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Abstract—Many point cloud acquisition methods, e.g. multi-
viewpoint image stereo matching and acquisition of depth data
from active light sensors, suffer from significant geometry noise
in the data. In the existing literature, denoising of this geometry
noise has been performed using only geometry information. In
this paper, based on the notion that color attributes are correlated
with the geometry, we propose a novel geometry denoising
technique that takes advantage of this correlation via a graph-
based optimization process. In particular, we construct a graph
based on both color and geometry information, and use it for
graph-based Tikhonov regularization. Results on synthetic and
real-world point clouds show that the proposed denoising method
significantly outperforms existing geometry-only techniques.

Index Terms—convex optimization, graph signal processing,
point cloud denoising

I. INTRODUCTION

Point cloud is an important representation of volumetric
objects in three-dimensional (3D) space, which allows visual-
ization from any viewpoint [1]–[3]. A point cloud consists of
a set of points, representing the geometry and some attributes
like color, normal, transparency and size, related to an object
or scene. Due to the efficient representation of 3D objects,
point clouds have been now extensively adopted in various
fields, such as 3D broadcasting, culture and heritage recon-
struction, navigation of unmanned vehicles, and 3D immersive
tele-presence [4]. The acquisition of a point cloud can be
performed using active sensors, or computed indirectly from
multi-viewpoint images [5]. In both cases, the obtained point
cloud suffers from noise, and hence denoising should be
performed in order to improve its quality.

Many techniques have therefore been proposed for geometry
denoising of a point cloud. Normally, denoising is performed
by applying statistical methods [6], or by evaluating surface
normals around a small neighborhood and taking average
along their normal direction [7], [8]. The denoising process
can be categorized into outlier removal and noise removal; this
latter often applies surface smoothing moving points towards
their correct positions based on a smoothness prior. The local
tangent space based graph is used for robust denoising of
piece-wise smooth manifolds (RPSM) [9]. Recent data-driven
approaches [10], [11] have shown interesting results, but these
methods may not be applicable when a dataset of noise-free
point clouds is not available.

In recent literature, the geometry of a point cloud has
been expressed as a graph, which is used for denoising by

convex optimization [12]. Manifold denoising based on Spec-
tral Graph Wavelet (MSGW) [13] also used geometry-only
graph for denoising. The disadvantage of these approaches
is that the correct position of a point is estimated based on
the noisy geometry; this can lead to errors in estimating the
local surface, and as a result holes are typically formed in the
denoised point cloud (see Fig. 1).

In this paper, we introduce a denoising method which
jointly uses the geometry and the color attribute of points to
remove geometry noise. The rationale is that on a smooth
surface the color is also typically smooth; this is well-known
and it has been used in point cloud segmentation [14]–
[16]; moreover, unlike the geometry, the color is generally
noise-free. Therefore, in the proposed method we carefully
exploit both the geometry and color to relocate each point
to its correct position, avoiding the artifacts generated by
denoising techniques employing only geometry information.
In particular, our proposed technique constructs a graph based
on both the geometry and the color attribute of each point, and
subsequently applies convex optimization to perform geometry
denoising. We show experimentally that the joint use of
geometry and color outperforms existing methods using both
subjective and objective quality metrics.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Fig. 1: Green monster model: Geometry denoised from
geometry-only graph. The noisy points are moved towards
their nearest neighbors rather than their correct positions,
opening holes in the surface [12].

II. PROPOSED METHOD

A. Outlier removal

The initial step is to eliminate outliers from the entire point
cloud. Outliers have distinct characteristics in that each outlier
has a sparse neighborhood; therefore, the detection of outliers
is density based as in [12], [17].



B. Graph taxonomy
An undirected weighted graph G = {V, E ,W} is defined

for a finite set of vertices V of cardinality |V| = N , E
representing a set of edges connecting vertices of the form
(vi, vj) 2 V , each edge having a non-negative weight wi,j .
The corresponding adjacency matrix W is a real symmetric
m x m matrix. A graph signal g(G) for a given graph G is
defined on the vertices of a graph, as g : V ! Rn for some
dimension n.

C. Graph construction from combined geometry and color
A point cloud is represented as P = {p1, p2, p3, ....., pN}

with pi 2 R6 containing 3D geometry and RGB color
information for point pi. A common approach is to construct a
k nearest-neighbor (k-NN) graph based on Euclidean distance
as it makes geometric structure explicit [18]. Our approach
generates k-NN graph based on both color similarity and
geometric proximity of points pi. This is done by defining
six-dimensional features for each point as f1i = [!1Xi !2Ci],
with Xi = [x1i x2i x3i] and Ci = [c1i c2i c3i], where c1i, c2i
and c3i are the color attributes and x1i, x2i and x3i are the
geometric coordinates of point pi. In this work we consider
Euclidean coordinates and the RGB colorspace; !1 and !2

are weights that determine how much geometry and color
contribute to the generation of the k-NN graph.

A color-only graph is not a good choice because geo-
metrically distant points may have same color and different
contents, which may leads to the construction of a wrong
graph. The color combined with the geometry is helpful
because it provides more information about the manifold with
respect to using only the geometry.

Each edge connects a vertex to its k nearest neighbors with
an assigned weight which is computed with some metric. A
common option is the threshold Gaussian kernel [19]:

wi,j =

(
exp

⇣
� kf1i�f1jk2

2✓2

⌘
if f1j 2 �k(i) or f1i 2 �k(j)

0 otherwise
(1)

Here, ✓ represents variance and �k(i) is the set of k nearest
neighbors to point pi and �k(j) is the set of k nearest
neighbors to point pj . In calculating ||f1i � f1j ||, the weights
!1 and !2 determine the relative contribution of geometry and
color in the construction of the resulting k-NN graph, which
is denoted as G.

D. Geometry denoising
The algorithm presented in this paper has the objective

to perform geometry denoising exploiting the graph G con-
structed from both geometry and color information of the
noisy point cloud. To this end, we define a graph signal
g(G), where each vertex of G is associated to the geometry
information Xi of the corresponding point pi of point cloud
P . Each value can be expressed as Xi = xi + wi, xi being
the unknown exact geometry of point pi and wi the geometry
noise, with Xi, xi, wi 2 R3. The objective is to estimate xi

for each point of the point cloud. This can be done by means

of the proposed denoising algorithm described in Sec. II-E,
which moves points closer to their true location based on a
smoothness assumption applied to the joint geometry and color
information embedded in graph G.

In particular, graph G can be considered a noisy approx-
imation of a 3D manifold. The regularity of the combined
geometry and color is therefore associated with the proximity
of the points to the manifold. Graph gradient can be used to
measure the degree of smoothness of a graph signal [20]. We
propose to employ convex optimization to enforce smoothness
of the geometry graph signal defined above on G, exploiting
the combined geometry and color k-NN graph for improved
quality of the resulting denoised point cloud.

E. Geometry denoising from joint geometry and color k-NN
graph

We considered convex optimization for denoising the graph
signal with the constraint that the signal must be smooth on a
graph. Hence, the denoising problem can be written as follows:

bx = argmin
x

kx� gk22 + �krGxk22 (2)

Here, the estimated denoised geometry is referred to as bx,
the observed noisy signal is represented by the graph signal
g defined above, � is a parameter for regularization and rGx
represents the gradient of the signal x on the graph G. Eq. 2 has
two terms; the first is a fidelity term that enforces the denoised
point to be not too far from its observed position, while the
second term promotes smoothness of the denoised point cloud
on G via Tikhonov regularization. The same method can also
employ Total Variation (TV) regularization with the constraint
that the underlying manifold of a point cloud be piece-
wise smooth. This leads to the following convex optimization
problem:

bx = argmin
x

kx� gk22 + �krGxk1 (3)

The problems in Eq. 2 and 3 can be solved efficiently by
alternating direction method of multipliers [21].

III. EXPERIMENTAL RESULTS

A. Evaluation Metrics
The metrics used for the performance evaluation of the

proposed algorithm are the same as in [22]. Assume that R
and Q represent the geometry of the original and denoised
point cloud respectively, where R = {ri}N1

i=1 Q={qi}N2
i=1, such

that ri, qi 2 R3.
1) Mean-square-error (MSE): It is computed as an average

of the squared Euclidean distance between each point
in R and its corresponding nearest point in Q, and also
between each point in Q and its corresponding nearest
point in R:

MSE =
1

2N1

X

ri2R
min
qi2Q

kri � qik22 +
1

2N2

X

qi2Q
min
ri2R

kqi � rik22

(4)
2) Mean city-block distance (MCD): MCD uses l1 norm

instead of l2 norm.

MCD =
1

2N1

X

ri2R
min
qi2Q

kri�qik+
1

2N2

X

qi2Q
min
ri2R

kqi�rik (5)
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Fig. 2: Palazzo Carignano Dense model. (a) Noisy input, (b)
outlier-free input, denoised results by (c) proposed algorithm,
and (d) geometry-only graph [12]. 

 

(a) (b)

(c) (d)

Fig. 3: Arco Valentino model. (a) Noisy input, (b) outlier-
free input, denoised results by (c) proposed algorithm, and (d)
geometry-only graph [12].

The graph signal processing in our denoising algorithm has
been implemented using GSPBOX [23] and for the convex
optimization we have used UNLocBox [24].

B. Experimental setup
For the outlier removal we have set ✏ = 0.01, k = 5 and ⌧ =

1 as in [12]. For the noise removal we have found that setting
k = 15 and � = 0.075 for uniform distributed noise with µ =
0 and � = 0.3 and 0.4 consistently provides very good results.
However, k = 15 and � = 0.1 gives good results for the noise
with µ = 0 and � = 0.5. After extensive experimentation we
have found that the weights !1=0.70 and !2=0.30 provide best
results for geometry denoising.

C. Natural point clouds with real noise
We show a visual comparison between the point cloud

denoised by the proposed algorithm, and a graph constructed

from only geometry as in [12]. The experiment is performed
on real-world natural point clouds, for which we do not have a
noiseless reference, hence the results are only qualitative. Fig.
2-a and Fig. 3-a show the point clouds with real noise; it can
be seen that the points with same color are typically in a small
neighborhood. Fig. 2-b and Fig. 3-b are the resulting outputs
after outlier removal. Fig. 2-c and Fig. 3-c depict the denoised
point cloud using the proposed algorithm. Here the noisy
points are moved close to their original position by exploiting
the correlation of their color, and hence they fill the gaps that
were present in the noisy point cloud and are due to geometry
noise. Fig. 2-d and Fig. 3-d show the denoised point cloud
using the geometry-only graph approach in [12]; it can be
seen in same region that, using no color information, the noisy
points are not moved to their correct location, enlarging gaps
and generally providing a noisier result near object boundaries.
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(e)

Fig. 4: Green monstre model: (a) ground-truth (b) noisy input
(µ = 0 and � = 0.4), denoised results by (c) proposed
algorithm (d) geometry-only graph [12], and (e) MSGW [13].

D. Point clouds with synthetic noise

The proposed denoising approach has also been applied to
noise-free point clouds from the Greyc dataset [25], corrupted
with zero-mean uniform synthetic geometry noise applied to
50% of the points with � = 0.3, 0.4 and 0.5. Fig. 4-a and
Fig. 5-a show the noise-free point clouds. Fig. 4-b and Fig.
5-b show the noisy point clouds. The denoised point clouds
obtained by our proposed algorithm are shown in Fig. 4-c and
5-c; it can be seen that the geometry noise has been regularized
and the noisy points are moved close to their original positions.
The resulting denoised point clouds using the geometry-only
algorithm [12] are shown in Fig. 4-d and 5-d. It can be seen



TABLE I: MSE comparison for Greyc dataset.
Uniform

Distribution Methods 4arms
monstre Asterix Cable

car Dragon Duck Green
dinosaur

Green
monstre Horse Jaguar Long

dinosaur Mario Mario
car

Pokemon
ball Rabbit Red

horse Statue

�=0.3
Proposed algorithm 0.2760 0.2340 0.2179 0.2172 0.7138 0.2932 0.1730 0.3138 0.1550 0.1815 0.1443 0.1384 0.3184 0.2784 0.2361 0.2755
Geometry-only graph [12] 0.3160 0.2448 0.2378 0.2476 0.8812 0.3393 0.2116 0.3761 0.1535 0.1856 0.1534 0.1447 0.3634 0.3399 0.2506 0.3116
MSGW [13] 0.4161 0.325 0.3835 0.4564 0.9533 0.5969 0.4958 0.5036 0.2629 0.2468 0.2420 0.2804 0.523 0.6108 0.3579 0.4781

�=0.4
Proposed algorithm 0.2830 0.2398 0.2273 0.2330 0.7330 0.3038 0.1873 0.32284 0.1713 0.1979 0.1600 0.1592 0.3349 0.2892 0.2504 0.2814
Geometry-only graph [12] 0.3190 0.2485 0.2453 0.2580 0.9072 0.3478 0.1828 0.3769 0.1753 0.2034 0.1699 0.1746 0.3735 0.3417 0.2599 0.3114
MSGW [13] 0.4107 0.4433 0.3678 0.4074 0.8956 0.4790 0.3303 0.4574 0.3276 0.3494 0.3206 0.3832 0.4955 0.4129 0.3793 0.3857

�=0.5
Proposed algorithm 0.2867 0.2477 0.2435 0.2510 0.7541 0.3116 0.2003 0.3323 0.1893 0.2156 0.1767 0.1765 0.3336 0.2969 0.2655 0.2887
Geometry-only graph [12] 0.3231 0.2568 0.2668 0.2575 0.9027 0.9027 0.3470 0.2956 0.3807 0.2027 0.2253 0.1981 0.3635 0.3445 0.2766 0.3229
MSGW [13] 0.4095 0.4369 0.3708 0.4095 0.8990 0.4773 0.3340 0.4549 0.3327 0.3554 0.3278 0.3839 0.4951 0.4112 0.3830 0.3832

TABLE II: MCD comparison for Greyc dataset.
Uniform

Distribution Methods 4arms
monstre Asterix Cable

car Dragon Duck Green
dinosaur

Green
monstre Horse Jaguar Long

dinosaur Mario Mario
car

Pokemon
ball Rabbit Red

horse Statue

�=0.3
Proposed algorithm 0.4075 0.3443 0.3189 0.3196 1.058 0.4342 0.2440 0.4622 0.2263 0.2668 0.2108 0.2008 0.4722 0.4112 0.3468 0.4066
Geometry-only graph [12] 0.4620 0.3590 0.3457 0.3617 1.2974 0.4989 0.2518 0.5490 0.2247 0.2728 0.2241 0.2107 0.5329 0.4959 0.3668 0.4553
MSGW [13] 0.4925 0.5191 0.4268 0.6388 1.843 0.8086 0.4582 0.6665 0.5820 0.5936 0.4910 0.5604 0.8084 0.5812 0.6812 0.6643

�=0.4
Proposed algorithm 0.4176 0.3526 0.3306 0.3415 1.0862 0.4489 0.2746 0.4751 0.2482 0.2894 0.2321 0.2292 0.4960 0.4266 0.3666 0.4147
Geometry-only graph [12] 0.4669 0.3650 0.3577 0.3767 1.3340 0.5107 0.2681 0.5496 0.2547 0.2984 0.2468 0.2511 0.5480 0.4984 0.3802 0.4548
MSGW [13] 0.5895 0.6250 0.5198 0.5820 1.3218 0.6881 0.4676 0.6484 0.4577 0.4971 0.4506 0.5229 0.7144 0.5941 0.5443 0.5541

�=0.5
Proposed algorithm 0.4220 0.3638 0.3527 0.3667 1.1191 0.4598 0.2928 0.4889 0.2721 0.3132 0.2546 0.2519 0.4928 0.4374 0.3872 0.4250
Geometry-only graph [12] 0.4724 0.3766 0.3877 0.4019 1.3299 0.5095 0.3058 0.5551 0.2915 0.3286 0.2763 0.2821 0.5350 0.5025 0.4036 0.4704
MSGW [13] 0.5891 0.6185 0.5249 0.5852 1.3232 0.6865 0.4745 0.6512 0.4651 0.5056 0.4611 0.5245 0.7153 0.5931 0.5492 0.5512

that the geometry is not quite as much regularized; moreover,
as anticipated in Sec. I, these approaches have an adverse
effect on overall geometry, as it tends to open holes in the
output denoised point cloud. Overall, it can be seen from
the qualitative results of both the real-world and synthetic
point clouds that the point clouds denoised by the proposed
algorithm have better quality and fewer artifacts.
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Fig. 5: Asterix model: (a) ground-truth (b) noisy input (µ = 0
and � = 0.4), denoised results by (c) proposed algorithm (d)
geometry-only graph [12], and (e) MSGW [13].

E. Evaluation on Greyc color mesh database

The qualitative results have also been verified via quanti-
tative evaluation on the complete Greyc dataset. Each point
cloud has been corrupted with zero-mean uniform synthetic

geometry noise, applied to 50% of the points with � = 0.3,
0.4 and 0.5. The MSE and MCD comparisons between the
proposed algorithm and the denoising approaches used in [12]
using Tikhonov regularization and MSGW in [13] are shown
in Table. I and Table. II respectively. The results show that
the proposed denoising technique performed better than [12]
in terms of both metrics for noise level � = 0.3, � = 0.4
and � = 0.5. The gain is larger as the noise level increases,
showing that the proposed denoising methods is indeed better
at removing geometry noise.

(a) (b)

(c) (d)

Fig. 6: Green monster model: (a) Denoised results by pro-
posed algorithm, (b) RPSM [9] – Asterix model: (c).
denoised results by proposed algorithm, and (d) RSPM [9]

TABLE III: MSE comparison on sub-sampled Greyc dataset.

Model � = 0.3 � = 0.4 � = 0.5

Proposed RPSM
[9] Proposed RPSM

[9] Proposed RPSM
[9]

4arms Monstre 0.2916 0.4811 0.3389 0.5047 0.4206 0.5232
Asterix 0.2605 0.3084 0.2751 0.3412 0.2996 0.3725
Cable car 0.3558 0.7440 0.3811 0.7990 0.4019 0.8177
Dragon 0.2496 0.4432 0.2622 0.4769 0.2832 0.4967
Green monster 0.3318 0.6179 0.3589 0.6478 0.3734 0.6739
Rabbit 0.3096 0.5771 0.3197 0.6004 0.3480 0.6339
Red horse 0.3385 0.5138 0.3641 0.5487 0.3870 0.5773



We have also compared the proposed algorithm with RPSM
[9]. Due to the large memory requirement of RPSM, we
performed experiments on sub-sampled point clouds. The sub-
sampling performed here is on spatial basis, setting a minimal
distance between the two points equal to 0.80. The number
of points in the sub-sampled clouds are around 20000 on
average. Table III and Table IV show the MSE and MCD
comparisons between the proposed algorithm and RPSM [9]
on sub-sampled point clouds.

The proposed algorithm and RPSM [9] are applied to the
noisy inputs shown in Fig. 4-a and Fig. 5-a; the ground-truth
point clouds are shown in Fig. 4-b and Fig. 5-b. The denoised
outputs of the proposed algorithm are depicted in Fig. 6-a
and Fig. 6-c, and the resulting point clouds of RPSM [9] are
shown in Fig. 6-b and Fig. 6-d. It can be seen that the RPSM
[9] over-regularized the sub-sampled point clouds which tends
to generate artifacts.

TABLE IV: MCD comparison on sub-sampled Greyc dataset.

Model � = 0.3 � = 0.4 � = 0.5

Proposed RPSM
[9] Proposed RPSM

[9] Proposed RPSM
[9]

4arms Monstre 0.4315 0.7007 0.5677 0.8993 0.6187 1.008
Asterix 0.3835 0.4499 0.4106 0.4776 0.4399 0.5299
Cable car 0.5064 0.9154 0.5397 0.9802 0.5718 1.0549
Dragon 0.3688 0.6463 0.3869 0.6811 0.4176 0.7036
Green monster 0.4878 0.7138 0.5193 0.7674 0.5480 0.8025
Rabbit 0.4587 0.7975 0.4887 0.8244 0.5139 0.8790
Red horse 0.4963 0.7452 0.5371 0.7790 0.5656 0.8101

IV. CONCLUSIONS

We proposed a novel and efficient point cloud denoising
technique based on graph signal processing, where the color
attribute and geometry of points are used jointly for denoising
the geometry of a point cloud. For subjective evaluation
we showed that the proposed algorithm performs well on
real-world point clouds, avoiding artifacts typical of other
techniques. We also performed an extensive quantitative anal-
ysis using multiple datasets, evaluating the performance of
the proposed algorithm using MSE and MCD metrics. Both
the subjective and objective results show that the proposed
technique performs very well for point cloud denoising, out-
performing state-of-the-art techniques.
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