• The mean squared error (MSE) measures the average of
the squares of the errors. It is the second moment (about
the origin) of the error and thus incorporates the variance
of the calibration curve:

MSE(y, ŷ) = 1
nsamples

·
∑nsamples −1

i=0 (yi − ŷi)
2 , (2)

• The Mean Bias Error (MBE) is usually adopted to capture
the average bias in a prediction.

MBE(y, ŷ) = 1
nsamples

·
∑nsamples −1

i=0 (yi − ŷi) . (3)

• The root mean squared error (RMSE) allows comparing
different sizes of data sets, since it is measured on the
same scale as the target value. It is obtained as the square
root of the MSE, i.e.,

RMSE(y, ŷ) =
√

MSE(y, ŷ). (4)

• The CRMSE is the Root Mean Square Error (RMSE)
corrected for bias, i.e., it is defined as:

CRMSE = RMSE · sign(σmodel − σreference)
(5)

where σ is the standard deviation of the measure.
• The correlation coefficient (Pearson product-moment cor-

relation coefficient) is defined as the covariance of the
variables divided by the product of their standard devia-
tions.

ρy,ŷ = cov(y,ŷ)
σy·σŷ (6)

B. Our Validation Process
To test the performance of the two different calibration

models, we first calibrate our sensors using the data collected
in the first 2 weeks of October 2018. Then, we validate
these calibration methods using samples collected in the last
2 weeks of the same month. In this period, we compare the
concentrations obtained after the calibration with the measured
reference concentrations.

For the sake of simplicity, Fig. 7 shows our results for
one single sensor (sensor 34), randomly selected, using the
MLR model. For this model, the three plots present the data
gathered using as dependent variable only the temperature,
only the humidity, and both the variables as free variables.
For all graphics, the calibrated plot is far more stable than
the original one, but there is no clear winner among the three
strategies.

To deepen our analysis, Fig. 8 compares the MLR model
with the RF one (again using sensor 34). As for Fig. 7
calibration is performed during the first 2 weeks of October
and validation during the last 2 weeks. In this case, we use both
the temperature and the humidity as free variables. The charts
report time series (Fig. 8a and 8c) and scatter plots (Fig. 8b
and 8d). Somehow unexpectedly (please see Zimmerman et
al. [9]) our results show no advantage for the RF model with
respect to the MLR one. On the contrary, the MLR model
seems to outperform the RF model.

To better evaluate our results and to better assess the overall
model performance, we performed calibration and validation
tests for longer periods. A secondary target of this analysis is
to find the best trade-off between the calibration effort and the
error obtained. We consider calibration periods varying from
the 2 weeks used so far up to 12 weeks, starting in October
and ending in November 2018. In all the cases, the validation
period has been selected in December 2018.

Table I reports the RMSE (i.e., the Root Mean Square Error,
computed as defined by Equation 4) and the data correlation
(computed following Equation 6) for a representative sensor
with different calibration periods (2, 6, and 12 weeks, respec-
tively).

C. Final Considerations
MLR has been used during calibration because it is the

strategy historically adopted for this phase and it is the one that
delivers the best results in our environment. Anyway, we also
experimented with the RF and the Support Vector Regression
(SVR) models. These latter methodologies are supposed to
perform better with non-linear measures [8], [9] and they
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Fig. 7: Time series comparing the reference, the raw, and the calibrated data using sensor 34, randomly selected. Calibration
is performed using MLR. The different plots show MLR with different dependent variables, namely temperature (a), humidity
(b), and temperature plus humidity (c).

2 weeks 6 weeks 12 weeks
323 samples 840 samples 1851 samples

T H T+H T H T+H T H T+H
LR RMSE 19.03 14.17 14.42 18.96 12.58 14.70 13.49 10.04 11.66

Correlation 0.89 0.88 0.89 0.89 0.88 0.89 0.88 0.88 0.89
RF RMSE 25.41 21.77 23.50 25.28 18.75 19.37 13.85 12.63 11.33

Correlation 0.82 0.80 0.78 0.77 0.82 0.80 0.85 0.88 0.89

TABLE I: Comparing different calibration techniques over different calibration periods (2, 4, and 6 weeks, respectively),
adopting the RMSE (Root Mean Square Error) metric. We consider all stationary sensors.
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Fig. 8: Comparing different calibration techniques on our sen-
sor network using sensor 34, randomly selected. The graphics
compare linear regressions, with temperature and humidity as
the dependent variables (a and b), versus random forest (c and
d). The figure reports time series (a and c) and scatter plots
(b and d).

delivered very similar results. Actually, the results we gathered
using RF look slightly disappointing in our environment. In
our opinion, this may be due to three different reasons. First
of all, an important difference between MLR and RF is that
MLR allows to extrapolate outside the range of its input data-
set, while the estimates provided by RF can only be within
the bounds of the calibration space. This behavior can motivate
our results as in our framework short calibration periods have
been followed by long working sessions with wider measure
variations. This consideration is strengthen by the data of
Table I, which show how the computed errors (RMSE and
correlation) seem to decrease the longer the calibration period.
Secondly, we focused on particulate matter, whereas Bigi et al.
and Zimmerman et al. [8], [9], who reported favorable results
for non-linear models, concentrated on CO, NO2, O3, and
CO2. We can then conclude that MLR works at its best for our
low-cost sensors measuring particulate matter. Thirdly, many
works estimating the concentration of PM10 obtained a much
lower accuracy than the one gathered by us. For example,
Alam et al. [40] claimed a R2 coefficient equal to 66% in the
best case. On the contrary, we obtained values close to 90%
for the same metric. Thus, with this level of accuracy non-
linearity effects may have a much lower impact and RF may
not be able to improve the results obtained with MLR.

Overall, another remarkable result is that we obtained better
performance of the regression process using only the relative
humidity instead of both the humidity and the temperature.
This makes it possible to simplify the hardware (and software)
structure of our platform, by removing the temperature and
the pressure sensors, as they do not provide any significant
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advantage when performing calibration. It is also important
to note that measuring temperature is not easy in our case,
because the sensors present cross-heating, mainly due to the
heat given by the particulate matter sensors, which use more
electrical power. Better results in measuring temperature could
be obtained by putting a separate sensor in a different box,
but this would negatively impact on the size and portability
of the global system. Atmospheric pressure is simpler to be
measured, but it is less significant than temperature. Relative
humidity is by far the most important parameter for calibrating
PM sensors. Furthermore, relatively short calibration periods
(2 to 4 weeks) perform quite well compared to considerably
longer periods (10 to 12 weeks), thus reducing the necessity
of performing long calibration sessions.

VII. STATIONARY PLATFORMS

Once the previously described calibration and validation
phases have been performed, we analyze air quality and intra-
urban pollutant gradients over long periods of time.

Following Fig. 5, Fig. 9 and Fig. 10 focus on the PM2.5

air pollutant levels registered by all our stationary sensors,
placed in the ARPA station, over a period of 5 months. All
sensors have been calibrated using MLR with humidity as the
dependent variable. The graphics report: The time-series plot
for all sensors with one reading per second (Fig. 9a), the mean
and the mean standard deviation using daily averaged values
(Fig. 9b), and the scatter X-Y plot (Fig. 10) comparing the
reference values with our mean ones. Compared with Fig. 5,
Fig. 9 shows much lower peaks, a much lower deviation, and
more regular behavior. In fact, the coefficient of determination
based on the data plotted in Fig. 9b is 0.9177, higher than the
one computed for Fig. 5b.

Fig. 11 compares our readings with the reference one for a
period of about 2 months. Given a randomly selected platform,
we first calibrated its 4 sensors (namely sensors 123, 125, 127,
and 129). We adopt the MLR calibration model, with relative
humidity as the dependent variable, over 2 weeks. Then, we
analyze the behavior of the 4 sensors over 12 weeks. Fig. 11a
reports the time-series, and Fig. 11b the corresponding scatter
plot, for sensor 123. As it can be easily noticed, readings
and fluctuations are very similar to the reference ones for the
entire period. The other sensors are not reported for the sake
of brevity, but they show a very similar behavior. This can be
verified on the target diagram [41] of Fig. 11c, which considers
all 4 sensors. In a target diagram, the x axis indicates the
CRMSE (computed as in Equation 5) and the y axis the MBE
(please, refer to Equation 3), both normalized by the standard
deviation of the reference σreference. As a consequence, the
vector distance between any given point and the origin is the
RMSE normalized by the standard deviation of the reference
measurements. Again, all sensors deliver points within the unit
circle both before and after calibrations, with the second set
of points closer to the origin than the first one.

To analyze intra-urban pollutant gradients, Fig. 12 shows
a test performed with two platforms (each one including 3
sensors) placed at the border and inside the Limited Traffic
Area (LTA) in the city of Turin. This test has been repeated
for two days, on December the 3rd, and on December the

4th, 2018, from 4:00 p.m. to 4:30 p.m. (local time). These
dates have been selected due to the fact that they were at the
beginning of an emergency traffic control, which has been in
progress until December 8th, due to unhealthy pollution levels
in the previous days. The time is representative of the rush
hour, with significant traffic increments with respect to other
hours. At first glance, it can be noted that albeit all sensors of
each station delivered very similar readings, the measurements
carried out inside the LTA are significantly higher than those
collected outside. A few considerations may address this issue.
The location outside LTA is indeed a very crowded crossing,
but it is located in an open area, in the immediate proximity
of the Po river, the longest river in Italy. These factors may
greatly impact the concentration of PM in the air since the
area is very wide and the river could induce current flow
just by its own motion. On the contrary, the location inside
the LTA is represented by the crossing of two narrow streets.
This situation, combined with the height of the surrounding
buildings (up to 7-story), could greatly reduce air circulation,
resulting in concentration values that are higher with respect to
the outside location. It has to be pointed out that this test does
not undermine the effectiveness of LTA regulations in reducing
pollution concentrations in the urban center. Nevertheless, it
gives some insights and hints on possible studies which could
be carried out in order to increase the level of understanding
of the phenomena happening in city areas.

VIII. MOBILE PLATFORMS

In parallel to the systematic data acquisition and calibration
campaign, we carried-out targeted experiments to investigate
the robustness and accuracy of the system in dynamic ap-
plications. As our architecture is able to collect one sample
per second, we are able to analyze sharp events in terms
of air pollution spatio-temporal variation. This study also
allows us to investigate to what extent a limited set of mobile
measurements permit us to draw conclusions on global urban
air pollution.

1) Traffic Light Case Study: Fig. 13 analyzes the pollution
levels registered in close proximity of a traffic light within
the city center at rush hour. It reports the level of particulate
matter registered for a period of 15 minutes (from about 08:00
to about 8:15 a.m.), including several traffic-light cycles. The
time-series shows a wave behaviors essentially highlighting 3
different traffic conditions at the traffic light. The higher levels,
around 102 µg/m3 for PM10 and 77 for PM2.5, were recorded
with a long queue during red traffic lights. Intermediate levels,
around 97 µg/m3 for PM10 and 72 for PM2.5, were recorded
with average traffic, i.e., a few cars passing by. The lower
levels, with a concentration of around 93 µg/m3 for PM10 and
69 for PM2.5 , were recorded with no traffic. Overall, data
shows high variability in time, as it can be expected due to the
vehicles’ stop-and-go at the traffic light [42], and our platforms
demonstrate a very good reactivity to transient events.

2) Citizens’ Mobility Case Study: Following [43], Fig. 14
focuses on pollution levels recorder with portable platforms
using different means of transportation along the same route.
The path followed, i.e., a 4 Km path crossing the city center of
Turin, is represented by the green route in Fig. 4. The different
concentrations are plotted with distinct colors depending on
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Fig. 9: Collected data for all statically deployed sensors (in the ARPA station) measuring PM2.5 (48 overall) for a period of
5 months (from October 2018to February 2019). All sensors are calibrated during the first two weeks of October, using MLR
with humidity as the dependent variable. Fig. 9a reports the time series for all sensors. Fig. 9b plots the reference, the mean
and the mean standard deviation (mean ± SD) for all our sensors.
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Fig. 10: Scatter plot comparing the reference data with our
sensor mean represented in Fig. 9b.

the transportation means. The two transport means which
registered the highest pollution concentrations are the tram
and the bus. Both of them carry dozens of passengers and
run in the street, alongside the usual fossil fuel-propelled
vehicles. Analyzing the bike plot, it is possible to guess that
the fluctuations of the pollution level mainly depend on the
varying number of cars and trucks the user had to follow on
his path. Anyhow, if we compare the bike plot with the one
obtained on foot, the bike user is exposed to a lower pollution
level. The data gathered underground are almost constant,
thanks to the air re-circulation and filtering devices used in
metro stations and metro trains.

The plot of the car shows concentration levels in the cabin
gradually decreasing, due to the car’s air re-circulation active.

From the driver’s point of view, the car looks like the best
mean of transport among the ones analyzed. To further analyze
this issue, Fig. 15 shows the effect of opening the car window
during the previous experiment. It is possible to observe an
abrupt increase of pollutant in the middle of the graph.

Finally, Fig. 16 shows the pollution registered on a bike
trip, running the bike at different speeds. The target was to
verify whether the bicycle speed has some influence on the
pollution level to which the rider is exposed. The bike was
running at about: 8 Km/h from 15:50 to 15.54, 13 Km/h from
15:54 to 15.58, 23 Km/h from 15:58 to 16.02, and at 27 Km/h
from 16:02 to 16.06. The graphic shows that there is no much
difference in the pollution level encountered while running the
bike at different speeds.

3) Wind analysis: Fig. 17 compares pollution before, dur-
ing, and after the föhn wind arrived in the city of Turin, on Oc-
tober 28th, 2018. This brought an increase in the temperature,
but also naturally helped cleaning the air in the city. We follow
the event with 2 stations, generating the graphics in Fig. 17a
and 17b respectively. The two readings are very coherent,
considering that Fig. 17a reports one sensor readings per
second, whereas Fig. 17b considers hourly averaged values.

4) New Year’s eve fireworks: Fig. 18 shows the pollution
level during the New Year Firecrackers in Turin. The quick
rise of PM concentration is reported about 10 minutes after
midnight, with a peak of about 4 times higher than the average
value before the event. Moreover, the level remains twice as
higher than before the event for more than 1 hour.
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Fig. 11: Time-series (a) and scatter plots (b) for the data coming from sensor 123 over 2 months. Calibration was performed
with MLR, with humidity as the dependent variable, for a period of 2 weeks. The target diagram of figure (c) show the 4
sensors (123, 125, 127, and 129) of the board, considering both uncalibrated and calibrated measures.
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Fig. 12: A time-series comparison between two different sites,
one inside and the other one outside the Limited Traffic Area.

IX. DATA ANALYSIS AND LESSONS LEARNED

Since our system has been designed to appropriately scale
to difficult environments (like factories), it is important to
underline the practical difficulties we encountered to design
and to build it. Developing the hardware and the software
system has required a considerable team effort in terms of
man-hours. From the hardware point of view, using more
than one PM sensor for each station (in our case 4) has
been very useful in order to better compare the behavior of
each low cost sensor. The high number of sensors stacked in
each board is for sure a point of strength of this study when
compared with previous ones, in particular for its use over
very long time periods. From the software point of view, the
database grows very fast and it requires a powerful computer
to be managed efficiently. In order to have a fast response to
SQL queries, we used a Dell computer with 20 cores, 384
GB of internal memory, and some TB of hard-disk. Smaller
computers would have potentially implied very slow query
evaluation. Many different discussions can be done using the

data and the system. The main focus here is on the system
itself and on some feasibility studies in order to demonstrate
how well and accurately it works, and how reliable it is. We
plan to use the system for specific purposes, like environment
studies of the air quality in interior settings, in addition to all
uses already introduced here. For that reason, all data (i.e., the
entire database), software and hardware designs are available
on IEEE DataPort in Open Access mode [1] in order to make
easier further evaluations and facilitate comparisons with other
approaches.

As far as the calibration phase is concerned, we can make
the following observations. Even if RF has the ability to build a
non-linear regression model and has been proved to be superior
to MLR in handling measures on CO, NO2, O3, and CO2, in
our analysis MLR performs better. This somehow motivates its
wide use to calibrate low-cost sensors. A difference between
MLR and RF is that MLR allows to extrapolate outside the
range of its input data-set, while the estimates provided by
RF can only be within the bounds of the calibration space.
This behavior, due to the intrinsic nature of RF, based on tree
manipulations, can partially motivate our data, as short cali-
bration periods have been followed by long working sessions
with wider measure ranges. Another important aspect of our
calibration phase is that MLR proved to be more accurate
when using only the relative humidity as dependent variable
instead that the humidity and the temperature together or only
the temperature. This was somehow unexpected, and it may
lead to a possible simplification of the hardware and software
platforms which may avoid collecting and storing data coming
from the temperature and the pressure sensors. As previously
stated, simplifying the hardware platform may be very useful
and measuring the temperature is difficult for the cross-heating
effect between sensors due to the electrical power used by the
PM sensors.

Another important aspect we focused on was to understand
whether the tested sensor units are appropriate to capture
particulate matter concentration with high resolution. From
that point of view, our results are comfortable, as our platforms
may significantly improve our ability to resolve spatial and
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Fig. 13: Time-series comparing different traffic conditions at a traffic light. Three different conditions (high traffic (b), average
(c) and low traffic (d) levels) repeat themselves continuously. The test has been performed the 8th of January 2020.
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Fig. 14: A time-series comparison among different means of
transport along the same path (reported in Fig 4).
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Fig. 15: Effect of opening a window (halfway on the x-axis)
on a car traveling along the green path of Fig. 4.
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Fig. 16: Registered pollution on a bike running at different
speeds (from about 8 Km/h to about 27 Km/h).

time heterogeneity in air pollutant concentrations. We have to
consider that numerous factors are involved in the variation of
the atmospheric pollution, and often the relationship between
the intensity of emission produced by the polluting source and
the resulting pollution is not immediate. For that reason, our
sample rate (one sample per second) may even be considered
higher than necessary to capture even dynamic phenomena.
Among the future works, we would like to mention the
necessity to evaluate the best possible trade-off between the
sample-rate, the dimension of the data-base (that can become
really large), and the ability to follow high gradients.

As our system is based on boards including 4 sensors, an-
other feature of our platform is the combination of information
coming from a multitude of sources. There are several issues
that arise when fusing information from multiple sources, but
the most fundamental one is to combine information in a
coherent and synergistic manner to obtain a robust, accurate
and reliable description of the quantities of interest. One of
the feature we are working on at the moment is to model
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Fig. 17: Time-series representing the pollution variation when
the wind comes on two stations each one equipped with three
PM2.5 sensors.
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Fig. 18: Pollution level during the New Year Firecrackers
(data measured near the ARPA station).

the inherent uncertainties in the sensor measurements due to
sensor aging, and to spurious data readings. Even if there is
little literature regarding recent advanced fusion techniques
and emerging applications, we are developing a fusion strategy
based on Bayesian methods that can identify the inconsistency
in sensor data so that spurious data can be eliminated from the
sensor fusion process.

X. CONCLUSION

We approach the challenging problem of accurate and
affordable PM2.5 monitoring by orchestrating several low-
cost sensor units deployed within an urban scenario. More
specifically, we first carefully design and build our sensor
stations with a high level of sensor redundancy (4 particulate
matter sensors are embedded in every station). Then, we
placed them on the field and we field-calibrated them. Finally,
we deployed them to measure the air quality on stationary
monitoring sites and during specific and sudden events.

From a broad perspective, our findings investigate whether
the adopted sensors are fit for the intended purpose and the
intended environment. Given their low-cost it is possible to
deploy a large number of monitoring stations throughout a
city providing a spatial dense coverage. Sensor redundancy
reduces errors and measurement problems. They proved to be
extremely easy to calibrate, as short calibration time (less than
2 weeks) and simple calibration methods (MLR) are sufficient.
As they offer a very high sample rate (one sample per second)
they are able to follow sudden changes in the environment,
providing a temporal dense coverage. One of our goals is
that the developed system can be used by researchers and
practitioners in order to estimate the level of air pollution and
investigate the general behavior of particulate matter.

As future work, we hope to use our sensor stations to further
improve our model, and to solve a number of environmental
problems, such as identifying pollution sources and air-quality
prediction. Moreover, we would like to better analyze the
issue of sensor aging and de-calibration and better use the
redundancy present in each monitoring station to make each
station more reliable and resilient. Furthermore, we would
like to improve the experiments in the Participatory Sensing
direction, enabling university students to install a monitoring
station at their home.
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