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Consider a quantum system prepared in an input state. One wants to drive it into a target state. Assuming
classical states and operations as free resources, I identify a geometric cost function which quantifies the
difficulty of the protocol in terms of how different it is from a classical process. The quantity determines a
lower bound to the number of commuting unitary transformations required to complete the task. I then
discuss the link between the quantum character of a state preparation and the amount of coherence and
quantum correlations that are created in the target state.
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Introduction.—Quantum systems promise to outperform
classical devices in information processing protocols, if
prepared in certain complex configurations [1]. It is then
interesting to measure the difficulty to drive a quantum
system into a target state, and design the best strategies to
complete the task. Previous works determined time optimal
Hamiltonian control dynamics [2–8], and energy efficient
out-of-equilibrium driving for classical and quantum sys-
tems [9–13]. Yet, the difficulty of preparing a useful
quantum state is not plainly due to the consumption of
physical resources, as classical processes can take more
time or energy than quantum ones. An alternative, inform-
ative metric should evaluate how different is a trans-
formation from being classical. While measures of
quantum coherence and correlations mark the difference
between classical and quantum states [14,15], there is no
clear boundary between classical and quantum processes,
as there is no quantifier of their quantumness.
Here I introduce a measure of the difficulty of a quantum

state preparation in terms of how different it is from a
classical process. First, I identify incoherent states and
classical stochastic maps as well-motivated sets of free
states and operations, being the only ones which do not
display quantum superpositions, i.e., coherence. Creating
coherence should never be easy because it can be sufficient
for outmatching classical devices. This was proved by
works in quantum information [14], cryptography [16], and
communication [17], which yet left unknown the exact
laws establishing how difficult is creating superpositions.
Then, I introduce a design principle for quantum driving of
general validity. The best preparation strategy is the input-
target dynamics which minimizes a geometric index
quantifying the quantum character of the transformation.
The geometric measure, which overcomes the limitations of
customary distance functions, lower bounds the operation-
ally meaningful algorithmic cost to prepare a state via
commuting operations. As a target state is expected to be

computationally useful, it is also interesting to establish a
link to the creation of quantum resources. I derive quanti-
tative relations between the quantumness of a process, a
computable lower bound, and the coherence and quantum
correlations created in the target.
Quantum state preparation: Free resources and cost.—

Suppose a finite dimensional quantum system is in a state
described by a density matrix ρ. How hard is it to drive the
system into a target state τ? I formulate the problem in a
geometric framework [18,19]. The system dynamics is
modeled by a curve γ: t → γt in the stratified manifold
of quantum states M, where γt ¼

P
iλiðtÞjiðtÞihiðtÞj,P

iλiðtÞ ¼ 1, hiðtÞjjðtÞi ¼ δij, γ0 ≡ ρ, γT ≡ τ, is the spec-
tral decomposition of the system state at time t. First, I
identify what it is “easy” to obtain and to do. In the parlance
of quantum information theory, this is represented by the
free states and the free operations, respectively [20,21]. I
aim at associating the difficulty of the computation ρ → τ
with its quantumness. Thus, free state preparations must be
classical processes, which are characterized as follows.
If an input state ρ ¼ P

iλið0Þjið0Þihið0Þj, jið0Þi≡ jiRi,
hiRjjRi ¼ δij, is given for free, then any state which is
diagonal in the reference basis fjiRig can be prepared
(deterministically or stochastically) via an operation such
that the state of the system is at any time described by an
element of MiR ¼ fρ̃ ¼ P

iλ̃ijiRihiRjg. The information
about the basis is then redundant and the transformation is
at any time a classical process. Hence, the free states are the
density matrices in MiR . The free operations are the maps
such that the state of the system is at any time diagonal in a
reference basis, γt ¼

P
iλiðtÞjiRihiRj ∈ MiR , ∀ t ∈ ½0; T�.

Note that the eigenspaces fiRg are not necessarily of
multiplicity one, and a state can be free with respect to
more than one basis.
I discuss a few examples to justify these definitions. A

transformation between two orthogonal states jii → jji,
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hijji ¼ δij, can be synthesized via a unitary operation,
as well as by a classical “amplitude damping” map
γt ¼ ð1 − t=TÞjiihij þ t=Tjjihjj, in which the density
matrix is diagonal at any time in a basis with elements
fi; jg. Hence, it is not necessarily quantum. Conversely,
noncommutativity between input and output density matri-
ces implies that the process is quantum [22], as classical
maps cannot create superpositions jii → ajii þ bjji;
a; b ∈ C. The quantumness of a process is independent
of the basis in which the states are written. A transformation
between commuting states displaying coherence in a basis,
e.g., ajii þ bjji → ajji − bjii, always admits a classical
implementation γt¼ð1− t=TÞjþihþjþ t=Tj−ih−j, jþi ¼
ajii þ bjji, j−i ¼ ajji − bjii. One observes that the free
operations in a resource theory are often characterized by
the form of their Kraus operators [21], but this is generally
not sufficient to signal the quantumness of a transforma-
tion. A parametrized Kraus set for the amplitude damping is
given by K1¼jþihþjþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− t=T
p j−ih−j, K2 ¼

ffiffiffiffiffiffiffiffi
t=T

p jþi
h−j. Yet, the very same Kraus set transforms the input jii
into a noncommuting output. The quantum character of the
continuous time evolution of a state is independent of
reparametrizations of t. On this hand, continuous time
classical maps seem more appropriate free operations
for state preparation than incoherent operations [14]. For
example, the unitary qubit transformation e−iσyt is a
quantum map at any time t, but it is a (strictly) incoherent
operation with respect to the basis f0; 1g for t ¼ kπ=2
[23,24], creating coherence otherwise. It is hard to justify
why a phase shift should be easy only for some values of t,
as no experimental challenge emerges to implement this
map at different times.
The difficulty of an input-target transformation can be

then evaluated in terms of how different it is from a free
operation, i.e., a classical process. This cannot be measured
by distance functions, which quantify the ability to dis-
tinguish two states via measurements [1,25]. For example,
two orthogonal states jii, jji, are more distinguishable than
jii and any state displaying coherence ajii þ bjji; a; b ≠ 0.
I search for a function of input and target states QρðτÞ
which meets a set of desirable properties: faithfulness,
being zero only when the target is a free state, QρðτÞ ¼
0 ⇔ τ ∈ MiR ; invariance under free operations, taking the
same value for all free states, QρðτÞ ¼ Qρ̃ðτÞ, ∀ ρ̃ ∈ MiR ;
contractivity under mixing, QρðτÞ ≥ QΓðρÞ(ΓðτÞ), where Γ
is a completely positive trace-preserving (CPTP) map.
Consider the energy of a curve at fixed boundaries

Eγtðρ→ τÞ≔
Z

T

0

jj_γtjj2dt; γ0≡ρ; γT≡τ; ð1Þ

where the norm is induced by a Riemannian Fisher metric,
the only class of contractive metrics under noisy maps on
M [26–28]. The quantity is formally equivalent to the
kinetic energy (per unit of time) for a particle traveling on

the manifold [29–31], while being generally not related to
the physical energy. By decomposing the state as γt ¼
UtΛtU

†
t , U0 ¼ I, where Λt is a diagonal matrix with the

state eigenvalues as entries, the rate of change reads
_γt ¼ Ut

_ΛtU
†
t þ i½γt; Ht�, Ht ¼ i _UtU

†
t . For classical proc-

esses, only the first term survives at any time t. On the other
hand, a unitary transformation γut ¼ UtΛ0U

†
t , ∀ t, is

genuinely quantum. It changes the state eigenbasis while
the spectrum is invariant, so only the second term appears at
any time t. For a path corresponding to a general CPTP
map, the two terms coexist. The key point is that,
independently of the specific metric employed, the tangent
space to M has a direct sum structure such that jj_γtjj2 ¼
jjUt

_ΛtU
†
t jj2 þ jji½γt; Ht�jj2 [18,19]. Hence, it is possible to

discriminate between classical and quantum components of
the energy:

Eγtðρ → τÞ ¼ Eγt
c ðρ → τÞ þ Eγt

q ðρ → τÞ;

Eγt
c ðρ → τÞ ≔

Z
T

0

jjUt
_ΛtU

†
t jj2dt;

Eγt
q ðρ → τÞ ≔

Z
T

0

jji½γt; Ht�jj2dt: ð2Þ

Note that a distance function cannot be split. For unitary
transformations, only the quantum term survives, capturing
the sensitivity of the system to phase shifts. This property,
called asymmetry [17], is the peculiar resource for phase
estimation. Generalizing the concept of asymmetry to
arbitrary CPTP maps, the basis changing component of
the (squared) speed measures the sensitivity of the system
in a state γt to a map Γt due to quantum effects. Hence, the
quantumness of a computation ρ → τ, i.e., the difficulty of
driving the system into the target state within a time T, is
given by the minimum quantum component of the energy
over all the possible maps linking a free state to the target:

QρðτÞ ≔ Eγ̄t
q ðρ̄ → τÞ;

Eγ̄t
q ðρ̄ → τÞ ¼ min

γ̃t;ρ̃
Eγ̃t
q ðρ̃ → τÞ;

ρ̃ ∈ MiR ; γ̃t∶ ρ̃ ↦ τ: ð3Þ

The results I am going to present would hold for any
Riemannian metric. Yet, for the sake of clarity, I employ
from now on the Bures metric, which plays an important
role in quantum statistics and quantum information theory
[1,26,32,33]. The squared speed of the system at time t is

jj_γtjj2 ¼
X
i

_λiðtÞ2
4λiðtÞ

þ
X
i<j

jhiðtÞji½γt; Ht�jjðtÞij2
λiðtÞ þ λjðtÞ

: ð4Þ

The first term is the squared norm related to the classical
Fisher metric, while the second one is the quantum
contribution. For unitary transformations γut , only the
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second term survives, Eγut
q ðρ → τÞ ¼ Eγut ðρ → τÞ [34,35].

This is non-negative, vanishing at any time only for
classical processes, and nonincreasing under mixing
[36,37]. If the evolution is time independent, Ut ¼ e−iHt,
the quantity is lower bounded by T times the variance of the
Hamiltonian, Eγut ðρ → τÞ ≤ TVρðHÞ; VρðHÞ ≔ TrðρH2Þ−
TrðρHÞ2, being the inequality saturated for pure states. It
follows from the properties of the quantum Fisher infor-
mation, i.e., the instantaneous (squared) speed, that the
required constraints are met. Faithfulness holds because
if and only if the target is a free state, there exists a classical
preparation such that jj_γtjj2 ¼

P
i½ _λiðtÞ2=4λiðtÞ�, ∀ t.

Invariance under free transformations of the input state
is satisfied by construction. Defining ΓðγtÞ: ΓðρÞ ↦ ΓðτÞ
the dynamics of a state subject at any time to a CPTP map,

the quantity is contractive,QρðτÞ ≥ EΓðγ̄tÞ
q (ΓðρÞ → ΓðτÞ) ≥

QΓðρÞ(ΓðτÞ).
The definition in Eq. (3) unrealistically assumes that

every dynamics linking input and target state is implement-
able in practice. I therefore derive an operationally moti-
vated upper bound (see Fig. 1). Suppose only classical
processes and unitary transformations are allowed. This is
not very limiting: Any preparation can be split into a
change of spectrum and a change of basis, ρ → ρu → τ,
ρu ¼ P

iλiðTÞjiRihiRj ∈ MiR , where λiðTÞ are the eigen-
values of τ. The first step can be completed via a free
operation. The second step can be completed via one purely
quantum, unitary change of basis γut : ρu ↦ τ. One then

has Eγut ðρu → τÞ ¼ Eγut
q ðρu → τÞ. For a target state of a

d-dimensional system with eigenvalues having multiplic-
ities mi, there are d!=ðΠimi!Þ isospectral free states which
can freely transform into each other via permutations,
ρup ¼ PρuP†. The minimum energy to complete the second
step is computed by minimizing over the free states which

are isospectral to the target. Thus, the difficulty to complete
a state preparation with classical operations and unitaries is

Qu
ρðτÞ ≔ Eγ̄ut ðρ̄u → τÞ;

Eγ̄ut ðρ̄u → τÞ ¼ min
γup;t;ρ

u
p

Eγup;tðρup → τÞ;

γup;t∶ ρup ↦ τ: ð5Þ

One has Qu
ρðτÞ ≥ QρðτÞ. This upper bound also meets

by construction faithfulness, invariance, and contractivity,
Qu

ρðτÞ ¼ 0 ⇔ τ ∈ MiR , Qu
ρðτÞ ¼ Qu

ρ̃ðτÞ, ∀ ρ̃ ∈ MiR ,
Qu

ρðτÞ ≥ Qu
ΓðρÞ(ΓðτÞ). Note that the two-step, classical-

quantum split is optimal by construction. A classical
map is, by definition, a transformation in MiR . Hence,
the path corresponding to an arbitrary sequence of multiple
classical and quantum steps returns to MiR multiple times,
requiring more energy.
Optimal path, algorithmic complexity, and quantum

resources.—An important question is what is the best path
γ̄ut to reach the target from an isospectral free state. The map
between two states which minimizes the energy Eγtðρ → τÞ
is the length minimizer at constant speed [29]. A distance
function is Dðρ; τÞ ≔ minγt∶ρ↦τ

R
T
0 jj_γtjjdt. The one related

to the Bures metric is the Bures angle DBðρ; τÞ ¼
cos−1Trðj ffiffiffi

ρ
p ffiffiffi

τ
p jÞ. The energy minimizing map from a

pure free state ρu ¼ jψρuihψρu j to a pure target τ ¼ jψτihψτj
is the length minimizing unitary, and the Bures angle
reduces to the Fubini-Study distance DFSðψρu ;ψτÞ ¼
cos−1jhψρu jψτij. The closest free pure state ρ̄u to the target
is then the one with maximal overlap. The length or energy
minimizing constant speed path reads

γ̄ut ¼ jψγ̄ut
ihψγ̄ut

j;
jψγ̄ut

i ¼ ðcos θ − sin θ= tan dÞjψρ̄ui þ ðsin θ= sin dÞjψτi;
ð6Þ

where θ ¼ dt=T, d ≔ DFSðψρ̄u ;ψτÞ. This is obtained by the
expression for the length minimizing path [38–40], and
noting that the energy minimizer is unique up to affine
reparametrizations t0 ¼ atþ b; a; b ∈ R. Finding the opti-
mal unitary for mixed target states is more challenging,
while necessary conditions for the shortest unitary path
between isospectral states have been found [41]. However,
the result for pure states yields a lower bound to Qu

ρðτÞ for
arbitrary target states. The distance between two mixed
states is the minimum distance between their purifications
[38]. The closest isospectral free state to the target is then
the one with the closest purification jψpurif

ρ̄u i to a target

purification jψpurif
τ i. The closest purifications have a com-

pact expression [40], which in this case is

FIG. 1. The optimal path γ̄t to drive a system from ρ ∈ MiR
into τ is the minimizer of the quantum component of the energy
QρðτÞ ¼ Eγ̄t

q ðρ̄ → τÞ over all the free states. The unitary map γ̄ut
generates the energy minimizing path from a free state ρ̄u

isospectral to the target, Qu
ρðτÞ ¼ Eγ̄ut ðρ̄u → τÞ.
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jψpurif
ρ̄u i ¼

X
i

ffiffiffiffiffi
ρ̄u

p
jiRi ⊗ jiRi;

jψpurif
τ i ¼

X
i

1

� ffiffiffiffiffi
ρ̄u

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄u

p
τ

ffiffiffiffiffi
ρ̄u

pq
jiRi ⊗ jiRi: ð7Þ

The length or energy minimizing (generally not unitary) path
between twomixed states is obtainedbypartial trace along the
shortest (unitary) path between the closest purifications.
Thus, one has Qu

ρðτÞ ≥ Qψpurif
ρ̄u

ðψpurif
τ Þ. The inequality is

saturated for pure targets. Such a lower bound,which satisfies
by construction faithfulness, invariance, and monotonicity
properties, is computed as follows. Consider, for example,
driving a qubit from an input state with Bloch form
ρ ¼ 1=2ðI þ qzσzÞ, qz ≠ 0, to a target τ ¼ 1=2ðI þ r⃗ · σ⃗Þ.
The isospectral free states to the target are identified by
jqzj ¼ jr⃗j. One has Qψpurif

ρ̄u
ðψpurif

τ Þ¼fcos−1½ð ffiffiffiffiffiffi
fþ

p þ ffiffiffiffiffiffi
f−

p Þ=
2�g2=T;f�¼1þjr⃗jrz�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr⃗j2þ2jr⃗jrz− jr⃗j2ðjr⃗j2−r2z−1Þ

p
.

The process is classical for rx ¼ ry ¼ 0, jr⃗j ¼ jrzj, while the
maximum energy π2=ð16TÞ is required to prepare the pure
state given by r2x þ r2y ¼ 1, rz ¼ 0. The same method applies
for systems of dimension d > 2, as their states admit a
Bloch form 1=dðI þ r⃗ · Σ⃗Þ, where Σ⃗ is a vector of d × d
traceless matrices.
The geometric index Qu

ρðτÞ can bound the size of
preparation algorithms. Suppose that a unitary map γut ¼
ρu ↦ τ is synthesized by N commuting unitary operations,
e.g., logic gates, γut ¼ Utρ

uU†
t , Ut ¼ e−iHt, H ¼ P

N
l¼1Hl,

½Hl;Hk� ¼ 0, ∀ l, k. The scenario describes the phase
imprinting step in parallel estimation protocols [33], and
the preparation of highly entangled symmetric states,
ðaj0i þ bj1iÞ ⊗ j0i⊗N → aj0i⊗Nþ1 þ bj1i⊗Nþ1; a; b ∈ C,
via controlled gates between the first and th lþ 1th
qubit. Consider the seminorm of each Hamiltonian jHlj ¼
hl;M − hl;m being the difference between its largest and
smallest eigenvalues [42]. It measures the complexity of
Hl, as it depends on the number of gates implementing
the Hamiltonian, and the size of the correlations they can
build [42,43]. Since 4VρðHÞ ≤ jHj2 ≤ ðPljHljÞ2, one has
Eγut ðρ → τÞ ≤ TN2jHj2=4, where jHj2 is the average
squared seminorm over all the generators Hl. By assuming
every Hamiltonian has the same seminorm jHlj ¼ h, ∀ l,
one has

N ≥
2

h

�
Qu

ρðτÞ
T

�
1=2

: ð8Þ

The bound is saturated for superpositions of the largest and
smallest eigenvalues of H, jψρi ¼ ðjhMi þ eiϕjhmiÞ=

ffiffiffi
2

p
,

which are the most sensitive inputs to the map.
The quantumness of a transformation is also linked to the

coherence the target displays with respect to the reference
basis [14,44,45], here quantified by the distance to the set

of incoherent states CiRB ðτÞ ≔ minρ̃∈MiR
DBðρ̃; τÞ. (The dis-

tance function is determined by the chosen Riemannian
metric.) One has

Qu
ρðτÞ ≥ Qψpurif

ρ̄u
ðψpurif

τ Þ ≥ ðCiRB ðτÞÞ2=T ≥ QρðτÞ; ð9Þ

where QðuÞ
ρ ðτÞ ¼ 0 ⇔ CiRB ðτÞ ¼ 0. The chain holds as

Qψpurif
ρ̄u

ðψpurif
τ Þ ¼ D2

Bðρ̄u; τÞ=T. For pure states, one has

CiRB ðψτÞ ¼ cos−1maxiR jhiRjψτij [46], which implies

DBðψρ̄u ;ψτÞ ¼ CiRB ðψτÞ. In the multipartite case, the quan-
tumness of the transformation upper bounds the quantum
correlations in the target, whenever the reference basis is
local or multilocal. Note that rather than the average or
maximum ability of a map to create quantumness [47,48],
I compute the minimum cost. The most general form of
bipartite quantum correlations, quantum discord [15], can
be measured by the minimum coherence over all the bilocal
bases, DBðρ12Þ ≔ mini1j2C

i1j2
B ðρ12Þ; fi1j2 ≔ ji1i ⊗ jj2ig.

This is the symmetric discord [49,50], but the argument
applies to the original asymmetric definition as well.
Consider the set of free states being the zero discord states
ρ12 ¼

P
ijp

12
ij ji1j2ihi1j2j;

P
ijp

12
ij ¼ 1; ρ12 ∈ Mi1j2 . That

is, the reference basis is the bilocal basis fi1j2g. One has

Qψpurif
ρ̄u∈Mi1j2

ðψpurif
τ12 Þ ≥ D2

Bðτ12Þ=T: ð10Þ

Yet, DBðτ12Þ ¼ 0⇏QðuÞ
ρ∈Mi1i2

ðτ12Þ ¼ 0. For example, the

qutrit-qubit map pj0ih0j⊗ j0ih0jþ ð1−pÞj1ih1j⊗ j1i
h1j→pj0ih0j⊗ j0ih0jþ ð1−pÞ=2½ðj1iþ j2iÞðh1jþ h2jÞ⊗
j1ih1j� does not create discord, but it generates coherence
with respect to the basis f0; 1; 2g [24]. I extend the bound
to a hierarchy of measures of coherence and genuine
multipartite correlations of different orders [51–55].
Given an N-local reference basis fi1;…; iNg, the coarse-
grained bases containing up to k-local terms read fikg ≔
fi12;…;k1ik1þ1k1þ2;…;k2…ikj−1þ1kj−1þ2;…;kjg,

P
jkj ¼ N,

k ≥ kj, ∀ j. The Bures quantum discord of “order higher
than k” in an N-partite target state τ1;…;N is
Dk→N

B ðτ1;…;NÞ ≔ minikC
ik
Bðτ1;…;NÞ. Suppose the free states

to be the incoherent states in a coarse-grained basis īk,
ρ1;…;N ¼ P

īkpīk jīkihīkj, i.e., a subset of the states without
quantum discord of order higher than k. One has

Qψpurif
ρ̄∈M

īk

ðψpurif
τ1;…;N Þ ≥ ðDk→N

B ðτ1;…;NÞÞ2=T: ð11Þ

A bound for the total amount of quantum correlations is
obtained for k ¼ 1, where D1→N

B ðτ1;…;NÞ is the distance of
the target to the classically correlated states. As geometric
measures of discord upper bound measures of entangle-
ment [56], being equal to them for pure states, the
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quantumness of a process upper bounds measures of
multipartite entanglement in the target.
Conclusion.—I have quantified the difficulty of prepar-

ing a quantum system in a target state by measuring the
process quantumness. The optimal dynamics is obtained by
solving the geometric problem of minimizing the quantum
contribution to the energy of the associated curve. The
result highlights the usefulness of geometric methods to
establish fundamental limits of quantum information
processing. Geometric bounds could provide a benchmark
to evaluate the performance of methods for shortening
quantum algorithms [57], which is of renewed interest due
to the applicability of machine learning techniques. Also,
the resource theory approach can be fruitful to solve critical
quantum control problems [58].
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