
19 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Nonlinear model reduction for wave energy systems: a moment-matching-based approach / Faedo, Nicolás; Javier
Dores Piuma, Francisco; Giorgi, Giuseppe; Ringwood, John V.. - In: NONLINEAR DYNAMICS. - ISSN 0924-090X. -
(2020). [10.1007/s11071-020-06028-0]

Original

Nonlinear model reduction for wave energy systems: a moment-matching-based approach

Publisher:

Published
DOI:10.1007/s11071-020-06028-0

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2849359 since: 2020-10-29T18:08:09Z

Springer International Publishing



Nonlinear Dynamics manuscript No.
(will be inserted by the editor)

Nonlinear model reduction for wave energy systems
A moment-matching-based approach

Nicolás Faedo · Francisco J. Dores Piuma · Giuseppe Giorgi · John V.

Ringwood

Received: – / Accepted: –

Abstract Wave energy converters (WECs) inherently

require appropriate control system technology to ensure

maximum energy absorption from ocean waves, conse-

quently reducing the associated levelised cost of energy

and facilitating their successful commercialisation. Re-

gardless of the control strategy, the definition of the

control problem itself depends upon the specification of

a suitable WEC model. Not only is the structure of the

model relevant for the definition of the control problem,

but also its associated complexity: given that the con-

trol law must be computed in real-time, there is a limit

to the computational complexity of the WEC model

employed in the control design procedure, while there

is also a limit to the (analytical) complexity of math-

ematical models for which a control solution can be

efficiently found. This paper presents a systematic non-
linear model reduction by moment-matching framework

for WEC systems, capable of providing control-oriented

WEC models tailored for the control application, which

inherently preserves steady-state response characteris-

tics. Existence and uniqueness of the associated non-

linear moment for WECs is proved in this paper, for

a general class of systems. Given that the definition

of nonlinear moments depends upon the solution of a

nonlinear partial differential equation, an approxima-
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tion framework for the computation of the nonlinear

moment is proposed, tailored for the WEC application.

Finally, the use and capabilities of the framework are il-

lustrated by means of case studies, using different WEC

systems, under a variety of wave conditions.

Keywords Nonlinear model reduction, Moment-
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1 Introduction

Control system technology can impact many aspects of

wave energy converters (WECs) design and operation,

including device sizing and configuration, maximising

energy extraction from waves, and optimising energy
conversion in the power take-off (PTO) actuator sys-

tem [23,33]. To be precise, the central problem in WEC

control is to find a technically feasible way to ‘act’ on

the device (via the PTO system), so that energy absorp-

tion from waves is maximised while minimising the risk

of component damage. It is already clear that control

technology can enhance WECs performance in a wide

range of sea conditions, hence substantially reducing

the associated levelised cost of energy (LCoE), consti-

tuting a fundamental stepping stone towards successful

commercialisation of WEC technology [34].

Regardless of the solution method selected to com-

pute this energy-maximising optimal control law, the

definition of the control problem itself depends upon1

the specification of a suitable WEC model Σ. Not only

1 Though rare due to the inherent complexity behind the
energy-maximising control objective for WECs, we note that
model-free control techniques also exists within the wave en-
ergy control literature. The interested reader is referred to,
for instance, [15,39].
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is the structure of the model relevant for the definition

of the control problem, but also its associated complex-

ity: given that the energy-maximising control law must

be computed in real-time, there is clearly a limit to

the computational complexity of the WEC model em-

ployed in the control design procedure, while there is

also a limit to the (analytical) complexity of mathe-

matical models for which a globally optimal control so-

lution can be efficiently found, or even whether it exists

(i.e. for which the control problem is well-posed) [8,12].

For linear systems, complexity is often understood sim-

ply in terms of the dimension (order) of the system.

For nonlinear systems, this dimensional argument may

be inappropriate, as one also has to take into consid-

eration the complexity of the functions involved in the

representation of the system.

That said, even in the most ‘simplistic’ physical

WEC modelling scenario, where linear hydrodynamic

conditions2 are assumed, model reduction techniques

are inherently required to provide a control-oriented

model: the equation of motion for a WEC under linear-

ity assumptions is non-parametric (due to the presence

of a convolution operation associated with radiation

effects [13]), intrinsically requiring a model reduction

procedure, both to alleviate the computational demand

of this non-parametric operator, and to express the

dynamical equation in a suitable form for control/es-

timation procedures (often in terms of a state-space

representation [9, 40]). Furthermore, any model reduc-

tion technique should compute a control-oriented model

which inherits the underlying physical properties of the

WEC process, so that the approximating structure is

effectively representative, including, for instance, inter-

nal stability3. This is specifically important for WEC
control procedures, which often rely on these dynami-

cal properties to guarantee existence and uniqueness of

globally optimal solutions [8].

Even though linearity assumptions are often adopted,

mostly motivated by their simplicity, the importance

of having nonlinear control-oriented models has been

stressed in recent years [16,17]; WECs are, by their na-

ture, prone to show nonlinear effects4, since their prin-

cipal aim, pursued by the optimal control strategy, is to

enhance the amplitude of motion to maximise power ex-

traction. In other words, the assumptions under which

2 Linear conditions refers to so-called linear potential flow
theory, see [13].
3 Within the field of wave energy applications, internal sta-

bility is a fundamental requirement of a model representing
the physical system not only for control/estimation, but also
for motion simulation and power assessment purposes.
4 The reader is referred to, for instance, [16,27,43] for com-

prehensive discussions on different sources of nonlinear effects
(and associated modelling procedures) in WECs.

the linearisation of WEC models is performed are chal-

lenged by the controller itself, particularly in relation

to assumptions of small movements around the equilib-

rium position [33]. This may return poor results, both in

terms of accuracy of motion prediction, and power pro-

duction assessment [16,17], which are the key variables

involved in any WEC control formulation, directly com-

promising the role of control technology in maximising

energy absorption. The above discussion directly high-

lights the importance of having systematic nonlinear

model reduction techniques, which can provide control-

oriented nonlinear models, with a level of complexity

suitable for the energy-maximising optimal control ap-

plication. While the availability of nonlinear model re-

duction techniques would represent an extremely valu-

able tool, not only for control/estimation procedures,

but for a variety of WEC applications (for instance,

geometry optimisation and power assessment, among

others), there is currently no literature addressing this

issue within the WEC community, to the best of the

authors’ knowledge. A number of non-systematic model

reduction studies, which produce simpler models by se-

lectively ‘ignoring’ or ‘discarding’ nonlinear effects, can

be found in, for instance, [30,38]. It is also worth men-

tioning that some effort has been made recently, in [29],

to provide a mathematically consistent measure of the

impact of each nonlinear effect, and assess which of

these significantly affects, for example, power absorp-

tion calculations.

Remark 1 If nonlinear effects are considered in con-

trol/ state-estimation for WEC applications, only the

issue regarding the non-parametric nature of Σ is com-

monly tackled in the literature, by computing an ap-
proximating model for the linear radiation dynamics5,

and simply accommodating the nonlinear effects in the

corresponding (now parametric) dynamical equation.

In other words, there is no nonlinear model reduction

process taking place, but rather that the linear system

is approximated with a parametric form, hence avoid-

ing the computational complexity and representational

drawback of the associated convolution operator.

Motivated by the discussion provided above, and the

fundamental requirement of systematic model reduc-

tion techniques capable of facilitating accurate control-

oriented models, this paper presents a nonlinear model

reduction by moment-matching framework for WEC

systems. Moment-matching methods [1,36], also referred

to as interpolation methods, are largely based on the

5 Assuming that the non-parametric nature of Σ is only due
to linear radiation dynamics. This is not always necessarily
the case, since fnl can be potentially non-parametric.
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mathematical notion of moments. Moments are intrin-

sically connected to the input-output characteristics of

the dynamical system under analysis, and provide a

very specific parameterisation of the steady-state out-

put response (provided it exists) of such a system. That

said, the model reduction by moment-matching tech-

nique consists of the interpolation of the steady-state

response of the output of the system to be reduced:

a model reduced by moment-matching is such that its

steady-state response exactly matches the steady-state

response of the system to be reduced. A fundamental

advantage is that the notion of moments has been de-

fined both for linear and nonlinear systems, by means

of a system-theoretic approach, initially proposed in [1].

For linear differential systems, the computation of mo-

ments depends upon the solution of a Sylvester equa-

tion. For nonlinear differential systems (which is our

case of interest), moments arise as the solution of a

nonlinear partial differential (invariance) equation.

To that end, the existence and uniqueness of the as-

sociated nonlinear moment for WECs is discussed, and

ensured in this paper, for the case of wave energy sys-

tems. Given that the definition of nonlinear moments

depends upon the solution of a nonlinear partial dif-

ferential equation, an approximation framework for the

computation of the nonlinear moment is proposed, tai-

lored for the WEC application. The use and capabilities

of the framework are illustrated by means of case stud-

ies, using different WEC systems, under a variety of

wave conditions.

The remainder of this paper is organised as follows.

Notation and conventions utilised in this paper are sum-

marised in Section 1.1. The fundamentals behind non-

linear model reduction by moment-matching are dis-

cussed in Section 2, while WEC modelling is briefly

addressed in Section 3. A moment-based formulation

for the WEC is provided in Section 4, where the exis-

tence and uniqueness of the associated moment is dis-

cussed and ensured for the case of wave energy systems.

An approximation framework for the computation of

the nonlinear moment is proposed in Section 5, based

on the family of mean weighted residual methods (see,

for instance, [14]). Practical aspects and considerations

behind this approximation framework are discussed in

Section 6. Sections 7 and 8 discuss the case of model re-

duction for WEC systems under regular, and irregular,

wave excitation inputs, respectively. Finally, the main

conclusions of this paper are encompassed in Section 9.

1.1 Notation & conventions

Standard notation is considered throughout this manuscript,

most of which is defined in this section. If additional no-

tation (not included in this section) is introduced, this

is defined in the relevant parts of the paper at the point

of introduction.

Sets

R+ (R−) denotes the set of non-negative (non-positive)

real numbers. C0 denotes the set of pure-imaginary

complex numbers, and C<0 denotes the set of complex

numbers with negative real part. The notation Nq in-

dicates the set of all positive natural numbers up to q,

i.e. Nq = {1, 2, . . . , q}, while N≥q is reserved for the set

of natural numbers {q, q+ 1, . . .} ⊂ N. The span of the

set X = {xi}ki=1 ⊂ Z , where Z is a vector space over

a field F, is denoted as span{X }.

Scalars, vectors and matrices

The symbol 0 stands for any zero element, dimensioned

according to the context. The symbol In denotes the

identity matrix of the space Cn×n. The notation 1n×m
is used to denote a Hadamard identity matrix, i.e. a

n×m matrix with all its entries equal to 1. The spec-

trum of a matrix A ∈ Rn×n, i.e. the set of its eigen-

values, is denoted as λ(A). The Frobenius norm of a

matrix is denoted as ‖A‖F. The symbol
⊕

denotes

the direct sum of n (square) matrices, i.e.
⊕n

i=1Ai =

diag(A1, A2, . . . , An). The notation <{z} and ={z}, with

z ∈ C, stands for the real-part and the imaginary-part

of z, respectively. The symbol eqij ∈ Rq×q denote a ma-

trix with 1 in the ij entry and 0 elsewhere. Likewise,

eqi ∈ Rq denotes a vector with 1 in the i entry and 0

elsewhere.

Functions

Given two functions, f : Y → Z and g : X → Y , the

composite function (f ◦ g)(x) = f(g(x)), which maps

all x ∈ X to f(g(x)) ∈ Z , is denoted with f ◦ g.

The convolution between two functions f and g, with

{f, g} ⊂ L2(R), over the set R, i.e.
∫
R
f(τ)g(t − τ)dτ

is denoted as f ∗ g, and where L2(R) = {f : R →
R |

∫
R
|f(τ)|2dτ < +∞} is the Hilbert space of square-

integrable functions in R. Let f and g be functions in

L2(T ), with T ⊆ R. Then, the standard inner-product

between f and g is defined (and denoted) as 〈f, g〉 =∫
T f(t)g(t)dt. Finally, the Fourier transform of a func-

tion f (provided it exists), is denoted as F (ω), ω ∈ R.

2 Model reduction by moment-matching:

Preliminaries

This section briefly recalls some of the key concepts

behind nonlinear model reduction by moment-matching
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(also often referred to as moment-based framework through-

out this paper), as developed and discussed in key stud-

ies such as, for instance, [1, 36], for nonlinear single-

input single-output (SISO) systems. In particular, spe-

cial emphasis is placed on the formal definition of a

moment, using a system-theoretic approach6.

2.1 Definition of moments

Consider a nonlinear, deterministic, finite-dimensional,

SISO, continuous-time system, described, for t ∈ R+,

by the following set of equations7

ẋ = f(x, u),

y = h(x),
(1)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, and f and h suf-

ficiently smooth mappings defined in the neighborhood

of the origin of Rn. Assume system (1) is minimal, i.e.

observable and accessible (see [36, Chapter 2]), and sup-

pose that f(0, 0) = 0 and h(0) = 0.

Consider now a signal generator (sometimes referred

to as exogenous system [20]) described, for t ∈ R+, by

the set of differential equations

ξ̇ = Sξ,

u = Lξ,
(2)

with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν , and the

interconnected (or composite) system

ξ̇ = Sξ,

ẋ = f(x, Lξ),

y = h(x),

(3)

Following [36], a relevant set of assumptions is consid-

ered to later formalise the definition of nonlinear mo-

ments.

Assumption 1 The triple of matrices (L, S, ξ(0)) is

minimal.

Remark 2 The minimality of the triple (L, S, ξ(0)) im-

plies observability of the pair (S,L) and excitability of

the pair (S, ξ(0)). Excitability refers (with additional

technical assumptions, see [26]) to a geometric charac-

terisation of the property that all signals generated by

(2) are persistently exciting.

6 Similar considerations can be drawn for multiple-input
multiple-output (MIMO) systems, by following the frame-
work presented in [10,28].
7 From now on, the dependence on t is dropped when clear

from the context.

Remark 3 For linear systems, excitability is equivalent

to reachability, i.e. with ξ(0) playing the role of the

input matrix, see [26].

Assumption 1 stems from the fact that the signal gen-

erator defined in (2) does not have any input. As a

matter of fact, given that this signal generator charac-

terises inputs to the system under analysis, i.e. system

(1), it is rather natural to construct (2) in such a way

that all the modes of motion described by the dynamic

matrix S are excited, and that the inputs generated are

effectively observable.

Assumption 2 The signal generator (2) is such that

λ(S) ⊂ C0 with simple eigenvalues8.

Assumption 2 guarantees that the signal generator

(2) generates bounded trajectories. Note that this au-

tomatically implies that the output signal u(t), i.e. the

input to system (1), is also bounded.

Remark 4 Both Assumptions 1 and 2 are in line with

‘practical’ scenarios and, as demonstrated throughout

Section 4, can be adopted without any loss of generality

for the WEC case. In particular, given that the signal

generator characterises the set of inputs to the system

under analysis, it is almost natural to guarantee that

the modes of motion described by the signal generator

(2) are excited (Assumption 1), and that any generated

output is bounded (Assumption 2).

We are now ready to introduce the following main lemma.

Lemma 1 [36] Suppose Assumptions 1 and 2 hold,

and that the zero equilibrium of the system (1) is lo-

cally exponentially stable in the Lyapunov sense. Then,

there exists a unique mapping π, locally9 defined in a

neighborhood Ξ of ξ = 0, with π(0) = 0, which is the

solution of the partial differential equation

∂π(ξ)

∂ξ
Sξ = f(π(ξ), Lξ), (4)

for all ξ ∈ Ξ, and the steady-state response of the in-

terconnected system (1)-(2) is xss(t) = π(ξ(t)), for any

x(0) and ξ(0) sufficiently small.

Definition 1 Suppose the assumptions of Lemma 1

are fulfilled. The mapping h◦π is the moment of system

(1) at the signal generator (2), i.e. at (S,L).

Remark 5 Note that the result of Lemma 1, and the

notion of moments stated in Definition 1, imply that

the moment of system (1) at (S,L) computed along

a particular trajectory ξ(t) coincides with the (well-

defined) steady-state response of the output of the in-

terconnected system (3), i.e. yss(t) = h(π(ξ(t))).
8 Let A ∈ Rn×n. An eigenvalue a ∈ λ(A) is said to be

simple if its algebraic multiplicity is equal to 1.
9 All statements are local, although global versions can be

straightforwardly derived.
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2.2 Model reduction by moment-matching

The reduction technique based on the notion of mo-

ments, recalled in Section 2.1, consists of the inter-

polation of the steady-state response of the output of

the system to be reduced10: a reduced order model by

moment-matching is such that its steady-state response

exactly matches the steady-state response of system (1).

Following the moment-based theory of Section 2.1,

the notion of a reduced order model by moment-matching

for nonlinear systems can now be introduced.

Definition 2 [36] Consider the signal generator in (2).

The system described by the equations

Θ̇ = φ(Θ, u),

θ = κ(Θ),
(5)

with Θ(t) ∈ Rν and θ(t) ∈ R, is a model of system (1)

at (S,L), if system (5) has the same moments at (S,L)

as system (1). In addition, system (5) is a reduced order

model of system (1) at (S,L) if ν < n.

Lemma 2 [36] Consider system (1) and the signal

generator (2). Suppose Assumptions 1 and 2 hold, and

that the zero equilibrium of system (1) is locally expo-

nentially stable. Then, system (5) matches the moments

of system (1) at (S,L) if the partial differential equation

∂p

∂ξ
Sξ = φ(p(ξ), Lξ), (6)

has a unique solution p such that

h(π(ξ)) = κ(p(ξ)), (7)

where the mapping π is the unique solution of equation

(4).

Following the result of Lemma 2, a family of systems

achieving moment-matching at (S,L) [36] can be de-

fined as

Θ̇ = (S − ρ(Θ)L)Θ + ρ(Θ)u,

θ = h(π(Θ)),
(8)

with ρ : Rν → Rν a free mapping. A particularly inter-

esting simplification can be achieved with the selection

ρ(Θ) = ∆, for any constant matrix ∆. This choice pro-

duces a family of reduced order models described by

a linear differential equation with a nonlinear output

map, i.e. by a Wiener model.

10 Throughout this manuscript, if a given system Σ is re-
duced by moment-matching to a system Σ̃, Σ and Σ̃ are
referred to as the target and approximating systems, respec-
tively.

Remark 6 Two advantages of the selection of the map-

ping ρ(Θ) = ∆, in the family of models (8), can be

clearly identified: the matrix ∆ can be selected to en-

force additional properties on (8) such as a set of pre-

scribed eigenvalues, and the determination of the re-

duced order model achieving moment-matching at (S,L)

boils down to the computation of the mapping h ◦ π.

Remark 7 Note that, though (8) provides a potentially

powerful result, it is virtually impossible to compute an

analytic expression for the moment h ◦ π for a general

nonlinear mapping f , due to the nature of the nonlinear

partial differential equation (4). In other words, without

a proper approximation framework, the theory recalled

in both Sections 2.1 and 2.2 has little practical value.

This is specifically addressed in Section 5 of this paper,

where we propose a suitable approximation technique,

tailored for the wave energy application.

3 WEC dynamics and modelling

This section begins by recalling well-known facts be-

hind control-oriented WEC modelling (see, for instance,

[13]). For simplicity, a 1-degree-of-freedom (DoF) de-

vice is assumed, given that a similar analysis can be

carried out for multi-DoF devices, by simply following

the moment-based multiple-input, multiple-output ap-

proach presented in [10,11]. The equation of motion for

such a WEC can be expressed in the time-domain, in

terms of the following system Σ:

Σ :

{
z̈ =M

(
fr + f lre + fe + fnl

)
,

y = ż,
(9)

where z : R+ → R is the device excursion (displace-

ment), fe : R+ → R, the wave excitation force (ex-

ternal uncontrollable input due to the incoming wave

field), f lre the linear component of the hydrostatic restor-

ing force, fr the radiation force, and M ∈ R>0 is the

inverse of the generalised mass matrix of the device

(see [13]). The mapping fnl : R+ → R, t 7→ fnl(t) rep-

resents potential nonlinear effects such as, for instance,

viscous drag forces and nonlinear hydrostatic effects11.

The linear component of the hydrostatic force can

be written as f lre(t) = −shz(t), where sh denotes the

hydrostatic stiffness, which depends upon the device

geometry. The radiation force fr is modelled based on

11 In the case of nonlinear restoring effects, the division be-
tween linear and nonlinear contributions is performed without
any loss of generality, and to subsequently analyse the local
properties of system (9) in Section 4.
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linear potential theory and, using the well-known Cum-

mins’ equation [7], can be written as

fr(t) = −m∞z̈(t)−
∫
R+

kr(τ)ż(t− τ)dτ, (10)

where m∞ = limω→+∞A(ω) > 0 is the added-mass at

infinite frequency, A(ω) is the radiation added mass12

and kr : R+ → R+, kr ∈ L2(R), is the (causal) radia-

tion impulse response function containing the memory

effect of the fluid response. Finally, the equation of mo-

tion of the WEC is given by

Σ :

{
z̈ =M (−kr∗ ż − shz + fe + fnl) ,

y = ż.
(11)

Note that (non-parametric) equation (11) is of a Volterra

integro-differential form, specifically of the convolution

class13.

4 Nonlinear moment-based WEC formulation

for model reduction

The nonlinear moment-based theory, recalled and dis-

cussed in Section 2, directly depends on the availabil-

ity of a state-space representation of the system to be

reduced, which is not the case for the non-parametric

equation described by system Σ in (11). In the light

of this, the following equivalent representation is pro-

posed:

Σ :

{
ẇ = f(w, fe) = Aw +B(fe − kr∗Cw) + f̂(w),

y = h(w) = Cw,

(12)

for t ∈ R+, where w(t) =
[
z(t) ż(t)

]ᵀ ∈ R2 contains

the displacement and velocity corresponding to system

Σ, and the (constant) matrices A ∈ R2×2, B ∈ R2 and

Cᵀ ∈ R2 are defined as

A =

[
0 1

−Msh 0

]
, B =

[
0

M

]
, C =

[
0

1

]ᵀ
. (13)

The nonlinear mapping f̂ : R2 → R2 is given by

f̂(w) =

[
0

Mfnl(w)

]
= Bfnl(w). (14)

Remark 8 In line with the most utilised nonlinear ef-

fects in WEC control/estimation applications (see [8]),

it is assumed that the mapping fnl depends only on w,

i.e. the displacement and velocity of the WEC system

12 See [13] for the definition of A(ω).
13 The interested reader is referred to [42] for further detail
on this class of integro-differential operators.

involved. Nevertheless note that, if required by a par-

ticular application, a more general class of nonlinear

effects can be straightforwardly considered, such as, for

instance, non-ideal PTO dynamics [3].

Within the moment-based theory recalled in Sec-

tion 2, the mapping corresponding to the external input

fe is written in terms of an autonomous single-output

signal generator (analogously to the case of equation

(2)), i.e. the set of equations

ξ̇ = Sξ,

fe = Lξ,
(15)

for t ∈ R+, with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν .

The set of standing assumptions, i.e. Assumptions 1

and 2, are ensured as follows.

Assumption 2, which concerns the definition of the

spectrum of the matrix S, is addressed by recalling

(see, for instance, [24]) that ocean waves are numeri-

cally generated as a finite sum of harmonics of a so-

called fundamental frequency ω0. To be precise, let F =

{hpω0}fp=1 ⊂ R+, where H = {hp}fp=1 ⊂ N≥1, with

h1 < . . . < hf , be a set composed of a finite number of

harmonics of the fundamental frequency ω0. In partic-

ular, the matrix S is defined in a block-diagonal form

as

S =

f⊕
p=1

[
0 hpω0

−hpω0 0

]
, (16)

where ν = 2f , f ∈ N≥1, and the spectrum of S is given

by λ(S) = (jF ) ∪ (−jF ) ⊂ C0, so that Assumption 2

clearly holds.

With respect to Assumption 1, this condition is en-

sured (without any loss of generality) as follows: From

now, the output vector L is given by a Hadamard iden-

tity on the space R1×ν , i.e. Lᵀ = 1ν , so that the min-

imality of the triple (1ᵀ
ν , S, ξ(0)) holds as long as the

pair (S, ξ(0)) is excitable. The specific choice for the

structure of ξ(0) is discussed in the following remark.

Remark 9 (On the definition of ξ(0)) Let ξ(0) =
∑f
p=1 e

f
p⊗[

αp βp
]ᵀ

, where the set of coefficients {αp, βp}fp=1 ⊂ R.

Then, the vector ξ can be expanded as

ξ(t) = eStξ(0) =

f∑
p=1

efp ⊗
[
pξ+(t)
pξ−(t)

]
, (17)

where the mappings pξ are defined as

pξ+ : R+ → R, t 7→ αp cos(hpω0t) + βp sin(hpω0t),
pξ− : R+ → R, t 7→ βp cos(hpω0t)− αp sin(hpω0t).

(18)
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Remark 10 Note that the excitability condition on the

pair (S, ξ(0)) holds as long as αp and βp are not simul-

taneously zero, for all p ∈ Nf .

Remark 11 Let the sets of functions X f
ξ = {pξ+, pξ−}fp=1

and X f
0 = {cos(hpω0t), sin(hpω0t)}fp=1. Note that, given

the excitability condition on the pair (S, ξ(0)), it is

straightforward to check that span{X f
ξ } = span{X f

0 }.
As a consequence, the input fe is always T -periodic,

where T = 2π/ω0 ∈ R+ is the fundamental period14 of

fe.

The following standard assumption on the nonlinear

mapping f̂ is posed to later prove existence and unique-

ness of the nonlinear moment of system (12) at the sig-

nal generator (S,L).

Assumption 3 The mapping f̂ : R2 → R2 is such

that

f̂(0) = 0,
∂f̂(w)

∂w

∣∣∣∣∣
w=0

= 0. (19)

Note that this assumption is without loss of general-

ity, since the matrices in (12), and the mapping f̂ , can

always be redefined to satisfy it15.

Finally, an assumption on the stability in the first

approximation of system (12), is introduced.

Assumption 4 The zero equilibrium of system

ẇ = Aw −B(kr∗Cw), (20)

is asymptotically stable in a Lyapunov sense.

As discussed in several studies, such as [13,37], the lin-

ear equation of motion (20) is asymptotically stable for

any meaningful values of the involved parameters (and

impulse response function kr). Thus, this assumption

is, in practice, also without loss of generality.

Lemma 3 Consider the WEC system (12) and the sig-

nal generator (15)-(16). Suppose the triple (L, S, ξ(0))

is minimal, and Assumption 3 and 4 hold. Then, there

exists a unique mapping π, locally defined in a neigh-

borhood Ξ of ξ = 0, which solves the partial differential

equation

∂π(ξ)

∂ξ
Sξ = f(π(ξ), Lξ), (21)

14 Practical implications of both f and T (or, equivalently,
ω0) in our model reduction framework, are discussed in detail
in Section 8.1.
15 This claim, which directly relates to Jacobian analysis,
is considered standard in nonlinear dynamics. Further detail
can be found in, for instance, [20, Chapter 8].

and the moment of system (12) at the signal generator

(S,L), i.e. the mapping h ◦ π, computed along a par-

ticular trajectory ξ(t), coincides with the well-defined

steady-state output response of such an interconnected

system, i.e. yss(t) = h(π(ξ(t))).

Proof Let Lᵀ = 1ν and let the initial condition ξ(0)

be as defined in Remark 10. Then, it is straightfor-

ward to check that minimality of the triple (L, S, ξ(0))

holds. Moreover, note that the signal generator defined

in equations (15)-(16) is always such that λ(S) ⊂ C0

with simple eigenvalues, in line with Assumption 2.

Therefore, Lemma 3 automatically holds as long as the

zero equilibrium of system ẇ = f(w, 0) is locally expo-

nentially stable (see Lemma 1). Since this is ensured by

Assumption 4, the claim follows.

In slightly different words, Lemma 3 guarantees that

the steady-state response of system (12), driven by (15),

can be effectively computed using the corresponding

(well-defined) moment at (S,L). In particular, and fol-

lowing the result of Lemma 2, a family of reduced mod-

els achieving moment-matching at (S,L) of order (di-

mension) ν = 2f , for the WEC system defined in equa-

tion (11) (alternatively (12)), can be written in terms

of the mapping h ◦ π, with π the solution of (21), as

Θ̇ = (S −∆L)Θ +∆fe,

ỹ = h(π(Θ)) = Cπ(Θ),
(22)

with ∆ ∈ Rν a free (design) parameter.

Remark 12 If the mapping π is effectively known, the

family of models (22) exactly matches the steady-state

response of the target nonlinear WEC system Σ at the

signal generator (S,L).

Remark 13 The family of models defined in (22) is input-

to-state linear, and any nonlinear effects are (statically)

present in the output mapping h ◦ π (i.e. (22) is de-

scribed by a Wiener model). Note that the set λ(S −
∆L) can be assigned arbitrarily, as a consequence of the

observability of the pair (S,L).

Remark 14 Unlike the nonlinear systemΣ in (11), which

is effectively non-parametric, the family of systems achiev-

ing moment-matching at (S,L) is in state-space form.

In other words, this model reduction process not only

reduces complexity, but inherently computes a para-

metric form for the WEC system, in a single ‘step’.

Though the family of models in (22) provides a

strong set of candidates to tackle the nonlinear model

reduction problem for WECs, there is clearly an intrin-

sic downside to its definition: As discussed in Section 2,

even if the existence and uniqueness of π (the solution
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of (21)) are guaranteed by the result of Lemma 3, it

is virtually impossible to compute its analytic expres-

sion, given the nonlinearity of the mapping f . In other

words, the family of models defined in (22) lacks any

practical value, unless one can appropriately approxi-

mate the mapping π. This is explicitly addressed in the

following section.

5 On the approximation of π

The very nature of the mapping π intrinsically depends

on both the characteristics of the signal generator (15),

and the system dynamics (12) defined by the map-

ping f . The following lemma, which is analogous to [12,

Proposition 2], is introduced, aiming to formally char-

acterise π.

Lemma 4 Suppose the triple (L, S, ξ(0)) is minimal,

and that Assumptions 3 and 4 hold. Then, for a given

trajectory ξ(t), each element of the mapping π, which

solves equation (21), i.e. πi, with i ∈ N2, belongs to

the Hilbert space L2(T ) with T = [0, T ] ⊂ R+, where

T = 2π/ω0.

Proof Given the nature of the signal generator defined

in equation (15), the function fe is T -periodic, with

T = 2π/ω0 (see Remark 11). Moreover, under the above

assumptions, the zero equilibrium of ẇ = f(w, 0) is lo-

cally exponentially stable and its (well-defined) steady-

state solution is also T -periodic [21, Section VI], i.e.

wss(t) = wss(t − T ). Given that, under the minimal-

ity of the triple (L, S, ξ(0)) and Assumptions 3 and 4,

wss(t) = π(ξ(t)) (see Lemma 3), it is straightforward to

conclude that each element of the mapping π belongs

to L2(T ).

Following the characterisation offered in the result

of Lemma 4, and aiming to propose a method to ap-

proximate π, let the family of complex-valued mappings

ΩCq : Rν → C, ξ 7→ ΩCq (ξ), with q ∈ N≥1, be defined

such as

ΩCq (ξ) =

f∑
p=1

(γpξ)
q/hp , (23)

where γᵀp ∈ Cν is such that γᵀp = eν2p−1 + jeν2p, for

all p ∈ Nf . This mapping can be effectively used to

span L2(T ), as explicitly demonstrated in the following

lemma.

Lemma 5 Let X k
0 = {cos(qω0t), sin(qω0t)}kq=1 be a

canonical set in L2(T ), with T = [0 T ] ⊂ R+, T =

2π/ω0, and consider the family of real-valued functions

Ω+
q : Rν → R, ξ 7→ <

{
ΩCq (ξ)

}
,

Ω−q : Rν → R, ξ 7→ =
{
ΩCq (ξ)

}
.

(24)

Let the set X k
Ω = {Ω+

q (ξ), Ω−q (ξ)}kq=1. Then,

span{X k
Ω} = span{X k

0 }. (25)

Proof Note that the key term, composing the family of

complex-valued mappings in (23), can be alternatively

written as

γpξ = pξ+ + jpξ− ∈ C, (26)

for all p ∈ Nf , and where each of the mappings pξ+ and
pξ− are defined as in equation (18) (see also Remark 9).

Moreover, note that these functions can be equivalently

written as,

pξ+(t) = <
{

(αp + jβp)e
jhpω0t

}
,

pξ−(t) = =
{

(αp + jβp)e
jhpω0t

}
,

(27)

so that, clearly, the following expression

(γpξ)
q/hp =

(
pξ+ + jpξ−

)q/hp
= (αp + jβp)

q/hpejqω0t,

(28)

for all p ∈ Nf and q ∈ N≥1, holds. In other words,

only the q-th harmonic of the fundamental frequency,

i.e. qω0, is present in the output of the complex-valued

mapping ΩCq . Given the excitability condition on the

pair (S, ξ(0)), αp and βp cannot be simultaneously zero,

for all p ∈ Nf (see Remark 10), so that span{Ω+
q (ξ), Ω−q (ξ)} =

span{cos(qω0t), sin(qω0t)}, and the proof follows.

Remark 15 Naturally, the set X k
Ω forms an orthogo-

nal basis of L2(T ), under the standard inner-product
operator of such a space, as k →∞.

The result of Lemma 5, together with Remark 15, al-

lows each element of the mapping π, i.e. πi, with i ∈ N2,

to be uniquely expressed in terms of the set X k
Ω as a lin-

ear combination of its elements (see, for instance, [2]),

i.e.

πi(ξ) =

k∑
q=1

[
c+q c−q

] [Ω+
q (ξ)

Ω−q (ξ)

]
+ εi(ξ) = Π̃iΩ

k(ξ) + εi(ξ),

(29)

with Ωk(ξ(t)) ∈ R2k such that Ωk(ξ) =
∑k
q=1 e

k
q ⊗[

Ω+
q (ξ) Ω−q (ξ)

]ᵀ
, and where the mapping εi : Rν → R

is given by,

εi(ξ) =

+∞∑
q=k+1

[
c+q c−q

] [Ω+
q (ξ)

Ω−q (ξ)

]
. (30)
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Remark 16 Note that, following equation (29), π can

be compactly expressed as

π(ξ) =

[
Π̃1

Π̃2

]
Ωk(ξ) +

[
ε1(ξ)

ε2(ξ)

]
= Π̃Ωk(ξ) + E(ξ), (31)

where the operator E : Rν → R2 is the truncation

error.

If the truncation error E is ‘ignored’, the mapping π can

be effectively approximated as π ≈ π̃(ξ) = Π̃Ωk(ξ), i.e.

by its expansion on the 2k-dimensional set X k
Ω . This

motivates the following key definition.

Definition 3 The mapping h◦π̃, where π̃(ξ) = Π̃Ωk(ξ),

is the approximated moment of system (12) at the signal

generator (S,L).

With this definition, and following equation (22),

a family of reduced models of order (dimension) ν =

2f , for the WEC system defined in equation (11), can

be written in terms of the approximated moment (see

Definition 3) as

Σ ≈ Σ̃ :

{
Θ̇ = (S −∆L)Θ +∆fe,

ỹ = CΠ̃Ωk(Θ),
(32)

parameterised by the design matrix ∆ ∈ Rν .

Remark 17 Note that not only is the family of systems

(32) input-to-state linear, but the user also has full con-

trol over the complexity of the output mapping, i.e.

one can define how ‘complex’ Ωk is by simply adjusting

the number k of harmonics utilised to approximate π

with π̃. We note that a natural trade-off arises when

selecting k: While a higher value for k implies a bet-

ter approximating mapping π̃ (see also Remark 19), it

also intrinsically increases the complexity of the output

mapping in (32).

Within the proposed framework, the computation

of a reduced system by moment-matching, as defined

in equation (32), now boils down to the computation of

the matrix Π̃, for a given selection of order k in Ωk, i.e.

a given number of harmonic functions associated with

the fundamental frequency ω0 (dictated by the nature

of the input fe). This is specifically addressed in Section

5.1.

5.1 A Galerkin-like approach

Aiming to propose a method to compute Π̃, and in-

spired by the family of mean weighted residual meth-

ods [4,14], the following residual mapping r : R2 → R2

can be defined as

r(Π̃Ωk(ξ)) := Π̃
∂Ωk(ξ)

∂ξ
Sξ − f(Π̃Ωk(ξ), Lξ), (33)

which directly arises from ‘replacing’ the mapping π by

the approximating function π̃ in equation (21).

Following the so-called Galerkin (or spectral) ap-

proach (see, for instance, [41]), which effectively belongs

to the so-called family of mean weighted residual meth-

ods [14], the constant matrix Π̃ can be computed by

projecting the residual mapping onto the space spanned

by the set of k harmonics of the fundamental frequency

defined by X k
Ω , i.e. the entries of ΩkΩ(ξ). In contrast to

the ‘traditional’ Galerkin formulation, a Galerkin-like

method is proposed, as detailed in the following.

Let Ωk0 (t) =
∑k
q=1 e

k
q ⊗

[
cos(qω0t) − sin(qω0t)

]ᵀ ∈
R2k be a vector containing the 2k canonical harmonic

functions on L2(T ). Then, given a fixed trajectory ξ(t),

the constant matrix Π̃ ∈ R2×2k can be computed by

zeroing the projection of the residual mapping onto the

set spanned by the elements (entries) of the vector Ωk0 ,

i.e. as the solution of the following algebraic system of

4k equations:〈
r(Π̃Ωk(ξ)), Ωk

ᵀ

0

〉
= 0, (34)

where 〈 〉 denotes the inner-product operator in L2(T ),

as defined in Section 1.1.

Remark 18 In the proposed Galerkin-like approach, the

canonical vectorΩk0 is utilised when projecting the resid-

ual mapping, instead of the entries of Ωk (which would

be the case in a ‘traditional’ Galerkin method [4]). This

substantially simplifies the computation of the projec-

tions involved in (34), which are effectively inner-product

operations in L2(T ). This simplification is specifically

discussed in Section 6.1.

Remark 19 The existence of solutions of equation (34),

under the hypothesis of Lemma 4, is always guaranteed

for all sufficiently large k [41]. Moreover, the approxi-

mated moment π̃(ξ) = Π̃Ωk(ξ) converges uniformly to-

wards the exact solution (31) as k →∞ (see also [41]).

Remark 20 The system of algebraic equations (34) on

the 4k entries of Π̃, can be computed using state-of-

the-art root finding algorithms, such as those described

in, for instance, [6].

6 Practical aspects and considerations

6.1 Projection of the residual mapping

This section begins by noting that the selection of the

vector Ωk0 , involved in the projection of the residual

mapping within the Galerkin-like approach proposed

in Section 5.1, has a very specific purpose, which is
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detailed in the following. Recall that the Fourier trans-

form of a T -periodic function, i.e. a function x ∈ L2(T ),

is always well-defined, and can be computed with the

expression

X(ω) =

∫
T
x(t)e−jωtdt

=

∫
T
x(t) cos(ωt)dt− i

∫
T
x(t) sin(ωt)dt.

(35)

Note that, due to the specific selection of the entries of

Ωk0 , each of the inner-product operations involved in the

Galerkin-like method proposed in (34) are, effectively,

either the real or the imaginary parts of the Fourier

transform of the residual mapping r, evaluated at each

of the k harmonics of the fundamental frequency ω0,

i.e. at the set {qω0}kq=1. In other words, the system

of equations (34) characterising Π̃ can be equivalently

written as[
<{R(ω0)} ={R(ω0)} . . . <{R(kω0)} ={R(kω0)}

]
= 0,

(36)

where R : R → C2 denotes the Fourier transform of

the residual mapping r.

Remark 21 The evaluation of the Fourier transform at

each frequency qω0, can be done both efficiently and

robustly using well-established fast Fourier transform

(FFT) algorithms (see, for instance, [32]).

6.2 Extension to multiple trajectories

Until this point, a single trajectory ξ(t) has been con-

sidered, i.e. a single initial condition ξ(0) for the signal

generator (S,L). In other words, a single input fe(t) =

LeStξ(0) has been taken into account for the compu-

tation of the approximating π̃. Though this might be

appropriate for some cases, such as, for instance, the

case of WECs under (deterministic) regular wave exci-

tation (further discussed in Section 7.1), constraining

the approximation method to a single initial condition

can be limiting for the case of WEC systems subject to

irregular wave excitation. This issue is addressed, for

the Galerkin-like approach of Section 5.1, as follows16.

Let ξ(0) ∈ Ξ, where Ξ = {ζi}li=1 ⊂ Rν represents

a set with l initial conditions17, defined in a neighbour-

hood of ξ = 0. Suppose the pairs of matrices (S, ζi)

16 The extension to multiple trajectories presented in this
section is proposed in the spirit of the so-called U /X varia-
tion [35].
17 The selection of l depends upon the specific nature of the
WEC input process. This is discussed in detailed in Sections
7 and 8.

are excitable for all i ∈ Nl. Let the vector ξ, gener-

ated as a function of the initial condition ζi, be de-

noted as ξζi = eStζi. Then, the Galerkin-like proce-

dure, proposed in Section 5.1, can be adapted for the

case of multiple trajectories, where the constant matrix

Π̃, which completely characterises the approximating

mapping π̃(ξ) = Π̃Ωk(ξ), is computed in terms of a

minimisation procedure:

min
Π̃∈R2×2k

∥∥∥∥∥∥∥∥∥


〈
r(Π̃Ωk(ξζ1)), Ωk0 (ξζ1)

〉
...〈

r(Π̃Ωk(ξζl)), Ω
k
0 (ξζl)

〉

∥∥∥∥∥∥∥∥∥
2

F

, (37)

where the inner product operations, for each initial con-

dition ζi, with i ∈ Nl, can be computed using FFT

operations, as detailed in Section 6.1.

The minimisation procedure described in equation

(37) is effectively utilised both for the case of nonlin-

ear model reduction by moment-matching for WECs

under regular, and irregular, wave excitation, further

discussed and illustrated in Sections 7 and 8, respec-

tively.

6.3 Modifications to the mapping Ωk

This section introduces a modification for the vector

valued function Ωk, utilised to approximate the nonlin-

ear moment of system (11) at the signal generator (15),

aiming to ‘simplify’ the description of the output map-

ping involved in (22). In particular, one can modify the

entries of Ωk(ξ) such that only integer exponents of ξ

are required, and a fixed maximum number of harmon-

ics associated with a given multiple hpω0, involved in

the definition of the matrix S in equation (16), is con-

sidered, for each p ∈ Nf . This is explicitly addressed in

the following.

Let kmax
p denote the maximum number of harmonics

of a given multiple of the fundamental frequency hpω0,

with p ∈ Nf . Then, the complex-valued mapping ΩCq
defined in equation (23), which fully characterises the

entries of Ωk, can be modified as follows:

ΩCq (ξ) =

f∑
p=1

aqp(γpξ)
q/hp , (38)

where the coefficients aqp are defined as

aqp =

{
1 if mod(q, hp) = 0 ∧ q

hp
≤ kmax

p ,

0 if mod(q, hp) 6= 0 ∨ q
hp
> kmax

p ,
(39)

and mod : N×N≥1 → N denotes the modulo operator.
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Remark 22 With the introduction of this set of coef-

ficients aqp, the mapping Ωk only depends on natural

powers involving the entries of ξ, i.e. it becomes polyno-

mial. In other words, the output of the reduced model ỹ

(32) is always smooth. Note that this modification does

not pose any loss of generality with respect to (23) as

long as ω0 ∈ F .

To clarify the use and ‘evolution’ of the set of coef-

ficients aqp, for a given signal generator, an illustrative

example is considered in the following. Let the funda-

mental frequency be ω0 = 1 and consider a signal gen-

erator with a dynamic matrix S given by

S =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 3 0 0

0 0 −3 0 0 0

0 0 0 0 0 4

0 0 0 0 −4 0

 , (40)

where, clearly, the set of coefficients H = {hp}3p=1 is

given by h1 = 1, h2 = 3 and h3 = 4. Suppose the maxi-

mum number of harmonics associated with each hp, to

compute the vector Ωk, are set to kmax
1 = 10, kmax

2 = 3

and kmax
3 = 2. The coefficients aqp are illustrated, for

this example case, in Figure 1, with q ∈ N10. Non-zero

values of aqp are indicated with a black dot.

1

1

2

3

4

5

6

7

8

9

10

43

Fig. 1 Coefficients aqp for the mapping Ωk, for h1 = 1,
h2 = 3 and h3 = 4, where q ∈ N10. Non-zero values of aqp
are indicated with a black dot.

6.4 On the eigenvalues of the reduced model

As discussed in Remark 13, the family of reduced mod-

els by moment-matching defined in equation (32) is

input-to-state linear. Furthermore, the eigenvalues char-

acterising such a system, i.e. the set λ(S−∆L), can be

assigned arbitrarily, as a consequence of the observabil-

ity of the pair (S,L).

It is proposed to assign such a set of eigenvalues

using information from the Jacobian linearisation of

system (11) about the origin, i.e. the non-parametric

linear Cummins’ equation (20). In particular, one can

estimate a set Λ ⊂ C<0 of ν eigenvalues for system

(20) in terms of the singular value decomposition of the

Hankel matrix Ĥ, constructed from the input-output

frequency-domain data of the WEC (see [10] for fur-

ther detail).

Once this set Λ is obtained, the matrix ∆ can always

be computed such that λ(S − ∆L) = Λ, due to the

observability of (S,L), using standard algorithms (such

as, for instance, [22]).

7 WEC systems under regular wave excitation

To illustrate the performance of the model reduction by

moment-matching technique presented in this paper, a

clear distinction has to be made, in terms of the nature

of the wave excitation input, i.e. regular or irregular. In

particular, this section analyses a WEC system under

regular wave excitation, assuming two different cases

concerning the wave height: Deterministic and stochas-

tic.

Remark 23 Though the simplistic nature behind regu-

lar waves effectively misrepresents a realistic sea-state,

this type of waves are commonly considered in the WEC

literature to derive results of theoretical interest, pro-

viding valuable insight into, for instance, the underlying

dynamics of a floating body. In addition, note that the

analysis provided in this section motivates the method-

ology proposed for the more complex irregular wave

input case (which effectively represents a realistic sea-

state), described in Section 8.

For the remainder of this section, a spherical heav-

ing point absorber WEC is considered, with a radius of

2.5 [m]. Such a geometry is schematically illustrated in

Figure 2.

The nonlinear mapping fnl, characterising the non-

linear effects present in the non-parametric WEC equa-

tion (11) (alternatively (12)), is assumed to be given,

for this spherical heaving point absorber case, by:

fnl(z, ż) = fnlre (z) + fv(ż),

fnlre (z) =
1

3
ρgπz3,

fv(ż) = −2ρπ(2.5)2Cdż|ż|,

(41)
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where ρ is the water density, g the gravitational con-

stant, and fv and fnlre represent nonlinear viscous and

hydrostatic restoring effects, respectively18. The value

for the viscous drag coefficient is set to Cd = 1, follow-

ing the study on consistency of viscous drag identifica-

tion for WECs, performed in [18].

Fig. 2 Spherical heaving point absorber WEC considered
for the case of nonlinear model reduction under regular wave
excitation.

To illustrate the proposed nonlinear model reduc-

tion by moment-matching technique for devices under

regular excitation, it is assumed that the WEC is sub-

ject to regular waves with a given frequency ω∗ and

height Hw. As a matter of fact, note that ω∗ is in-

deed the fundamental frequency defined in Section 4,

i.e. ω0 = ω∗. Under these conditions, the wave excita-

tion input fe can be written as,

fe(t) = A∗ cos(ω∗t), (42)

where A∗ = |Ke(ω
∗)|Hw2 ∈ R

+, with Ke : R → C the

Fourier transform of the so-called excitation impulse re-

sponse function (see, for instance, [13]). This input can

be clearly generated following Section 4, i.e. as the out-

put of a signal generator, analogously to equation (15),

characterised by the one-dimensional set F = {ω∗}:

ξ̇ = Sξ =

[
0 ω∗

−ω∗ 0

]
ξ,

fe = Lξ =
[
1 1
]
ξ,

ξ(0) =
[
α β
]ᵀ

=

[
A∗

2

A∗

2

]ᵀ
.

(43)

A clear distinction is now made with respect to the

nature of the wave height Hw and, hence, the ampli-

tude A∗ of the excitation signal fe. In particular, if the

wave height is assumed to be fixed and known, then a

single initial condition ξ(0) (as in equation (43)) is re-

quired to fully characterise the approximating moment

and, hence, the corresponding reduced order model by

18 The mapping fnl
re is geometry dependent and, for the

spherical heaving point absorber case, can be found in, for
instance, [25].

moment-matching. This case is referred to as determin-

istic regular excitation, and is illustrated and discussed

in Section 7.1. In contrast, if the wave height is only

known to lie within a given set, then a set of multiple

initial conditions is required to characterise the corre-

sponding reduced order model, by following Section 6.

This case is referred to as stochastic regular excitation,

and is illustrated and discussed in Section 7.2.

7.1 Deterministic regular excitation

Recall that, for this regular excitation case, the so-

called fundamental frequency ω0 is indeed ω∗. As dis-

cussed previously in Section 7, if the wave height is

fixed and known, then a single initial condition ξ(0) is

required to fully characterise the reduced order model

by moment-matching, defined in equation (32). To be

precise, the computation of the matrix Π̃, fully charac-

terising the approximating moment (as in Definition 3),

can be computed using the Galerkin-like approach pro-

posed in Section 5.1, without any further modifications.

This case is explicitly discussed in the following.

Let ω∗ = 0.8 [rad/s], which corresponds with a wave

period of approximately Tw = 8 [s], and suppose the

wave height, which characterises the amplitude A∗ of

the wave excitation force, is fixed at Hw = 2 [m]. A

nonlinear model, reduced by moment-matching, for the

heaving sphere considered in this section, can be com-

puted directly from (32) as

Σ ≈ Σ̃ :

Θ̇ =

([
0 0.8∗

−0.8∗ 0

]
−∆

[
1 1
])

Θ +∆fe,

ỹ = CΠ̃Ωk(Θ),

(44)

where the mapping Ωk is characterised by equation

(24), for a given number of harmonics k of the funda-

mental frequency ω∗, and where the matrix Π̃ is com-

puted following Section 5.1. Note that the initial condi-

tion ξ(0), involved in the computation of Π̃, is exactly

as described in equation (43). The matrix ∆, assigning

the eigenvalues of the reduced model (44), is computed

following Section 6.4.

Remark 24 Given that only the fundamental frequency

is explicitly present in the definition of the signal gener-

ator (43) and, hence, in the model reduced by moment-

matching defined in equation (44), the mapping Ωk is,

effectively, polynomial (i.e. no fractional exponents of

ξ are required for the regular wave input case).

As an initial assessment of this case study, Figure

3 illustrates the performance of a nonlinear moment-

based reduced model as in equation (44), computed
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with k = 3 (i.e. with Ωk including three harmonics

of the fundamental frequency ω∗). In particular, Figure

3 shows both the output of the target (dashed) nonlin-

ear model of the WEC system (11), computed with a

Runge-Kutta method (time-step19 of 10−4 [s]), where

the non-parametric convolution operator is explicitly

solved, and the output of the moment-based reduced

order model (44) (solid), with k = 3.

0 5 10 15 20 25 30 35 40
-1.5
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-0.5

0

0.5

1

1.5

Fig. 3 Output of both the target nonlinear model (dashed)
and the moment-based reduced order model (solid), with k =
3.

It can be readily appreciated that, after the corre-

sponding transient period, the steady-state response of

both target and approximating models are effectively

indistinguishable, by virtue of the inherent moment-

matching feature of the reduced model. To illustrate

the improvement in (steady-state) accuracy for higher

values of k, Figure 4 shows (in logarithmic scale) the

absolute value of the difference between target and ap-

proximating output for k ∈ {3, 5, 7}, as a function of

time. In addition, the error corresponding with the out-

put of the system arising from Jacobian linearisation,

i.e. the linear Cummins’ equation in (20) (which nat-

urally does not include any information regarding the

nonlinear mapping fnl), corresponding with the spheri-

cal heaving point absorber considered in this section, is

also shown. Although, as can be concluded from both

Figures 3 and 4, selecting k = 3 provides accurate re-

sults, these can be improved by increasing k accord-

ingly.

Aiming to provide a conclusive performance indica-

tor for this regular deterministic wave input case, the

normalised mean absolute percentage error (NMAPE)

is considered, defined as

NMAPE(ỹss) =
100

Ns

Ns∑
i=1

|ỹss(ti)− yss(ti)|
max{|yss(ti)|}

, (45)

where Ns ∈ N≥1 denotes the number of (time-domain)

samples available for the time-traces of the steady-state

target, and approximating output signals yss and ỹss,

19 A small time-step is selected (with respect to the dom-
inant system dynamics) to guarantee convergence in the
benchmark response.

respectively. Table 1 shows the NMAPE for the non-

linear moment-based models computed from equation

(44), with k ∈ {3, 5, 7}, and that corresponding with

the Jacobian linearisation about the origin, i.e. equa-

tion (20). Clearly, a result consistent with that shown

in Figure 4 can be straightforwardly concluded.

# of harmonics NMAPE

(Jacobian linearisation) 10.12 %
k = 3 0.76 %
k = 5 0.14 %
k = 7 0.04 %

Table 1 NMAPE for the moment-based reduction strategy,
for WECs under regular excitation.

0 5 10 15 20 25 30 35 40
10 -8
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10 -4

10 -2

10 0

10 2

Fig. 4 Absolute value of the difference between target and
approximating output for k ∈ {3, 5, 7}, as a function of time.
In addition, the error corresponding with the output of the
Jacobian linearisation is also shown.

7.2 Stochastic regular excitation

Section 7.1 discusses a case study where the ampli-

tude associated with the regular wave excitation input

fe is exactly known. In other words, a single trajec-

tory ξ(t) of the signal generator (43), obtained from a

unique initial condition ξ(0), is required to fully char-

acterise the approximating moment h ◦ π̃, in terms of

the Galerkin-like approach presented in Section 5.1. If

the wave height, characterising the wave excitation am-

plitude, is only known to lie within a certain set, i.e.

Hw ∈H , with H = [Hmin
w , Hmax

w ] ⊂ R+, then the ap-

proximation of the corresponding nonlinear moment de-

pends on an infinite number of initial conditions (each

for every possible wave height in the set H ). Note that
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this stochastic regular wave case is used as a ‘step-

ping stone’ for the methodology proposed in the fully

stochastic irregular input case, developed in Section 8.

Though an adaptation of the Galerkin-like approach,

proposed in Section 5.1, is given in Section 6.2 for the

multiple trajectory case, the number of initial condi-

tions is assumed to be finite. Motivated by this, a worst-

case approach20 is considered in the following: Only the

set of initial conditions Ξt = {ζmin, ζmax} ⊂ R2 are

taken into account for the computation of the matrix

Π̃, where ζmin and ζmax correspond with the inputs

with height Hmin
w and Hmax

w , respectively.

Remark 25 From now on, the elements of the set of

initial conditions Ξt, associated with the worst-case ap-

proach described in this section, are referred to as train-

ing initial conditions. Analogously, the trajectories gen-

erated as a function of the set Ξt, i.e. {ξζmin , ξζmax}, are

referred to as training trajectories.

Note that the set of training initial conditions can

be computed analogously to equation (42), i.e.

ζmin =

[
A∗1
2

A∗1
2

]ᵀ
, A∗1 = |Ke(ω

∗)|H
min
w

2
,

ζmax =

[
A∗2
2

A∗2
2

]ᵀ
, A∗2 = |Ke(ω

∗)|H
max
w

2
.

(46)

For this case study, it is assumed that Hmin
w = 1.6

[m] and Hmax
w = 2.4 [m], i.e. the actual value of the

wave height can vary ± 20% of the nominal value Hw =

2 [m], adopted in Section 7.1. The approximating mo-

ment is then computed as detailed in Section 6.2, for

the set of training trajectories Ξt, and where, in the

light of the results computed for the deterministic case

of Section 7.1, the number of harmonics involved in the

definition of Ωk is set to k = 5. Figure 5 illustrates

the output of the nonlinear moment-based reduced or-

der model (in steady-state, solid), for the inputs corre-

sponding with the training trajectories ξζmin and ξζmax .

The target outputs, computed from system Σ in (11)

using a Runge-Kutta method with a time-step of 10−4

[s] (as in Section 7.1), are denoted with a dashed line.

Remark 26 Note that, as expected from the method

proposed in Section 6.1, the performance of the approx-

imating outputs for the training trajectories ξζmin and

ξζmax , is not as accurate as in the deterministic case pre-

sented in Section 7.1. In particular, the latter is fully

characterised by a single trajectory ξ, and the approx-

imating moment can be computed with the Galerkin-

like approach proposed in this paper, with an arbitrary

20 The approach presented herein is simply one possibility:
The user is free to select a finite set of initial conditions using
different methods, according to specific application require-
ments.

degree of precision (facilitated by an appropriate selec-

tion of k in the mapping Ωk). When multiple trajec-

tories for the signal generator (S,L) are considered, a

minimisation approach is utilised, where a single ma-

trix Π̃ is computed to characterise the approximating

moment h ◦ π̃ for all the training trajectories involved,

hence providing a more versatile reduced order model

(i.e. valid for a larger class of inputs) but, naturally,

with a corresponding loss in performance.

32 34 36 38 40

-1

-0.5

0

0.5

1

32 34 36 38 40

-1

-0.5

0

0.5

1

Fig. 5 Output of the nonlinear moment-based reduced or-
der model (in steady-state, solid), for the inputs correspond-
ing with the training trajectories ξζmin and ξζmax . The target
outputs are denoted with a dashed line.

To illustrate the performance of the moment-based

reduced model computed in this section, a set of 1000

randomly generated realisations of regular wave inputs

with wave heights in the set [1.6, 2.4] [m], is considered.

In particular, Figure 6 shows the NMAPE (computed

as in equation (45)) for each wave realisation involved.

Note that the average NMAPE value is NMAPE ≈ 3%,

and the maximum error registered is of ≈ 4%. In other

words, using the methodology proposed in this section

for the selection of an appropriate set of training tra-

jectories to compute the approximating moment, the

reduced order model by moment-matching (44) is able

to successfully approximate the behaviour of the target

non-parametric WEC system Σ, for regular wave exci-

tation inputs with varying (stochastic) wave height.

0 500 1000
1

2

3

4
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6

Fig. 6 NMAPE for 1000 realisations of regular wave inputs
with Hw ∈ [1.6, 2.4] [m]. The average value NMAPE ≈ 3% is
denoted with a horizontal black line.
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8 WEC systems under irregular wave

excitation

The case of model order reduction by moment-matching

for irregular sea states has a number of distinctive fea-

tures with respect to the regular wave excitation cases

discussed in Section 7, which, unless addressed appro-

priately, can substantially compromise the synthesis of

such a nonlinear reduced structure. To be precise, irreg-

ular ocean waves are commonly represented in terms of

a stochastic model: given a fixed location in space, the

time series of a wave corresponds with a spectral density

function (SDF) Sw : R → R, ω 7→ Sw(ω), character-

ising (stochastically) the behaviour of ocean waves at

this specific location. Examples of widely-used (semi-

empirical) SDFs are the JONSWAP spectrum [19], for

wind-generated seas with fetch limitations, the Bretschnei-

der spectrum [5] for developing seas, and the Pierson-

Moskowitz spectrum [31], for fully-developed seas.

That said, in this irregular wave input scenario, height

and period are not exactly known, but only knowledge

of the so-called significant wave height H̄w and peak pe-

riod T̄w are commonly available, for a given stochastic

sea-state characterisation in terms of a particular SDF.

This clearly has several implications, both on the defini-

tion of the signal generator characterising the wave exci-

tation effect (as in equation (16)), and the methodology

involved in the computation of the approximating mo-

ment. These implications are addressed and discussed

in the following subsections.

8.1 On the definition of the signal generator

Recall that the signal generator (16) is composed of f

harmonics of a fundamental frequency ω0, i.e. the set

F = {hpω0}fp=1, with H = {hp}fp=1 ⊂ N≥1, and where

h1 < . . . < hf . Though this assumption is, in principle,

not restrictive (see [24]), an accurate representation of

wave excitation effects potentially requires both a suf-

ficiently small fundamental frequency ω0, and a suffi-

ciently large number of harmonics f . This, in turn, has

the following consequences:

1) A small fundamental frequency implies that the pro-

jection, involved in the Galerkin-like procedure pro-

posed to compute the approximating moment, has

to be performed on a larger time interval T = [0, 2π/ω0].

Though this can be still performed efficiently using

FFTs (see Section 6), it can also increase the com-

putational complexity involved in the solution of the

projected residual equation (34).

2) A large number of harmonics f in the definition of

the signal generator (16) directly affects the com-

plexity of the resulting reduced model by moment-

matching: the order (dimension) ν of the family of

reduced order models achieving moment-matching

(32) depends linearly on f .

The issue discussed in item 1) above, can be eas-

ily overcome by a sensible selection of the fundamental

frequency, which should take into account the partic-

ular sea state under analysis (further discussed in the

case study provided in this section). Item 2) above can

be overcome in the spirit of the linear moment-based

technique for WECs proposed in [9, 28]: Only a set

of dynamically relevant frequencies should be selected

to represent the wave excitation effects and, hence, to

characterise the corresponding reduced order model by

moment-matching. As demonstrated in [9,28], this set,

for the WEC case, includes the resonant frequency as-

sociated with the linearised behaviour of the WEC sys-

tem (i.e. the frequency characterising the H∞-norm of

the linearised system, see [44]), and the peak frequency

characterising the input SDF, i.e. ω̄w = 2π/T̄w.

8.2 On the definition of the set of training trajectories

Given the stochastic nature of the wave process, and

once the set of frequencies F involved in the definition

of the corresponding signal generator is selected (follow-

ing Section 8.1), a method to choose a set of training

trajectories is required, similarly to the case discussed

in Section 7.2.

Inspired by the worst-case approach defined for the

case of regular wave excitation with stochastic height,

the following procedure is proposed. Recall that every

initial condition ξ(0) can be written as in Remark 9, i.e.

in terms of a set of coefficients {αp, βp}fi=1 ⊂ R, associ-

ated to each harmonic hpω0 involved in the definition of

the signal generator. Let Ap =
√
α2
p + β2

p ∈ R+, with

p ∈ Nf , be a set of positive real-valued ‘amplitudes’

associated with21 each harmonic hp. Then:

– Generate a random set of Nt ∈ N≥1 initial condi-

tions Ξ = {ζi}Nti=1 (i.e. wave inputs), according to

the SDF Sw characterising the sea state under anal-

ysis.

– Compute the set Ap = {Aip}
Nt
i=1, with p ∈ Nf , for

each randomly generated initial condition ζi, where

Aip denotes the amplitude associated with the har-

monic hpω0.

– Select the set of initial conditions Ξt that maximise

and minimise each Ap, denoted as ζmin
p and ζmax

p , for

every p ∈ Nf . Note that this automatically implies

21 The use of the term ‘amplitude’ for Ap is justified in Re-
mark 27.
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that 2f initial conditions are selected (one amplitude

maximiser and one minimiser for each harmonic hp
involved in the definition of the signal generator).

– Compute the set of training trajectories using Ξt,

directly from the definition of the signal generator

(15), i.e. the set {ξζmin
p
, ξζmax

p
}fp=1.

Remark 27 The method proposed in this section is in-

deed analogous to the worst-case approach proposed in

Section 7.2: Note that the value Ap =
√
α2
p + β2

p cor-

responds to the absolute value of the complex number

(αp + jβp)e
hpω0t, which characterises the entries of the

trajectory ξ(t) associated with the harmonic hpω0 (see

Remark 9). In other words, the method outlined in this

section retains, as training trajectories, only those tra-

jectories associated with the maximum and minimum

input amplitudes, for each harmonic hpω0, with p ∈ Nf .

8.3 Numerical study

For the remainder of this numerical study of nonlin-

ear model reduction by moment-matching, under irreg-

ular wave excitation, an array of two identical spherical

heaving point absorber WECs is considered, each de-

vice with a radius of 2.5 [m] (as in Section 7), in the

layout configuration presented in Figure 7. The distance

between devices is set to one diameter, i.e. d = 5 [m].

The nonlinear mapping fnl, characterising the non-

linear effects for this WEC system, is given by:

fnl(z, ż) =

[
fnlre (z1) + fv(ż1)

fnlre (z2) + fv(ż2)

]
, (47)

where the mappings fnlre and fv are defined as in equa-

tion (41), and where z1 : R+ → R and z2 : R+ → R

denote the displacement of device 1 and 2, respectively.

Remark 28 Note that the WEC system, presented in

the layout of Figure 7, can be regarded as a single-input

system: Given the direction of the incident waves, and

the underlying symmetry of the layout, the wave exci-

tation force experienced by both devices is indeed the

same. In other words, the single-output signal genera-

tor defined in equation (15) can be utilised to describe

fe. In addition, from now on, the velocity of device 1,

i.e. ż1, is selected as target output22.

The numerical generation of the irregular input waves,

for this case study, is fully characterised by a JON-

SWAP spectrum with H̄w = 2 [m] and T̄w = 8 [s]. The

so-called peak enhancement factor [19] is set to γ = 3.3.

The corresponding SDF Sw is that illustrated in Figure

8.

22 This is considered to simplify the case study, and focus
on the performance of the nonlinear reduction technique.

Following Section 8.1, and given the specific SDF

selected for the generation of numerical waves, the fun-

damental frequency is set to a value of ω0 = 0.1 [rad/s],

which facilitates a sufficiently accurate representation

of the wave process for the synthesis of the correspond-

ing reduced order model, as demonstrated in the re-

mainder of this section. In addition, the signal genera-

tor involved in the definition of the reduced model by

moment-matching, i.e. equation (15), is characterised

with the set of frequencies F = {0.8, 2}, where, given

the selection of ω0 = 0.1 [rad/s], the setH = {h1, h2} =

{8, 20}.

Remark 29 Note that, as discussed in Section 8.1, the

selection of the set F is not arbitrary: 0.8 [rad/s] repre-

sents the frequency corresponding with the peak char-

acterising the wave input SDF (see Figure 8), while 2

[rad/s] is the frequency characterising the H∞-norm of

the Jacobian linearisation of the WEC system, i.e. the

resonant frequency corresponding to heave motion.

Remark 30 With the selection of frequencies in the set

F , the order (dimension) of the reduced model by moment-

matching (as in equation (32)) is ν = 2f = 4.

Remark 31 The generation of waves for the assessment

of the proposed strategy, i.e. in the simulation stage, is

naturally performed using both a smaller value of ω0,

and a higher number of harmonics, than those specified

in the signal generator used to synthesise the moment-

based reduced model. This is specified and detailed in

the following paragraphs.

Once the set F is defined, the set of training trajec-

tories, utilised to compute an approximation of the mo-
ment of the WEC system at the signal generator (S,L),

is obtained following Section 8.2. In particular, a set of

Nt = 50 random initial conditions is considered23 to

compute the sets A1 = {Ai1}50i=1 and A2 = {Ai2}50i=1, as-

sociated with the harmonics corresponding with h1 = 8

(0.8 [rad/s]) and h2 = 20 (2 [rad/s]), respectively. These

sets are illustrated in Figure 9, where the maximum and

minimum values for each set A are denoted using the

black color.

With the result presented in Figure 9, one can com-

pletely characterise the set of training trajectories , i.e.

the set of trajectories {ξζmin
1
, ξζmax

1
, ξζmin

2
, ξζmax

2
} ⊂ R4.

Finally, aiming to retain the output mapping, charac-

terising the reduced model by moment-matching, in a

polynomial form (analogously to the case of regular in-

put waves discussed in Section 7), the mapping Ωk,

utilised to compute the approximating moment h ◦ π̃,

is chosen as described in Section 22. In particular, the

23 Computed randomly according to the SDF of Figure 8.
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Fig. 7 Spherical heaving point absorber WEC layout considered for the case of nonlinear model reduction under irregular
wave excitation.

Fig. 8 SDF corresponding with a JONSWAP spectrum
utilised to generate the wave input.

maximum number of harmonics associated with each

frequency in the set F is set to kmax
1 = 5 and kmax

2 = 3,

i.e. 5 and 3 harmonics associated with the frequencies

0.8 [rad/s] and 2 [rad/s], respectively. Analogously to

the regular input case with stochastic height of Figure

5, the steady-state output of the nonlinear moment-

based reduced order model computed in this section, for

the inputs corresponding with each training trajectory,

is shown in Figure 10 (solid). The target outputs, for

each corresponding training trajectory, are computed

from the non-parametric WEC system Σ (as in equa-

tion (11)), with a Runge-Kutta method (time-step of

10−4 [s]), and can be appreciated in Figure 10 with

dashed lines.

To begin with the assessment of the resulting re-

duced order model by moment-matching, Figure 11 presents

results for a particular (randomly generated24) sea state

realisation, where the input waves, considered for this

simulation stage, are computed using a fundamental

frequency ω0 = 0.01 [rad/s] and 400 harmonics (i.e.

with a so-called cut-off frequency of 4 [rad/s]). As can

be directly appreciated from Figure 11, the output of

the reduced order model by moment-matching (solid) is

effectively able to approximate the target output (dashed),

even during the transient period. Note that the output

24 The methodology employed herein uses random ampli-
tudes. The reader is referred to [24] for further detail.

corresponding with the Jacobian linearisation about the

origin, i.e. linear Cummins’ equation (20) for the anal-

ysed WEC system, is also shown, using a dotted line. A

significant overprediction of velocity can be appreciated

by the linear model, potentially leading to an overpre-

diction of power production. The NMAPE, computed

as in equation (45) for 100 [s] of simulation time (as

shown in Figure 11), is ≈ 4.6% for the nonlinear re-

duced model computed in this section, and ≈ 40% for

the case of the Jacobian linearisation.

A more detailed characterisation of the approxima-

tion error can be appreciated in Figure 12, where the

absolute value of the difference between target and ap-

proximating output is shown, for both the reduced model

by moment-matching, and the output arising from Ja-

cobian linearisation.

To provide a conclusive illustration of the capabili-

ties and performance of the moment-based model, the

NMAPE for a set of 100 random realisations of wave

inputs, according to the JONSWAP spectrum consid-

ered (see Figure 8), is explicitly shown in Figure 13.

Note that the mean NMAPE is NMAPE ≈ 4.5%, with

any individual errors always below 6%, effectively show-

ing the capabilities of the moment-based strategy, pre-

sented in this paper, to approximate the behaviour of a

nonlinear WEC system under stochastic irregular wave

excitation.

Remark 32 (On potential changes in the sea-state de-

scription) Note that, in general, there is no guarantee

that a reduced model computed according to a specific

sea-state description is still representative in a different

input condition. While it is expected that the reduced

structure is well-behaved for reasonable small variations

in the nature of the sea-state, the user is recommended

to re-compute a reduced model in such a situation, ac-

cording to the updated input description.

Finally, and aiming to assess the computational fea-

tures of the nonlinear moment-based reduced model

computed in this section, Figure 14 shows:
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Fig. 9 Sets of amplitudes A1 = {Ai1}50i=1 and A2 = {Ai2}50i=1, associated with the harmonics corresponding with h1 = 8 and
h2 = 20, respectively.
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Fig. 10 Output of the nonlinear moment-based reduced order model under irregular wave excitation (in steady-state, solid),
for the inputs corresponding with each training trajectory. The target outputs are denoted with a dashed line.
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Fig. 11 Output of the reduced order model by moment-
matching (solid) and target motion (dashed), for a randomly
generated sea-state realisation, with SDF as in Figure 8. The
output corresponding with the Jacobian linearisation about
the origin is also shown, using a dotted blue line.

A) Normalised run-time25 for a parametric nonlinear

model of the WEC system, where the convolution

operation associated with radiation forces is replaced

with a reduced order model (in state-space) of or-

25 Ratio between the time required to compute the output
of each corresponding model, and the length of the simulation
itself. The computations are performed using Matlab R©, run-
ning on a PC composed of an Intel Core i7-5550U processor
with 8GB of RAM.
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Fig. 12 Absolute value of the difference between target and
approximating output, for the case of irregular wave excita-
tion. The error corresponding with the output of the Jacobian
linearisation is also shown.

der 8, following the linear moment-based strategy

presented in [9] using the same frequency interpola-

tion set considered in this section, i.e. F = {0.8, 2}
[rad/s].

B) Normalised run-time for the nonlinear reduced model

by moment-matching computed as detailed in this

section.
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Fig. 13 NMAPE for 100 realisations of irregular wave inputs
according to the SDF presented in Figure 8. The average value
NMAPE ≈ 4.5% is denoted with a horizontal black line.

Remark 33 Note that for case A), detailed above, no

‘nonlinear model reduction’ takes place, but only the

linear convolution term is replaced with a state-space

form to alleviate the computational requirements of the

convolution itself (see also Remark 1).

0 20 40 60 80 100
10 -4

10 -3

10 -2

Fig. 14 Normalised run-time for a parametric nonlinear
model of the WEC system (circles, upper trace), where the
convolution operation is replaced with a reduced order model
(in state-space), and for the nonlinear reduced model by
moment-matching computed as detailed in this section (di-
amonds, lower trace). Mean values are indicated with black
horizontal lines.

It can be readily appreciated that the reduced non-

linear model, presented in this paper, computes in an

order of magnitude faster than the original paramet-

ric model, which can be attributed to two main fea-

tures. Firstly, a smaller order (dimension) is required

to represent the behaviour of the WEC system, which

effectively leads to faster computations. Secondly, and

more importantly, the input-to-state dynamics are lin-

ear, and only the output mapping presents nonlinear

behaviour (which is static). In other words, the main

computational cost behind the moment-based reduced

model is simply solving a set of first order linear or-

dinary differential equations. This feature is indeed ap-

pealing from a control/state-estimation perspective, where

both efficient and precise models are required.

9 Conclusions

This paper presents a nonlinear model reduction frame-

work for wave energy applications, based on moment-

matching techniques, which inherently preserve steady-

state response characteristics. This is, to the best of the

authors’ knowledge, the first truly systematic nonlinear

model reduction technique proposed in the wave energy

field. The first contribution of this study concerns the

proof of existence and uniqueness of the corresponding

nonlinear moment for the non-parametric WEC system

Σ. Secondly, and given the intrinsic necessity of an an-

alytic expression for the corresponding nonlinear mo-

ment, a consistent approximation method is presented,

by a suitably defined family of functions, in terms of

a Galerkin-like methodology. Practical aspects behind

this approximation framework are given and discussed,

including the connection (and use) of well-established

algorithms, to efficiently compute such an approximat-

ing moment.

The family of nonlinear models reduced by moment-

matching proposed in this paper is inherently paramet-

ric (given specifically in state-space form), and input-to-

state linear, with any nonlinear behaviour confined to

the output mapping only. Moreover, given the nature

of the Galerkin-like method proposed to approximate

the corresponding moment, the user can manipulate the

degree of complexity of this nonlinear output mapping,

hence having full control of the underlying characteris-

tics of the reduced structure, generating a continuum

of models with varying NMAPE/complexity tradeoff.

Two different model reduction cases are clearly de-

fined, in terms of the nature of the input: model reduc-
tion of nonlinear WEC systems under regular, and ir-

regular, wave excitation. For WECs under regular wave

excitation, both deterministic and stochastic wave height

cases are considered. In the deterministic case, the wave

height is assumed to be known, and the approximating

moment can be characterised in terms of a single tra-

jectory associated with the corresponding signal gener-

ator. For the stochastic case, the wave height is only

assumed to lie within a certain (given) set, which di-

rectly implies that, in principle, an infinite number of

inputs needs to be considered within the approxima-

tion process. In the light of this, a worst-case approach

is proposed to select a finite set of so-called training tra-

jectories, representing the ‘limit’ cases associated with

the set of heights. Case studies are presented for both

deterministic and stochastic cases, in terms of a spher-

ical heaving point absorber WEC, including both non-

linear viscous, and hydrostatic restoring effects. It is

shown that the nonlinear models reduced by moment-

matching, can successfully approximate the nonlinear
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target WEC system Σ, with a NMAPE always below

4%, clearly showing the capabilities of the strategy.

For the case of irregular waves, given the (fully)

stochastic nature of the wave input, methods are pro-

vided to select the characteristics describing the wave

excitation effects, both in terms of the fundamental fre-

quency, and the harmonics required in the definition of

the signal generator. In addition, and analogously to

the stochastic regular input case, a methodology to se-

lect a set of training trajectories is provided, also based

on a worst-case approach. A numerical case study is

provided, considering a WEC system composed of two

heaving point absorber devices, presenting nonlinear

behaviour (nonlinear viscous and hydrostatic restor-

ing effects). The average NMAPE for this case study

is ≈ 4.5%, effectively showing the capabilities of the

proposed moment-based strategy to approximate the

behaviour of a nonlinear WEC system under stochas-

tic irregular wave excitation. Finally, a study on the

normalised run-time is provided, showing that the pre-

sented strategy computes in an order of magnitude less

than when solving the nonlinear Cummins’ equation

(11) with a state-space description approximating the

non-parametric (convolution) terms. This significant re-

duction in computational complexity, for modest NMAPE

values, gives the obtained models capabilities to be used

in design and synthesis of real-time WEC controllers,

hence directly contributing in the roadmap towards WEC

commercialisation.
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