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We study quantum correlations beyond entanglement in two-mode Gaussian states of continuous-variable
systems by means of the measurement-induced disturbance (MID) and its ameliorated version (AMID). In
analogy with the recent studies of the Gaussian quantum discord, we define a Gaussian AMID by constraining
the optimization to all bi-local Gaussian positive operator valued measurements. We solve the optimization
explicitly for relevant families of states, including squeezed thermal states. Remarkably, we find that there is
a finite subset of two-mode Gaussian states comprising pure states where non-Gaussian measurements such as
photon counting are globally optimal for the AMID and realize a strictly smaller state disturbance compared to
the best Gaussian measurements. However, for the majority of two-mode Gaussian states the unoptimized MID
provides a loose overestimation of the actual content of quantum correlations, as evidenced by its comparison with
Gaussian discord. This feature displays strong similarity with the case of two qubits. Upper and lower bounds
for the Gaussian AMID at fixed Gaussian discord are identified. We further present a comparison between
Gaussian AMID and Gaussian entanglement of formation, and classify families of two-mode states in terms of
their Gaussian AMID, Gaussian discord, and Gaussian entanglement of formation. Our findings provide a further
confirmation of the genuinely quantum nature of general Gaussian states, yet they reveal that non-Gaussian
measurements can play a crucial role for the optimized extraction and potential exploitation of classical and
nonclassical correlations in Gaussian states.
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I. INTRODUCTION

One of the seminal findings triggering the development
of quantum information theory is that there exist nonlocal
correlations among subparts of quantum systems that do not
emerge in a classical scenario. These nonclassical correlations,
commonly identified with entanglement, can be exploited to
manipulate and transmit information in enhanced ways [1] go-
ing beyond the possibilities of classical physics. Consequently,
an increasing interest in their study has risen in recent years [2].

Interestingly, signatures of correlations having no classical
counterpart can be traced even in separable (nonentangled)
states, but their nature is rather different from entanglement
[3,4]. In fact, while entanglement is a consequence of the
superposition principle, more general forms of nonclassi-
cal correlations arise essentially from the noncommutativity
of quantum observables. When speaking about composite
systems, separable states are often perceived as essentially
classical. However, truly classical states, that is, states which
contain only classical correlations, represent just a subset
of separable states. Moreover, it is also possible to show
that almost all separable states possess a finite amount of
nonclassical correlations [5]. This has fueled a still unsettled
debate and an active stream of research to decide whether
separable states containing nonclassical correlations can be
also directly useful for quantum information tasks [6–9].

To quantitatively assess various aspects of entanglement,
several entanglement measures have been adopted and ex-
tensively studied [2]. In a similar fashion, more recently a
zoology of indicators of nonclassical correlations (in separable
or entangled states) has been introduced [3,4,6,10–13], among
which the most popular being quantum discord [3,4]. A nice
facet of discord is that it has an immediate characteriza-

tion in information theory, it is endowed with operational
interpretations [14] and its evaluation for bipartite states of
simple quantum systems such as two-level systems (qubits) is
conceptually straightforward, albeit technically hard.

Studies on nonclassicality indicators are not restricted to
finite dimensions, but have also been extended to quantum
systems with infinite-dimensional state space, where correla-
tions are encoded between continuous variables (CVs), that
is, variables with continuous spectra. They are represented by,
for example, modes of the electromagnetic field described by
quadrature amplitudes. For these systems a privileged role is
played by the states possessing a Gaussian Wigner function,
the so called Gaussian states, as they are easy to handle both
theoretically [15] and experimentally [16]. Although Gaussian
states are sometimes flagged as the “most classical” class of
continuous-variable (CV) states because of the positivity of
their Wigner function, recent results of the nonclassicality
indicators show the opposite. Namely a recently derived
analytical form of quantum discord for two-mode Gaussian
states [17,18] reveals that, contrarily to the above naive
categorization, all nonproduct bipartite Gaussian states have a
nonzero discord and so exhibit nonclassical correlations.

Another nonclassicality indicator frequently employed in
the literature is the measurement-induced disturbance (MID)
introduced in [10]. A good property of MID is the intrinsic
symmetry under swapping of the subsystems (unlike discord),
but the main flaw is that it does not incorporate any optimiza-
tion over local measurements, therefore usually returning an
overestimation of the actual amount of nonclassical correla-
tions. The necessity of a more faithful nonclassicality quanti-
fier motivated the introduction of a new indicator called AMID
(ameliorated measurement-induced disturbance) which is an
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ameliorated synthesis of the discord and MID, being both
symmetric as MID and optimized as discord. It has been
applied to characterize nonclassical correlations of arbitrary
two-qubit mixed states [12]. The AMID is defined as the
difference between the total (quantum) and the classical mutual
information [11,12,19,20], where the latter quantity represents
the maximum classical correlations that can be extracted from
a bipartite state via local measurements on subsystems. Here
an optimization over all possible bi-local measurements is
involved, which represents the nontrivial part in calculation of
the AMID.

In the present work we continue the program of char-
acterizing quantum versus classical correlations beyond en-
tanglement in CV systems. Specifically, we extend the def-
initions of MID and AMID to the paradigmatic class of
two-mode Gaussian states. Contrary to the case of discord,
which has been computed for Gaussian states restricting the
optimization to Gaussian measurements only [17,18], for
the nonclassicality indicators considered here non-Gaussian
measurements play an important role. The MID is in fact
obtained as the state disturbance induced by local projections
onto Fock states (photon counting), a clearly non-Gaussian
measurement. This can be done analytically for simple
cases (such as pure two-mode squeezed states) and requires
numerical evaluation in more general Gaussian states. For the
AMID a competition between photon counting and optimized
Gaussian measurements takes place in the maximization
of the classical mutual information. We define a Gaussian
version of AMID (Gaussian AMID) restricted to Gaussian
measurements in analogy with the Gaussian discord [17,18],
and provide the analytical framework for its computation,
obtaining simple closed forms for relevant families of states,
including pure states and squeezed thermal states. We compare
this measure with MID and Gaussian discord, elucidating
similarities and differences with the two-qubit case [12].
Similarly, we also find that for Gaussian states, in most
cases, MID significantly overestimates quantum correlations
and we provide evidence for states with nearly vanishing
discord but arbitrarily large MID. Yet, quite interestingly,
we find a finite region of two-mode Gaussian states where
MID is strictly smaller than the optimal Gaussian AMID,
meaning that in those instances non-Gaussian measurements
are necessarily optimal for the calculation of the classical
mutual information and for the AMID. This subset of states
includes, surprisingly, pure two-mode squeezed states, for
which local photon countings are found to be therefore “less
disturbing” than local homodyne detections (which realize the
optimal Gaussian measurements in this case), and allow one
to extract strictly more strongly correlated classical random
variables from the pure Gaussian states. The gap between
photon counting and homodyne detection in the degrees of
classical mutual information and AMID persists even in the
limit of infinite squeezing. Such a finding is quite unexpected
and certainly deserves further investigation with an eye on
potential practical applications. Yet this agrees in spirit with
a series of somehow related results: For example, the best
operation to clone Gaussian coherent states, as well as the best
partial measurement achieving the optimal tradeoff between
information and disturbance for the same type of state, and the
best measurement localizing maximum bipartite entanglement

for Gaussian states, are all known to be non-Gaussian [21–23].
Recall also that non-Gaussian measurements are necessary
for universal CV quantum computation with Gaussian cluster
states [24].

The paper is organized as follows. In Sec. II we set
up the notation and recall the main concepts of Gaussian
states and Gaussian measurements followed by an overview
of the nonclassicality measures landscape. The derivation
of a manageable expression of MID (associated to local
Fock projections) for two-mode Gaussian states, in closed
form for pure states, is presented in Sec. III. In Sec. IV
we face the evaluation of the AMID for arbitrary two-mode
Gaussian states. We bound AMID from above by the minimum
between the MID and the Gaussian AMID. The latter is
defined by restricting the optimization to bi-local Gaussian
measurements, adopting the techniques used for discord in
[17,18], and we provide closed analytical forms for it on special
families of two-mode Gaussian states. Section V presents a
thorough comparison between MID, Gaussian AMID, and
Gaussian quantum discord on random two-mode Gaussian
states, highlighting hierarchical and ordering relations between
the three measures. Upper and lower bounds to the Gaussian
AMID at fixed Gaussian discord are identified. The states
where non-Gaussian measurements are necessary to reach the
minimum in the AMID are amply discussed and characterized.
In Sec. VI we compare the Gaussian AMID with the Gaussian
entanglement of formation (Gaussian EoF) [25,26], showing
on the basis of numerical evidence that the Gaussian AMID
is always greater or equal than the Gaussian EoF for all
two-mode Gaussian states, and admits also an upper bound
at fixed Gaussian EoF (similarly to what observed for
discord [17]). A visual classification of the special class of
symmetric squeezed thermal states based on their degrees
of Gaussian EoF, Gaussian discord, and Gaussian AMID is
also provided. Finally, Sec. VII summarizes the results we
obtained, underlining the main implications and delivering
hints on possible future applications.

II. PRELIMINARIES

A. Gaussian states and measurements

We consider two modes A and B described by the
vector ξ̂ = (x̂A,p̂A,x̂B,p̂B)T of quadrature operators x̂j ,p̂j ,
j = A,B, satisfying the canonical commutation rules that can
be expressed as [ξ̂j ,ξ̂k] = i�jk , where

� = J ⊕ J, J =
(

0 1

−1 0

)
. (1)

A two-mode Gaussian state ρ̂AB can be represented in phase
space by a Gaussian Wigner function

W (r) = 1

π2
√

det γ
e−(r−d)T γ −1(r−d), (2)

where r = (xA,pA,xB,pB)T is the radius vector in phase space,
d = Tr(ρ̂AB ξ̂ ) is the vector of phase-space displacements,
and γ is the covariance matrix (CM) with elements γjk =
2ReTr[ρ̂AB(ξ̂j − dj )(ξ̂k − dk)], j,k = 1, . . . ,4. Any CM γ has
to satisfy the constraints γ > 0 and γ + i� � 0 (positivity
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and uncertainty principle) to ensure that it is associated to a
physical Gaussian state.

The CM contains complete information about the corre-
lations in a given Gaussian state [15]. By means of local
symplectic (unitary on the Hilbert space) operations, which
leave correlations and entropic quantities invariant, the CM of
a two-mode Gaussian state can always be reduced to a simple
standard form

γ =
(

A C

CT B

)
=

⎛
⎜⎜⎜⎝

a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b

⎞
⎟⎟⎟⎠ , (3)

where we can assume c1 � |c2| � 0 without any loss of
generality. States with a = b are said to be symmetric,
while states with c2 = ±c1 constitute the important family
of squeezed thermal states. Pure two-mode Gaussian states
are special instances of symmetric squeezed thermal states,
with zero temperature (det γ = 1), that is, they are locally
equivalent to two-mode squeezed vacuum states, with standard
form covariances

a = b = cosh(2r), c1 = −c2 = sinh(2r) (4)

with r being the squeezing parameter.
Gaussian states can be produced, manipulated, and detected

in the laboratory with a high degree of control [16]. Some mea-
surements such as photon counting turn a Gaussian state into a
non-Gaussian one. On the other hand, Gaussian measurements
play a special role as being those that map Gaussian states
into Gaussian states. These measurements coincide with the
standard toolbox of linear optics, that is, can be realized using
beam splitters, phase shifters, squeezers, appending auxiliary
vacuum states, and performing balanced homodyne detection
(BHD). Any such measurement is described by a positive
operator valued measure (POVM) of the form [23]

�̂G
j (dj ) = 1

2π
D̂j (dj )�̂G

j D̂
†
j (dj ), j = A,B. (5)

Here the seed element �̂G
j is a normalized density matrix

of a generally mixed single-mode Gaussian state with CM
γj and zero displacements, D̂j (dj ) = exp(−idT

j J ξ̂j ) stands

for the displacement operator, where ξ̂j = (x̂j ,p̂j )T and dj =
(d (x)

j ,d
(p)
j )T is a vector of certain linear combinations of the

measurement outcomes of BHDs. The POVM (5) satisfies the
completeness condition

1

2π

∫
D̂j (dj )�̂G

j D̂
†
j (dj )d2dj = 1̂j , (6)

where d2dj = dd
(x)
j dd

(p)
j , following from Schur’s lemma [27]

and the normalization condition Tr[�̂G
j ] = 1.

B. Measures of quantum correlations

Here we briefly review some of the most prominent mea-
sures of quantum correlations beyond entanglement, recently
proposed to identify the genuinely nonclassical portion of the
total correlations in generally mixed states of bipartite quantum
systems. Achieving a proper understanding of the structure
and nature of correlations in relevant systems is important for

gaining insights into foundational aspects of quantum theory
and is particularly imperative in view of practical applications,
as quantum correlations yield the key resources to overcome
classical systems in quantum information protocols. For
completeness, we also recall the definition of the entanglement
of formation.

Quantum mutual information. The total amount of (clas-
sical and quantum) correlations in the state of a bipartite
quantum system can be reliably quantified in terms of the
quantum mutual information [28,29]

Iq(ρ̂AB) = S(ρ̂A) + S(ρ̂B) − S(ρ̂AB), (7)

where S(ρ̂) = −Tr(ρ̂ ln ρ̂) is the von Neumann entropy
and ρ̂A,B are the reduced states of subsystems A and B,
respectively. The quantum mutual information Iq(ρ̂) of a
generic Gaussian state ρ̂ can be easily calculated using the
formula for the von Neumann entropy of an N -mode Gaussian
state ρ̂ [30], S(ρ̂) = ∑N

i=1 F(νi), where νi are the symplectic
eigenvalues [31] of the CM of the state and

F(x) =
(

x + 1

2

)
ln

(
x + 1

2

)
−

(
x − 1

2

)
ln

(
x − 1

2

)
.

(8)

For two-mode Gaussian states ρ̂AB , the two global symplectic
eigenvalues ν± are defined by 2ν2

± = � ±
√

�2 − 4 det γ ,
with � = det A + det B + 2 det C, see Eq. (3) [32]. The
mutual information of a two-mode Gaussian state with CM
γ as in Eq. (3) is thus

Iq(ρ̂AB) = F(
√

det A) + F(
√

det B) − F(ν+) − F(ν−),

(9)

with F(x) defined in Eq. (8).
One-way classical correlations and quantum discord. For

any bipartite state whose correlations are purely classical,
the mutual information can be equivalently expressed in two
alternative forms:

J ←(ρ̂AB) = S(ρ̂A) − inf
{�̂i }

H{�̂i }(A|B),

(10)
J →(ρ̂AB) = S(ρ̂B) − inf

{�̂i }
H{�̂i }(B|A),

with H{�̂i }(A|B)≡∑
i piS(ρ̂i

A|B) being the quantum condi-
tional entropy associated with the post-measurement density
matrix ρ̂i

A|B = TrB[�̂i ρ̂AB]/pi obtained upon performing the

POVM {�̂i} on system B (pi=Tr[�̂i ρ̂AB]). The optimization
over the POVMs is necessary to single out the least disturbing
measurement to be performed on one subsystem, so that the
change of entropy on the other subsystem yields a quantifier
of the correlations between the two parts.

For arbitrary bipartite quantum states ρ̂AB , including all
entangled states and almost all separable states as well [5],
the three quantities in Eqs. (7) and (10) evaluate different
results in general, with Iq � J ←,J →, and the J quantities
can be interpreted as “one-way classical correlation” measures
[4]. Such a discrepancy is now recognized as a signature of
nonclassicality of the correlations in a given state, and the
difference between total correlation [Eq. (7)] and one-way
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classical correlation [Eq. (10)] defines what Ollivier and Zurek
baptized as the “quantum discord” [3],

D←(ρ̂AB) = Iq(ρ̂AB) − J ←(ρ̂AB)

= S(ρ̂B) − S(ρ̂AB) + inf
{�̂i }

H{�̂i }(A|B), (11)

D→(ρ̂AB) = Iq(ρ̂AB) − J →(ρ̂AB)

= S(ρ̂A) − S(ρ̂AB) + inf
{�̂i }

H{�̂i }(B|A). (12)

Quantum discord is an asymmetric measure of quantum
correlations which has recently received its first operational
interpretations in terms of the quantum state merging protocol
[14] and has spurred a great body of research triggered by
the investigation of its potential role as the key resource
for mixed-state quantum computation [5,7–9,33,34]. The
presence of the optimization over local measurements in the
definition of discord makes its analytical evaluation very hard
for general bipartite states. No closed formulas are known
for D on arbitrary two-qubit mixed states, other than special
cases [35]. Very recently, a Gaussian version of quantum
discord has been defined [17,18] where the optimization is
restricted to Gaussian POVMs of the type Eq. (5), and its
closed expression has been derived for arbitrary two-mode
Gaussian states [17]. As a consequence of that analysis, it
was established that the only classically correlated Gaussian
states are product states, which are completely uncorrelated.
However, in the limit of diverging mean energy there can
exist two-mode Gaussian states that asymptotically approach
so-called classical-quantum states [6], where D← → 0 while
D→ > 0 [17]. A symmetrized version of quantum discord, or
“two-way discord” , can be defined as

D↔(ρ̂AB) = max{D←(ρ̂AB),D→(ρ̂AB)}, (13)

and in this form becomes vanishing if and only if a state is
purely classically correlated [12]. Throughout the paper D
will in general denote the Gaussian quantum discord [17,18],
unless explicitly stated otherwise.

Measurement-induced disturbance. In order to overcome
the difficulties involved in the evaluation of quantum dis-
cord, Luo introduced the “measurement-induced disturbance”
(MID) as an alternative nonclassicality indicator for bipartite
quantum states [10]. MID is motivated by the observation
that in classical systems local measurements do not induce
disturbance. In particular, a bipartite state containing no
quantum correlations is left invariant by the action of any
bi-local complete measurement. On the other hand, even when
a state ρ̂AB is a priori nonclassical, any complete bi-local mea-
surement makes it classical as a result of a decoherence-by-
measurement process [10]. MID is thus defined by restricting
the attention to the bi-local complete projective measurement
ÊA ⊗ ÊB determined by the eigenprojectors Êj (k) of the
marginal states ρ̂j = ∑

k λkÊj (k) (j = A,B), where λk are
corresponding eigenvalues, and reads [10]

M(ρ̂AB) = Iq(ρ̂AB) − Iq[Ê(ρ̂AB)], (14)

where

Ê(ρ̂AB) =
∑
k,l

pAB(k,l)ÊA(k) ⊗ ÊB(l) (15)

is the post-measurement state after local measurements ÊA and
ÊB and pAB(k,l) = Tr[ρ̂AB ÊA(k) ⊗ ÊB(l)] is the probability
of obtaining the outcome (kl). The post-measurement state
is obviously fully classical which implies that its quantum
mutual information (7) coincides with the classical mutual
information of the distribution pAB given by I(A : B) =
H(pA) + H(pB) − H(pAB) [36] with H being the Shannon
entropy, where pA and pB are reduced probability distributions
of the distribution pAB . Hence we can rephrase MID as

M(ρ̂AB) = Iq(ρ̂AB) − I(A : B) . (16)

The MID quantifies the quantumness of correlations in
terms of the state disturbance after local measurements, but
with important differences compared to quantum discord:
(i) both subsystems are locally probed and (ii) there is no
optimization over the local measurements, which are chosen
to be the marginal eigenprojectors for every quantum state.1

Although such a quantity is easily computable in arbitrary-
dimensional systems, and has found widespread applications
in several investigations [37], a number of studies have pointed
out that MID is clearly an unfaithful and nonrefined measure of
the nonclassicality of correlations in bipartite states [11,12],
being nonzero and even maximal for states approaching the
classical limit, and thus severely overestimating quantum
correlations. To date, the MID has not been computed for
Gaussian states.

Classical mutual information and ameliorated
measurement-induced disturbance. To cure this major
drawback of MID, one can define an ameliorated
measurement-induced disturbance (AMID) by incorporating
into Eq. (16) an optimization (precisely, a minimization)
over the joint bi-local POVM measurement �̂A ⊗ �̂B on
subsystems A and B [12]. The AMID then can be defined
as [6,11,12]

A(ρ̂AB) = inf
�̂A⊗�̂B

{Iq(ρ̂AB) − I(A : B)}
= Iq(ρ̂AB) − Ic(ρ̂AB), (17)

where

Ic(ρ̂AB) = sup
�̂A⊗�̂B

I(A : B) (18)

is the classical mutual information of a quantum state ρ̂AB [20],
where I(A : B) is the classical mutual information of the joint
probability distribution pAB(k,l) = Tr[ρ̂AB�̂A(k) ⊗ �̂B(l)] of
outcomes of local measurements �̂A and �̂B on ρ̂AB . The
AMID captures the quantumness of bipartite correlations as
signaled by the minimal state disturbance after optimized local
measurements. As such, it is a symmetric, strongly faithful
nonclassicality measure [12] that vanishes if and only if a
bipartite state ρ̂AB is genuinely classically correlated [6,11],
and it is operationally interpreted as the quantum complement
to the classical mutual information [Eq. (18)], while the latter is

1Notice also that this choice of measurements makes MID not
uniquely defined on bipartite states whose reduced density matrices
have a degenerate spectrum [11], as it is the case for states with
maximally mixed marginals.

042325-4



MEASUREMENT-INDUCED DISTURBANCES AND . . . PHYSICAL REVIEW A 83, 042325 (2011)

in turn a bona fide measure of classical correlations in general
bipartite quantum states [20]. The AMID thus englobes the
nice properties of discord and MID without showing their
genetic weaknesses [12,19]. The evaluation and properties
of AMID have been recently investigated for two-qubit
systems [12].2

Hierarchy of nonclassical correlations. The three entropic
nonclassicality indicators introduced above (discord, MID,
and AMID) satisfy the following hierarchical relationship on
arbitrary bipartite quantum states [11,12]:

{D←,D→} � D↔ � A � M. (19)

Entanglement of Formation. For pure bipartite states |ψ〉AB

all the measures of nonclassical correlations introduced above
(discord, MID, and AMID) reduce to the canonical entangle-
ment measure, the “entropy of entanglement”,

E(|ψ〉AB) = S(TrB |ψ〉AB〈ψ |). (20)

This shows that quantum correlations are faithfully identified
with just entanglement in the special case of pure states of
composite quantum systems.

For bipartite mixed states ρ̂AB let us recall that the
entanglement of formation (EoF) Ef (ρ̂AB) is a well-known
entanglement monotone [38] defined as the convex roof of the
pure-state entropy of entanglement

Ef (ρ̂AB) = min
{pi ,|ψ〉iAB }

∑
i

piE
(|ψ〉iAB

)
, (21)

where the minimum is taken over all the pure-state realizations
of ρ̂AB ,

ρ̂AB =
∑

i

pi |ψ〉iAB〈ψ |iAB.

For general mixed bipartite Gaussian states ρ̂AB one can
introduce a Gaussian version of the EoF (Gaussian EoF) EG

f ,
which is by construction an upper bound to Ef , defined as
the convex roof of the entropy of entanglement restricted to
decompositions of ρ̂AB into pure Gaussian states only [26].
The Gaussian EoF can be evaluated via a minimization over
CMs:

EG
f (γ ) = inf

γ ′�γ : det(γ ′)=1
E(γ ′), (22)

where the infimum runs over all pure bipartite Gaussian states
with CM γ ′ smaller than γ . Compact formulas for EG

f exist
for all symmetric two-mode states (where EG

f = Ef as the
Gaussian decomposition is globally optimal) [25], and in the
nonsymmetric case for squeezed thermal states and so-called
states of partial minimum uncertainty [39]; for all the other
two-mode states its value can still be found analytically [26].

In the following sections we will approach the evaluation
and characterization of MID and AMID for arbitrary two-
mode Gaussian states and their interplay with entanglement,
complementing the studies of Refs. [17,18] on discord.

2In Ref. [12] the AMID is defined via an optimization over local
projective measurements rather than more general local POVMs. Both
versions of AMID have also been studied in Ref. [11], albeit without
naming the considered measures explicitly.

III. MEASUREMENT-INDUCED DISTURBANCE OF
TWO-MODE GAUSSIAN STATES

In this section we will address the calculation of the MID
M [10] [Eq. (14)] for two-mode Gaussian states. Here and
in the following we will always consider, without any loss
of generality, states ρ̂AB whose CM γ is in standard form
[Eq. (3)]. The expressions we derive can be straightforwardly
recast in terms of a set of four local symplectic invariants for
general two-mode states that uniquely define the standard form
covariances [32,40].

The quantum mutual information of a two-mode Gaussian
state can be computed via the formula (9). Here we will be
concerned with the calculation of the mutual information after
local projections onto the eigenstates of the marginal density
matrices.

For a generic two-mode mixed Gaussian state ρ̂AB in stan-
dard form, the reduced states are just thermal states ρ̂th,A and
ρ̂th,B with mean number of thermal photons 〈n̂A〉 = (a − 1)/2
and 〈n̂B〉 = (b − 1)/2, respectively. The local measurements
ÊA ⊗ ÊB entering the expression of MID [Eq. (14)] are then
non-Gaussian measurements given by projections onto Fock
states (joint photon counting),

Êj (n) = |n〉j 〈n|, j = A,B, (23)

and the post-measurement state reads as

Ê(ρ̂AB) =
∞∑

m,n=0

p(m,n)|m〉A〈m| ⊗ |n〉B〈n|, (24)

where p(m,n) =A〈m|B〈n|ρ̂AB |m〉A|n〉B is the joint probability
distribution of finding m photons in mode A and n photons in
mode B. The determination of the quantum mutual information
Iq[Ê(ρ̂AB)] of the post-measurement state (24) requires the
calculation of the local von Neumann entropies S(ρ̂E

j ), j =
A,B of the reduced states ρ̂E

A,B = TrB,A[Ê(ρ̂AB)] as well as
the global entropy S[Ê(ρ̂AB)]. Since the reduced states are just
equal to the local thermal states, that is, ρ̂E

j = ρ̂th,j , j = A,B,
we obtain immediately the local entropies equal to S(ρ̂E

A) =
F(a) and S(ρ̂E

B) = F(b), where F(x) is defined by Eq. (8). The
global entropy can be computed from the joint photon-number
probability distribution p(m,n). The latter can be derived using
the generating function for the distribution in the spirit of
Ref. [41].

We start by noting that any two-mode quantum state
ρ̂AB can be represented by the complex normal quantum
characteristic function defined as

C(β1,β2) = Tr
[
ρ̂ABeβ1â

†+β2b̂
†
e−β∗

1 â−β∗
2 b̂

]
, (25)

where â (â†) and b̂ (b̂†) are annihilation (creation) operators
of modes A and B and β1,β2 are complex parameters of the
characteristic function. For a Gaussian state in the standard
form (3) with zero means 〈â〉 = 〈b̂〉 = 0 the characteristic
function attains the form

C(β1,β2) = exp[−(B1|β1|2 + B2|β2|2)

+(Dβ∗
1 β∗

2 + D̄β1β
∗
2 + c.c.)], (26)

where B1 = 〈�â†�â〉 = (a − 1)/2, B2 =
〈�b̂†�b̂〉 = (b − 1)/2, D = 〈�â�b̂〉 = (c1 − c2)/4,
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D̄ = −〈�â†�b̂〉 = −(c1 + c2)/4. Here c.c. stands for
complex conjugate terms and �Â ≡ Â − 〈Â〉. The generating
function for the distribution p(m,n) then reads [42]

G(λ1,λ2) = 1

π2λ1λ2

∫ ∫
exp

(
−|β1|2

λ1
− |β2|2

λ2

)
×C(β1,β2)d2β1d2β2, (27)

where λ1 and λ2 are real parameters. By inserting the charac-
teristic function (26) into the integral (27) and performing the
integration we arrive at the generating function G (λ1,λ2) =
F1 (λ1,λ2) F2 (λ1,λ2), with

Fj (λ1,λ2) = 1√
1 + B1λ1 + B2λ2 + Kjλ1λ2

, (28)

where Kj = [(a − 1)(b − 1) − c2
j ]/4, j = 1,2. The sought

photon-number distribution is obtained by differentiating the
generating function (27) as

p(m,n) = (−1)m+n

m!n!

∂m+nG (λ1,λ2)

∂λm
1 ∂λn

2

∣∣∣∣
λ1=λ2=1

, (29)

which gives us explicitly

p(m,n) = 1

m!n!

m∑
ν1=0

n∑
ν2=0

(
m

ν1

)(
n

ν2

)
Q(1)(ν1,ν2)

×Q(2)(m − ν1,n − ν2), (30)

where

Q(j )(α,β) = (B1 + Kj )α(B2 + Kj )β

4α+β (1 + B1 + B2 + Kj )α+β+ 1
2

×
min(α,β)∑

l=0

l!

(
α

l

)(
β

l

)
[2(α + β − l)]!

(α + β − l)!

×
[
−4Kj

1 + B1 + B2 + Kj

(B1 + Kj )(B2 + Kj )

]l

. (31)

The global posterior von Neumann entropy is then given by
the formula

S[Ê(ρ̂AB)] = −
∞∑

m,n=0

p(m,n) ln p(m,n) (32)

and can be evaluated numerically for arbitrary two-mode
Gaussian states.

We note that in Ref. [43] it is shown that the joint
photon-number distribution for multimode Gaussian states can
be written in terms of multivariable Hermite polynomials.
Recursive formulas can be derived for the calculation of
the multivariable Hermite polynomials, and this fact can be
exploited to speed up the numerical evaluation of the MID.

The final expression for the MID of two-mode Gaussian
states ρ̂AB with a standard form CM as in Eq. (3) is then

M(ρ̂AB) = S[Ê(ρ̂AB)] −S(ρ̂AB)

= −
∞∑

m,n=0

p(m,n) ln p(m,n) − F(ν+) − F(ν−).

(33)

In the subcase of two-mode squeezed states, with c1 =
±c2 = c, we have K1 = K2 = K = [(a − 1)(b − 1) − c2]/4
and the distribution (30) takes the simplified form

p(m,n) = (B1 + K)m(B2 + K)n

m!n!(1 + B1 + B2 + K)m+n+1

×
min(m,n)∑

j=0

(
m

j

)(
n

j

)
j !(m + n − j )!

×
[
−K

1 + B1 + B2 + K

(B1 + K)(B2 + K)

]j

. (34)

For the very special instance of pure two-mode Gaussian
states with the standard form given by two-mode squeezed
vacuum states

|ψ(r)〉AB =
√

1 − q2
∞∑

n=0

qn|n,n〉AB, (35)

with standard form covariances given by Eq. (4), where q =
tanh r , the MID can be evaluated in closed form. The state
is in Schmidt decomposition with Schmidt coefficients λn =√

1 − q2qn. Being a pure state, S(|ψ(r)〉AB) = 0. The post-
measurement state (24) then reads [10]

Ê(|ψ(r)〉AB) = (1 − q2)
∞∑

n=0

q2n|n〉A〈n| ⊗ |n〉B〈n|, (36)

and its von Neumann entropy is S[Ê(|ψ(r)〉AB)] =
−∑

n λ2
n ln λ2

n = F[cosh(2r)], which precisely coincides with
the entropy of entanglement of the pure two-mode Gaussian
state [Eq. (20)]. Therefore

M(|ψ(r)〉AB) = E(|ψ(r)〉AB) = cosh2(r) ln[cosh2(r)]

− sinh2(r) ln[sinh2(r)], (37)

as expected from the definition of MID. Let us remark that this
value is attained by local non-Gaussian measurements (joint
photon counting). An interesting question is whether there
exist local Gaussian POVMs that can result in a measurement-
induced disturbance equal to the one in Eq. (37) for pure
two-mode Gaussian states. Surprisingly enough, we will prove
in the next section that the answer is negative.

IV. GAUSSIAN AMID OF TWO-MODE GAUSSIAN STATES

Given the crucial role of Gaussian states in quantum
information processing, it is important to carry out a thorough
analysis and comprehensive characterization of their quantum
and classical correlations. A primal step to undertake is
to approach the evaluation of faithful measures, such as
the classical mutual information Ic and correspondingly the
AMIDA [Eqs. (17) and (18)] for arbitrary two-mode Gaussian
states ρ̂AB . However, the problem appears formidable if any
possible non-Gaussian POVM is allowed. Therefore, similarly
to what has been done for discord [17,18], one can define a
Gaussian version of the AMID AG where the optimization is
constrained to local Gaussian POVMs of the form (5) as

AG(ρ̂AB) = Iq(ρ̂AB) − IG
c (ρ̂AB), (38)
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where

IG
c (ρ̂AB) = sup

�̂G
A⊗�̂G

B

I(A : B) (39)

is the Gaussian classical mutual information of the quantum
state ρ̂AB . The true AMID, optimized over general local
measurements, would be then bounded from above as

A(ρ̂AB) � min{AG(ρ̂AB),M(ρ̂AB)}. (40)

A relevant and natural question, related to the one in
the closing of the previous section, is whether Gaussian
measurements are always optimal for the evaluation of the
AMID, that is, whether A = AG for all bipartite Gaussian
states. In the case of discord there are subclasses of two-mode
Gaussian states where one can prove that the Gaussian discord
achieves the global minimum in Eq. (11) even when including
potentially non-Gaussian measurements on a local subsystem
[17]. The properties of the Gaussian discord allow us to
conjecture that this might be true for arbitrary two-mode
Gaussian states, although no rigorous investigation is available
to date to support this claim.3 Remarkably we will find
instead that when both parties are locally probed there is
a finite-volume set of two-mode Gaussian states (notably
including pure states) for which non-Gaussian measurements
are necessarily optimal for the evaluation of the AMID, and
the Gaussian AMID only provides a strict upper bound to it.
This proves that Gaussian joint measurements may not be the
least disturbing ones on general two-mode Gaussian states.

We hereby develop the framework for the determination
of the Gaussian AMID on general two-mode Gaussian states,
and provide closed formulas for it in some special cases. The
nontrivial part in the determination of the quantity (38) is
the calculation of the classical mutual information IG

c (ρ̂AB)
requiring maximization of the Shannon mutual information
I(A : B) over local Gaussian POVMs �̂A and �̂B of the
form (5).

We begin by observing that in the considered optimization
task we can restrict ourselves to covariant Gaussian POVMs
(5) projecting onto pure states (rank-one POVMs), similarly
to discrete-variable scenarios [11]. The proof of this statement
is provided in the Appendix. We can thus focus on local
measurements of the form (5) where the seed state �̂j is a
pure single-mode Gaussian state with CM γj . Let us recall
that any pure-state one-mode CM γj can be expressed as
γj = U (θj )V (rj )UT (θj ), where

U (θj ) =
(

cos θj sin θj

− sin θj cos θj

)
, V (rj ) =

(
e2rj 0

0 e−2rj

)
,

(41)

where θj ∈ 〈0,π ) and rj � 0. In this picture homodyne
detection on mode j is recovered in the limit of an infinitely

3A preliminary numerical study reveals that for general two-
mode mixed Gaussian states, even allowing for a non-Gaussian
measurement such as photon counting, the corresponding discord
is found to be never smaller than the one associated to the optimal
Gaussian measurement (A. Datta, private communication).

squeezed pure state �̂j , that is, rj → ∞. On the other hand,
heterodyne detection on mode j corresponds to rj = 0.

Now we want to maximize the Shannon mutual information
I(A : B) of the distribution (A3),

P (d) = Tr[�̂A(dA) ⊗ �̂B(dB)ρ̂AB],

over all single-mode pure-state CMs γA,B . Expressing the two-
mode state CM γ in block form as in Eq. (3), and using the
formula for the Shannon entropy of a Gaussian distribution P

of N variables with classical correlation matrix �, H(P ) =
ln[(2πe)

N
2

√
det �] [36], the sought mutual information can be

obtained in the form [47]

I(A : B) = 1

2
ln

[
det(γA + A) det(γB + B)

det(γA ⊕ γB + γ )

]
. (42)

Since the determinant is invariant with respect to symplectic
transformations we can assume the CM γ to be in standard
form [Eq. (3)]; moreover, given Eqs. (8) and (41), the invari-
ance of the determinant under orthogonal transformations, and
the monotonicity of the logarithmic function, the object to be
maximized reads

f (rA,rB,θA,θB) = det A′ det B ′

det γ ′ , (43)

where the CM γ ′ has the 2 × 2 blocks of the form

A′ = a1 + V (rA) , B ′ = b1 + V (rB),
(44)

C ′ = UT (θA)diag(c1,c2)U (θB).

We recall that the Gaussian AMID takes then the form (38)
with

IG
c (ρ̂AB) = 1

2
ln

[
sup

{rA,B ,θA,B }
f (rA,rB,θA,θB)

]
. (45)

The determinant in the denominator of Eq. (43) can be ex-
pressed in terms of the local symplectic invariants I1 = det A′,
I2 = det B ′, I3 = det C ′, and I4 = Tr(A′JC ′JB ′JC ′T J ) as
det γ ′ = I1I2 + I 2

3 − I4 [40]. Evidently the function (43)
depends on the phases θA,B only through invariant I4 so we
can optimize f over the phases by optimizing I4. Since I4 is
always nonnegative, the maximum of the function f will be
obtained if the phases will maximize I4.

Three different cases must be distinguished depending on
the values of the eigenvalues c1,2 of the matrix C.

(1) If c1 = c2 = 0, then I3,4 = 0, which implies f = 1 and
therefore IG

c (ρ̂AB) = 0. Since also Iq(ρ̂AB) = 0, we get finally
AG(ρ̂AB) = 0. Obviously product states have neither quantum
nor classical correlations. Actually it is known that any
nonproduct two-mode Gaussian state has nonzero quantum
correlations, so we must expect AG > 0 as soon as one of the
covariances in the block C is nonzero.

(2) If c1 > 0 and c2 = 0, then for rA,B > 0 the optimal
phases are θA,B,opt = π/2 and for these phases the invariant
I4 takes the value I ′

4 = c2
1(a + e2rA )(b + e2rB ). Let us define

1

1 − h(rA,rB)
≡ g(rA,rB)

≡ f (rA,rB,θA,opt,θB,opt). (46)
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We have h = I ′
4/(I1I2) and the function h (and consequently

g) is obviously maximized in the limits rA,B → ∞ (doubly
homodyne detection) when we get

ghom = ab

ab − c2
1

. (47)

Since ghom is also larger than the maximal values of the
function g on the boundaries rA = 0 or rB = 0, we arrive
at the conclusion that (47) is the optimal value of Eq. (43) for
states with c2 = 0.4

(3) In the general case c1,c2 �= 0, the invariant I4 can
be expressed as I4 = c2

1c
2
2Tr(XB ′), where X is a real

symmetric positive-semidefinite matrix of the form X =
UT

B diag(c−1
1 ,c−1

2 )UAA′UT
A diag(c−1

1 ,c−1
2 )UB , with Uj ≡ U (θj )

defined in Eq. (41), and the diagonal matrices A′ and B ′ defined
in Eq. (44). Expressing the matrix X through eigenvalue de-
composition X = W (φ)diag[x1(θA),x2(θA)]WT (φ), where W

is an orthogonal matrix diagonalizing X and x1(θA) � x2(θA)
are the eigenvalues of X depending on the angle θA, we can
maximize I4 over the phase φ. Furthermore, if we substitute
into the obtained formula the explicit forms of eigenvalues
x1,2(θA), we can also perform the maximization over the angle
θA, which finally yields the invariant I4 maximized over the
phases θA,B of local measurements of the form

I ′
4 = {[a + cosh(2rA)][b + cosh(2rB)]

+ sinh(2rA) sinh(2rB)}(c2
1 + c2

2

)
+{[a + cosh(2rA)] sinh(2rB)

+ [b + cosh(2rB)] sinh(2rA)}(c2
1 − c2

2

)
. (48)

The corresponding value of f is denoted by g(rA,rB). For a
generic two-mode mixed Gaussian state it is again convenient
to express the function g(rA,rB) in terms of h(rA,rB) as in Eq.
(46) being

h(rA,rB) = (
I ′

4 − I 2
3

)
/(I1I2), (49)

where

I1 = (a + e2rA )(a + e−2rA ), (50)

I2 = (b + e2rB )(b + e−2rB ), (51)

I3 = c1c2. (52)

Since h � 0 as follows from the inequality I(A : B) � 0,
we have to maximize h. Introducing new variables λ = e2rA

and µ = e2rB the extremal points of h can be found by
solving the stationarity conditions ∂h/∂λ = 0 and ∂h/∂µ = 0,
respectively, leading to a set of coupled polynomial equations
of the form

c2
1(a + λ)2µ2 + [

c2
1b(a + λ)2 − c2

2b(aλ + 1)2

+ c2
1c

2
2a(λ2 − 1)

]
µ − c2

2(aλ + 1)2 = 0,
(53)

c2
1(b + µ)2λ2 + [

c2
1a(b + µ)2 − c2

2a(bµ + 1)2

+ c2
1c

2
2b(µ2 − 1)

]
λ − c2

2(bµ + 1)2 = 0.

4Recall that in our convention c1 � |c2|, therefore the optimal
Gaussian measurement consists of the local homodyne detection of
the quadrature with the highest intermodal correlation.

Upon solving the first equation as a quadratic equation with
respect to µ and substituting the obtained roots into the
second equation, one arrives after some algebra at a single
12th-order polynomial in the variable λ that we do not write
here explicitly due to its complexity. By taking its real roots
calculated numerically together with stationary points on the
boundary and picking the one for which h is maximized,
we can finally get the optimal squeezing parameters rA,B of
the seed elements �̂A,B of optimal local POVMs [Eq. (5)]
maximizing the classical mutual information and thus attaining
the Gaussian AMID [Eq. (38)] of a generic two-mode Gaussian
state.

Analytical progress in the calculation of AG can be
achieved for special classes of two-mode states, detailed in
the following.

(4) Symmetric states. For symmetric states with a = b the
maximization of IG

c can be in principle performed analytically.
As the optimal solution is clearly symmetric with rA = rB ≡ r ,
we have only one stationarity condition dh/dλ = 0, where λ =
e2r is the parameter to optimize over. After some algebra the
stationarity condition boils down to the following fourth-order
polynomial equation:

a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0, (54)

where

a0 = −c2
2, a1 = −a

(
c2

1c
2
2 + 3c2

2 − a2c2
1

)
,

a4 = c2
1, a2 = 3a2(c2

1 − c2
2

)
, (55)

a3 = a
(
c2

1c
2
2 + 3c2

1 − a2c2
2

)
.

Equation (54) can be solved analytically using the Cardan
formulas but the obtained solutions are rather cumbersome
and therefore we do not give them here. Calculating the values
of the function h(λ) in the admissible real solutions of Eq. (54)
and also in the stationary points on the boundary, the point in
which the function is maximal gives us the sought optimal
squeezing.

(5) Squeezed thermal states. For generally nonsymmetric
squeezed thermal states with c1 = ±c2 ≡ c, the optimal
Gaussian POVMs can be derived in a simple closed form
by performing the maximization of h in Eq. (49). We find the
following results. If the state parameters a, b, and c satisfy the
inequality (a + b + 1)2 � ab(ab − c2), then the optimality is
obtained by homodyne detection (rA,B → ∞) on both modes
giving Eq. (47). Conversely if (a + b + 1)2 < ab(ab − c2)
then the optimality is obtained by heterodyne detection (rA =
rB = 0, projection onto coherent states) on both modes giving

ghet =
[

(a + 1)(b + 1)

(a + 1)(b + 1) − c2

]2

. (56)

Summarizing, the Gaussian classical mutual information of
two-mode squeezed thermal states is given by Eq. (45) with

f =
{

ghom [Eq.(47)], (a + b + 1)2 � ab(ab − c2);

ghet [Eq.(56)], otherwise.
(57)

(6) Pure states. For pure two-mode squeezed vacuum
states with a = b = cosh(2r),c1 = −c2 = c = sinh(2r), the
first case in Eq. (57) is always satisfied, and doubly ho-
modyne measurements are optimal for the calculation of
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the Gaussian AMID. Although this result is quite intuitive
(one could guess that in the pure-state case the optimal
local Gaussian measurements possessing maximum Shannon
mutual information for distribution of their outcomes would
be homodyne detections), the corresponding value of AG is
strictly bigger than the entropy of entanglement [Eq. (20)]
which corresponds to the true AMID A globally optimized
over joint, possibly non-Gaussian local POVMs as in the
definition (17). We know from Eq. (37) that the latter is
indeed attained by local photon counting AG(|ψ(r)〉AB) >

A(|ψ(r)〉AB) = M(|ψ(r)〉AB) = E(|ψ(r)〉AB). Namely

AG(|ψ(r)〉AB) = 2M(|ψ(r)〉AB) − ln[cosh(2r)], (58)

which is strictly bigger than the expression in Eq. (37).
The latter finding entails an interesting showcase in which

non-Gaussian local measurements on Gaussian states can
lead to the extraction of larger correlations than any pair
of local Gaussian measurements if quantified by mutual
information. In the case of pure two-mode squeezed states this
behavior cannot be simply attributed to the fact that while the
state encodes perfect correlations between photon numbers
(as expressed by pn,m = 0 for n �= m) there are imperfect
correlations between quadrature operators [as expressed by
a nonzero Einstein-Podolsky-Rosen variance 〈(x̂A − x̂B)2〉 =
e−2r ]. This is because while such a variance decays with
increasing squeezing r the gap between the Gaussian AMID
AG (obtained upon local homodyne detections) and the
true AMID A = M (obtained upon local Fock projections)
for pure states is a monotonically increasing function of r

converging to 1 − ln 2 ≈ 0.3 in the limit r → ∞.
A full numerical comparison between Gaussian AMID,

MID, and Gaussian discord for two-mode Gaussian states will
be provided in the next section.

V. COMPARISON BETWEEN NONCLASSICALITY
MEASURES FOR GAUSSIAN STATES

Here we deploy a comprehensive comparative analysis
of MID M [Eqs. (14) and (33)] Gaussian AMID AG [Eqs.
(38) and (45)], and two-way Gaussian quantum discord D↔
{Eq. (13), Ref. [17]} as tools to quantify the quantumness of
correlations in arbitrary two-mode Gaussian states via entropic
descriptions of the state disturbance following suitable local
measurements on one or both local parties. The results of the
previous sections show that in Eq. (40) either quantity on the

right-hand side can be the smallest on particular instances
of two-mode Gaussian states, suggesting that the subset of
two-mode Gaussian states whose true AMID A [Eq. (17)] is
necessarily optimized by non-Gaussian measurements, might
have a finite volume in the space of general two-mode Gaussian
states.

To confirm this interesting feature and to investigate the
tightness of the hierarchy established in Eq. (19), we have
generated a large number of random two-mode Gaussian
states (up to 106), and for each of them we have evaluated
the three symmetric nonclassicality indicators D↔, AG, and
M following the prescriptions of the preceding sections. The
resulting analysis is illustrated in Fig. 1. Panel (a) shows that
while the MID can be arbitrarily larger than the Gaussian
AMID in principle there is nonetheless a finite region in the
(AG, M) diagram that allocates two-mode Gaussian states
for which even nonoptimized non-Gaussian measurements
(specifically, photon counting) result in a larger classical mu-
tual information, hence minimize the quantum correlations in
the definition of the AMID compared to the optimal Gaussian
POVMs. In this study we did not consider other non-Gaussian
measurements apart from photon counting (that enters in the
definition of MID because local states of Gaussian mixed states
are essentially thermal states). Therefore we can expect that
the region in which general non-Gaussian measurements are
optimal for the AMID can be in principle much larger than the
one highlighted by the present study [that is located below the
blue online segment of equation AG = M in Fig. 1(a)]. Still,
our finding is perhaps one of the most striking instances of
an operational quantum informational measure for Gaussian
states that can gain a significant optimization by the use of
suitable non-Gaussian operations. Non-Gaussian operations
can sometimes reveal quantumness more accurately, thus
unleashing more precisely the available nonclassical resources
than the best Gaussian measurements on certain two-mode
Gaussian states, including quite remarkably all two-mode pure
Gaussian states. Notice however that the rigidity in choosing
the non-Gaussian measurements for the evaluation of MID,
excluding any optimization procedure, results in most of
the cases into a very loose overestimation of the quantum
correlations, as testified by the unbounded region above the
straight blue line, filled by states where certainly joint photon
counting is not optimal for the AMID. Interestingly, pure states
embody the lower bound (dashed black curve) in Fig. 1(a).
They are therefore the states where the Gaussian AMID

FIG. 1. (Color online) Comparison between (a) MID vs Gaussian AMID, (b) MID vs two-way Gaussian discord, and (c) Gaussian AMID
vs two-way Gaussian discord for 105 randomly generated mixed two-mode Gaussian states. Pure two-mode squeezed states are accommodated
on the dashed black curve in all the plots. See text for details of the other boundaries. All the quantities plotted are dimensionless.
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FIG. 2. (Color online) Comparison of different measures of quantum correlations for two-mode symmetric squeezed thermal Gaussian
states (b = a, c1 = −c2 = c). Panels (a) and (b): Two-way Gaussian quantum discord D↔ = max{D←,D→} (dotted black line), Gaussian
AMID AG associated to optimal bi-local Gaussian POVMs (dashed blue line), and unoptimized MID M associated to joint photon counting
(solid red line) plotted vs the normalized state covariance parameter c/

√
a2 − 1 for (a) a = 1.05 and (b) a = 2. The AMID A optimized over

all possible (Gaussian and non-Gaussian) measurements is certainly A � min{M,AG}. Both MID and Gaussian AMID majorize the Gaussian
discord, but for c bigger than a certain threshold value c�(a) (ticked by a vertical gray line in the plots) one has M < AG, meaning that
non-Gaussian measurements become necessarily optimal for the AMID. Panel (c) depicts the threshold curve c�(a) (solid black line) defined
by the condition M = AG in the normalized parameter space [(a − 1)/a,c/

√
a2 − 1]. The shaded (orange) region above the threshold line

allocates instances of the considered family of states lying in the neighborhood of pure two-mode squeezed states where certainly Gaussian
POVMs are not globally optimal for the AMID since photon counting results in a lower figure of merit. Below the threshold either Gaussian
measurements are optimal or there may exist some more general non-Gaussian measurement that achieves the absolute minimum in A: our
analysis cannot rule out this possibility. All the quantities plotted are dimensionless.

realizes the most dramatic overestimation of the true AMID
that nonetheless can never exceed ≈0.3 as computed in the
previous section. A family of states sitting on the blue line in
Fig. 1(a) will be characterized shortly.

Before that, let us comment on the other panels of Fig. 1.
Panel (b) shows as expected, and in full analogy with the case
of two qubits [12], that in general the unoptimized MID based
on photon counting is a very loose upper bound to quantum
discord for two-mode Gaussian states (reducing to it on pure
states, depicted as dashed black again), unbounded from above
and relentlessly approaching arbitrarily large values even for
states with nearly vanishing quantum correlations as quantified
by the (Gaussian) discord. This should discourage the usage
of MID in general as it almost always provides overestima-
tions rather than reliable quantifications of nonclassicality of
bipartite correlations.

The last panel also shows a somehow analogous situation
to the two-qubit case [12]: the Gaussian AMID is intimately
related to discord and admits upper and lower bounds at a
given value of the two-way Gaussian discord. The lower (blue
online) boundary in panel (c) accommodates states for which
the two quantifiers give identical prescriptions for measuring
quantum correlations. These are states with CM in standard
form [Eq. (3)] given by

a = cosh(2s), b = cosh2(r) cosh(2s) + sinh2(r),
(59)

c1 = −c2 = cosh r sinh(2s),

in the limit r → ∞. They are characterized by AG = D↔ =
2 sinh2 s ln(coth s). Pure states fill once more the dashed black
curve, for which D↔ = E, Eq. (37), but AG is strictly bigger,
Eq. (58). The upper (red online) boundary in Fig. 1(c) can be
spanned for instance by symmetric squeezed thermal states
(b = a, c1 = −c2 = c), with a � 1 and c ∈ [0,

√
a2 − 1).

Upper and lower boundaries ideally conjoin asymptotically
for diverging discord and Gaussian AMID.

We can now analyze in detail the competition between
the MID associated to photon counting (typically very loose,
but optimal on pure states) and the Gaussian AMID (very
accurate for mixed and strongly correlated Gaussian states) to
maximize the classical mutual information, hence minimizing
the AMID [Eq. (40)] on two-mode Gaussian states. We believe
it be relevant to focus on the class of two-mode symmetric
squeezed thermal Gaussian states (b = a, c1 = −c2 = c), for
which the involved measures can be simply evaluated.5 We plot
in [Fig. 2(a) and 2(b)] a comparison of the three quantumness
measures studied in this work as a function of the rescaled state
parameters a and c. We see that there is a certain threshold
value c�(a) beyond which the Gaussian POVMs are no longer
optimal for the AMID, and non-Gaussian measurements
such as photon counting (via MID) provide a more accurate
result, culminating in the extreme case of pure states where
those specific measurements are globally optimal. Figure 2(c)
depicts the threshold in the parameter space, highlighting the
region where our analysis conclusively reveals the necessity
of non-Gaussian measurements for the global optimization of
AMID and classical mutual information of the considered class
of two-mode Gaussian states. As previously remarked, this
region can be in principle (and is likely to be so) much larger.
Yet it certainly occupies a finite volume in the space of general
two-mode Gaussian states. Notice that for all the Gaussian
states in such a region, non-Gaussian measurements allow one
to extract stronger correlated measurement records compared
to any bi-local Gaussian measurement, as the classical mutual

5For squeezed thermal states the Gaussian discord is optimized by
a local heterodyne detection [17,18].
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FIG. 3. (Color online) Plot of MID (solid red line), Gaussian
AMID (dashed blue line), and Gaussian two-way quantum discord
(dotted black line) as a function of the parameter a for the two-mode
Gaussian states of Eq. (60). These curves give origin to the dotted
magenta lines in Figs. 1(a) and 1(b). All the quantities plotted are
dimensionless.

information is maximized by non-Gaussian detections. The
states attaining the threshold identified in this analysis are an
instance of states filling up the blue line in Fig. 1(a).

Finally, we exhibit an example family of two-mode
Gaussian states where on the opposite end the MID based
on non-Gaussian detections is a highly inaccurate measure
of quantum correlations. These states sit on the quasivertical
dashed (magenta online) curves in Figs. 1(a) and 1(b). They
are symmetric states with

b = a, c2 = 0, and c1 = (a2 − 1 − ln a)/a. (60)

As apparent from Fig. 3, their Gaussian discord and Gaussian
AMID stay limited (smaller than ≈0.06) and rigorously vanish
in the asymptotic limit a → ∞. On the other hand, their MID
arising from Fock projections increases arbitrarily and diverges
for a → ∞, embodying an extreme overestimation of some
vanishing quantum correlations. Clearly there will be many
more families of Gaussian states where such a behavior will
arise.

VI. NONCLASSICALITY VERSUS ENTANGLEMENT

Here we present a numerical comparison between nonclas-
sicality of correlations measured by means of the Gaussian
AMID [Eq. (38)] and entanglement quantified by the Gaussian
EoF [Eq. (22)] [26] for generally mixed two-mode Gaussian
states. A similar analysis was performed in Ref. [17] with
(Gaussian) discord used as a nonclassicality indicator.

Figure 4 shows the distribution of Gaussian AMID versus
Gaussian EoF for a sample of 105 randomly generated two-
mode Gaussian states. In analogy with the case of Gaussian
discord versus Gaussian EoF it is possible to identify upper and
lower bounds on the Gaussian AMIDAG at fixed entanglement
EG

f . Interestingly, our numerical exploration shows that for all
two-mode Gaussian states ρ̂AB it is

AG(ρ̂AB) � EG
f (ρ̂AB). (61)

This provides a hierarchical relationship between different
types of nonclassical resources, entanglement EG

f , and more
general measurement-induced quantum correlations AG. On

FIG. 4. (Color online) Plot of Gaussian AMID AG vs Gaussian
EoF EG

f for 105 random two-mode Gaussian states. The dashed line
of equation AG = EG

f stands as a lower bound for the physically
admitted region. Refer to the main text for details of the other curves.
All the quantities plotted are dimensionless.

the basis of the hereby employed measures (both symmetric by
construction and restricted to a fully Gaussian scenario), the
latters appear to always encompass and exceed entanglement
itself for two-mode generally mixed Gaussian states. A similar
relationship does not hold for discord, which can be smaller
as well as larger than entanglement of formation, even in a
Gaussian scenario [17,48].

We can provide two families of two-mode Gaussian states
for which Eq. (61) becomes asymptotically tight. One such
class is provided, for example, by symmetric squeezed thermal
states, whose standard form CM is as in Eq. (3) with

b = a , c1 = −c2 = a − ν̃, (62)

where
ν̃ > 0 , a � max[ν̃, (1 + ν̃2)/(2ν̃)]. (63)

The Gaussian EoF of these states (equal to the true EoF
minimized over all possible pure-state decompositions by
virtue of the symmetry of the states [25]) is a simple
monotonically decreasing function of the positive parameter ν̃,

EG
f (ν̃) = (1 + ν̃)2 ln

[ (1+ν̃)2

4ν̃

] − (1 − ν̃)2 ln
[ (1−ν̃)2

4ν̃

]
4ν̃

(64)

if ν̃ < 1 and EG
f (ν̃) = 0 otherwise. The Gaussian AMID can

be computed analytically according to the prescription of
Sec. IV and for any fixed ν̃ (i.e., fixed Gaussian EoF) one
can find the optimal value of the parameter a in the range
defined by Eq. (63) that minimizes AG. The resulting AG as
a function of EG

f is plotted in Fig. 4 as a green curve. For this
family of states the Gaussian AMID approaches the Gaussian
EoF as the latter tends to zero, tending to saturate Eq. (61)
asymptotically in the regime of infinitesimal correlations.

Furthermore, let us consider another class of symmetric
two-mode states whose standard form CM is as in Eq. (3) with

b = a, c1 = a − (1 + ν̃2)/(2a), c2 = a − (2a)/(1 + ν̃2),

(65)

where the parameter range is the same as in Eq. (63). The
Gaussian EoF of these states is still given by Eq. (64), while
in the limit a → ∞ one can show that their Gaussian AMID
is attained by homodyne detections on both modes, yielding
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FIG. 5. (Color online) 3D plot of Gaussian EoF EG
f [Eq. (64)]

vs Gaussian discord D← [Eq. (68)] and Gaussian AMID AG

[Eq. (69)] for two-mode symmetric squeezed thermal Gaussian states,
characterized by their covariance parameters a and ν̃ [see Eq. (62)].
The solid black line accommodates pure states (ν̃ = a − √

a2 − 1).
All the quantities plotted are dimensionless.

AG(ν̃) = 1 − ln(4ν̃) + ln(1 + ν̃2). The corresponding Gaus-
sian AMID versus Gaussian EoF curve for these states is
depicted in Fig. 4 as a blue curve. In this case the Gaussian
AMID approaches the Gaussian EoF as the latter tends to
infinity, also saturating Eq. (61) asymptotically.

It has to be underlined that the two presented Gaussian
families are just examples to show that the bound in Eq.
(61) can be asymptotically tight, and we remark that the
combination of the two presented curves does not provide
a strict lower bound to Gaussian AMID against Gaussian EoF
for all two-mode Gaussian states, as it is evident from the
presence of some random points below the intersection of the
two (green and blue) curves, however above the dashed line
corresponding to the bound of Eq. (61) [see Fig. 4].

On the other hand, a tight upper bound on the Gaussian
AMID at fixed Gaussian EOF can be identified. We found
it numerically to be constituted by the maximum of two
branches,

AG(ρ̂AB) �

⎧⎨
⎩

1 + 2 ln(1 + ν̃) − ln(4ν̃), 4/e − 1 � ν̃ � 1;

ln(1 + ν̃) − ln(ν̃), 0 < ν̃ < 4/e − 1;
(66)

where EG
f (ρ̂AB) is given by Eq. (64).

The first expression in Eq. (66) corresponds to the Gaussian
AMID of the states of Eq. (59) with s → ∞ and r =

2 tanh−1(
√

ν̃), and is depicted as a black curve in Fig. 4. It
provides an upper bound for all two-mode Gaussian states
distributed in the {EG

f ,AG} plane, in the region of moderate
entanglement; such a bound converges to 1 in the separability
limit (ν̃ = 1). We can thus conclude that the degree of
nonclassicality of correlations in separable Gaussian states
is always nonzero (apart from the trivial case of uncorrelated,
product states) but stays nevertheless limited. It can at most
reach unity whether measured by the discord [17,18] or by the
Gaussian AMID.

The second expression in Eq. (66) corresponds instead to
the Gaussian AMID of the states of Eq. (62) in the limit
a → ∞. It bounds from above the value of AG for all
two-mode Gaussian states with fixed EG

f
>≈ 0.441 [where this

number is obtained by setting ν̃ = 4/e − 1 in Eq. (64)]. In
the limit of infinite entanglement (ν̃ → 0) the upper bound on
the Gaussian AMID converges to EG

f + ln 4 − 1. Combining
this observation with the lower bound (61) we have that,
interestingly, the following sandwich relation holds for all
two-mode Gaussian states with EG

f � 0:

EG
f (ρ̂AB) � AG(ρ̂AB) � EG

f (ρ̂AB) + ln 4 − 1. (67)

In the previous analysis we have identified some similarities
as well as some key differences in the quantification of
nonclassical correlations versus entanglement of Gaussian
states when Gaussian AMID rather than quantum discord are
employed. In order to have a visual comparison between the
two nonclassicality indicators and the Gaussian EoF, we focus
on the relevant two-parameter class of symmetric squeezed
thermal states ρ̂sts

AB with CM as in Eq. (62). For these states the
entanglement is given by Eq. (64) (independently of a), while
the discord can be written as [17,18]

D←(
ρ̂sts

AB

)
= 1

2(1 + a)

{
[4a(ν̃ + 1) − 2ν̃2] tanh−1

(
a + 1

2aν̃ + a − ν̃2

)

− 4(a + 1)
√

ν̃(2a − ν̃)tanh−1

(
1√

ν̃(2a − ν̃)

)

+ a2 ln

(
a + 1

a − 1

)
− ln

[
(a + 1)(2aν̃ − ν̃2 − 1)

(a − 1)(ν̃ + 1)(2a − ν̃ + 1)

]}
,

(68)

and the Gaussian AMID reads

AG
(
ρ̂sts

AB

) = − ln

(
2aν̃ − ν̃2 − 1

a2 − 1

)
+ 2a coth−1(a) − 2

√
ν̃(2a − ν̃) tanh−1

[
1√

ν̃(2a − ν̃)

]

− ln

{ a√
a2−(a−ν̃)2

, 1 + a[4 + a(4 − 2aν̃ + ν̃2)] � 0;

(a+1)2

(a+1)2−(a−ν̃)2 , otherwise.
(69)
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Figure 5 shows EG
f plotted versus D← and AG for this

particular class of Gaussian states spanned by a and ν̃.
All two-mode symmetric squeezed thermal states sit on a
two-dimensional surface in the space of the three entropic
nonclassicality indicators, providing direct evidence of the
intimate yet intricate relationship between the different aspects
of quantumness in Gaussian states. One can notice the branch
of separable states in the plane EG

f = 0 with generally nonzero
discord and Gaussian AMID; while for all entangled squeezed
thermal states EG

f can be exactly recast as a function of D↔

and AG. Knowledge of two nonclassicality quantifiers fixes
the third one univocally. We remark that such a strict result
does not extend to more general two-mode Gaussian states,
which distribute filling a more complex, finite-volume three-
dimensional region in the space {D←,AG,EG

f }. Figures 1(c)
and 4 of this paper, and Fig. 1(right) of Ref. [17], represent the
two-dimensional projections of such a region onto the planes
{D←,AG}, {EG

f ,AG}, and {EG
f ,D←}, respectively.

VII. CONCLUSIONS

We have performed an exhaustive study of nonclassi-
cal correlations in generic two-mode Gaussian states using
information-theoretic nonclassicality quantifiers, in particular
the MID and its Gaussian-optimized version, the Gaussian
AMID. For a given Gaussian state the MID is a gap
between its quantum mutual information (quantifying the
total correlations) and the classical mutual information of
outcomes of local Fock-state detections (detections of local
eigenprojectors) that captures a specific type of non-Gaussian
classical correlations in the state. The Gaussian AMID is,
on the other hand, a gap between the quantum mutual
information and the maximal classical mutual information
that can be obtained by local Gaussian measurements, the
latter quantifying the maximum classical correlations that can
be extracted from the state by local Gaussian processing. An
analytical form of the Gaussian AMID can be derived for
the important subclasses of symmetric states and squeezed
thermal states which include pure states, while for a generic
mixed Gaussian state one has to find roots of a higher
order polynomial in a single variable, which can be solved
efficiently by numerical means. Further analysis reveals that
MID is mostly larger than Gaussian AMID and therefore
overestimates the amount of nonclassical correlations. In fact,
for a fixed value of Gaussian AMID it is possible to find states
with an arbitrarily large MID, even if the Gaussian AMID
is infinitesimally small. On the other hand, there also exists
a volume of Gaussian states encompassing pure states for
which the MID is strictly smaller than the Gaussian AMID,
which surprisingly unveils the importance of non-Gaussian
measurements for the correct assessment of the amount of
nonclassical correlations in Gaussian states.

We have further compared the MID and Gaussian AMID
with the two-way Gaussian discord. We found that again there
is no upper bound on MID for a fixed value of discord but
a close upper bound (as well as a lower one) does exist
for the Gaussian AMID. Finally, we have also compared the
Gaussian AMID with the Gaussian entanglement of formation,
identifying lower and upper bounds for the former as a function

of the latter. In particular, the Gaussian AMID turns out
to always exceed the Gaussian entanglement of formation
for all two-mode Gaussian states, enforcing a hierarchy
between two different forms of nonclassicality. Exact relations
between Gaussian AMID, Gaussian discord, and Gaussian
entanglement of formation can be formulated for special
families of Gaussian states such as the symmetric squeezed
thermal states.

On a more technical side we have shown that symmetric
measures of (non)classicality of correlations such as the
classical mutual information and the Gaussian AMID are
tractable by analytical tools for important subclasses of states
even considering optimization over local generalized Gaussian
measurements. Our results also demonstrate that non-Gaussian
processing for correct quantification of (non)classical correla-
tions in Gaussian states is in order.

We believe that these findings will inspire further research
on the characterization of quantum correlations in the Gaussian
scenario and beyond.
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APPENDIX: REDUCTION TO COVARIANT RANK-ONE
POVMS

Here we prove that covariant rank-one POVMs, that is,
POVMs of the form Eq. (5) with a pure seed state �̂j are
optimal among all Gaussian POVMs for the evaluation of the
classical mutual information or, equivalently, of the Gaussian
AMID [Eq. (38)]. Here and in what follows the upper index G

is omitted for simplicity.
The measurement of local POVMs (5) on a Gaussian state

ρ̂AB gives the outcome d = (dT
A ,dT

B )T distributed according to

P (d) = Tr[�̂A(dA) ⊗ �̂B(dB)ρ̂AB]. (A1)

Making use of the overlap formula for Wigner functions [44],
the distribution can be expressed as

P (d) = (2π )2
∫

W�̂A(dA)(rA)W�̂B (dB )(rB)

×Wρ̂AB
(rA,rB)d2rAd2rB. (A2)

Substituting into the formula from Eq. (2), where we set
r = (rT

A ,rT
B )T , and performing the integration, we obtain the

distribution (A1) in the form

P (d) = 1

π2
√

det(γ + γA ⊕ γB)
e−dT (γ+γA⊕γB )−1d , (A3)

where γA,B are CMs of the seed elements of POVMs (5) and γ

is the CM of the state ρ̂AB . The CMs γA,B can be expressed as
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γj = γ
(π)
j + Nj , where γ

(π)
j = S−1

j (ST
j )−1 is a pure-state CM

(Sj symplectically diagonalizes γj ) and Nj = (νj − 1)γ (π)
j

is a positive-semidefinite matrix (νj � 1 is a symplectic
eigenvalue of γj ). Therefore, the outcome dj , j = A,B of
a generic POVM �̂j (dj ), with the seed element �̂j being a
mixed state with CM γj , can be expressed as dj = d

(π)
j + χj ,

where d
(π)
j is the outcome of POVM with pure-state seed

element having CM γ
(π)
j and χA,χB are mutually uncorre-

lated random variables uncorrelated with d
(π)
A ,d

(π)
B obeying

Gaussian distributions with classical correlation matrices NA

and NB , respectively. Since such processing of variables d
(π)
j

cannot increase their Shannon mutual information due to what
is now known as data processing inequality (derived first for
continuous random variables in [45]), we can restrict without
loss of generality to optimization over projections onto pure
states.

Note that covariant measurements (5) with pure-state seed
elements maximize classical mutual information even within
the framework of a larger class of generally noncovariant
Gaussian POVMs possessing the structure [18,46]

π̂j (zj ) = pj (yj )

2π
D̂j (dj )�̂j (yj )D̂†

j (dj ), j = A,B, (A4)

and satisfying the completeness condition
∫
zj

π̂j (zj )dzj =
1̂j . Here pj (yj ) is a normalized distribution of the pa-

rameter yj , �̂j (yj ) is a normalized Gaussian state with
CM γj (yj ) dependent on parameter yj and zj = (dT

j ,yT
j )T .

Upon measuring the POVM (A4) on the Gaussian state
ρ̂AB , one finds the outcomes zA and zB to follow the dis-
tribution P(zA,zB) = pA(yA)pB(yB)P (d,yA,yB), where the
distribution P (d,yA,yB ) is obtained from Eq. (A3) by
replacing γj with γj (yj ). Denoting the classical mutual
information of the distribution P(zA,zB) and P (d,yA,yB)
as I[A(zA) : B(zB)] and I[A(yA) : B(yB)], respectively, one
then has

I[A(zA) : B(zB)] =
∫

I[A(yA) : B(yB)] �
j=A,B

p(yj ) dyj .

(A5)

Hence it follows immediately that

IG
c (ρ̂AB) � max

π̂A(zA)⊗π̂B (zB )
I[A(zA) : B(zB)]

= I
[
A

(
y0

A

)
: B

(
y0

B

)]
, (A6)

where we have to maximize over all Gaussian POVM
elements π̂j (zj ) and y0

j , j = A,B label the POVM elements

�̂j (y0
j ), which maximize I[A(yA) : B(yB)]. If we take these

as seed elements of POVMs (5), we construct local co-
variant POVMs which give mutual information I[A(y0

A) :
B(y0

B)] and therefore achieve the classical mutual information
IG

c (ρ̂AB).
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