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ON PERIODICITY OF p-ADIC BROWKIN CONTINUED FRACTIONS

LAURA CAPUANO, NADIR MURRU, AND LEA TERRACINI

Abstract. The classical theory of continued fractions has been widely studied for cen-
turies for its important properties of good approximation, and more recently it has been
generalized to p-adic numbers where it presents many differences with respect to the real
case. In this paper we investigate periodicity for the p-adic continued fractions introduced
by Browkin. We give some necessary and sufficient conditions for periodicity in general,
although a full characterization of p-adic numbers having purely periodic Browkin con-
tinued fraction expansion is still missing. In the second part of the paper, we describe a
general procedure to construct square roots of integers having periodic Browkin p-adic
continued fraction expansion of prescribed even period length. As a consequence, we
prove that, for every n ≥ 1, there exist infinitely many

√
m ∈ Qp with periodic Browkin

expansion of period 2
n, extending a previous result of Bedocchi obtained for n = 1.

1. Introduction

Continued fractions provide a representation for any real number as an integer sequence
by means of the Euclidean algorithm. They have been widely studied for centuries due
to their important properties and applications. In particular, they give the best rational
approximations of real numbers and periodic continued fractions characterize quadratic
irrationals. For these reasons, it may be interesting to define continued fractions and ex-
ploit their usefulness in other fields. In the case of p-adic continued fractions, there is
no straightforward generalization of the real algorithm since there is no canonical p-adic
analogue of the integral part, and several authors as Mahler [9], Schneider [17], Ruban
[16] and Browkin [4], [5] proposed different algorithms in the attempt of recovering the
same nice properties which hold in the real case. In particular, Browkin definition differs
from the other ones because the partial quotients of the expansion are not always positive;
in this way, they provide finite expansions for every rational number unlike Ruban and
Schneider ones, where rational numbers can have either finite or periodic p–adic continued
fraction expansion [8, 14, 19]. Very recently Browkin algorithm has been also extended to
multidimensional continued fractions [10, 11].

Periodicity of p–adic continued fractions is an intriguing feature as well as in the real
case. It is easy to show that in general, to be quadratic over Q is a necessary condition
for periodicity, but the problem of deciding whether this condition is also sufficient is still
unknown in full generality. In the case of Schneider continued fractions, it has been proved
that the expansion of a p-adic unit is periodic if and only if αk ·αc

k < 0, for every complete
quotient αk, where αc

k is its algebraic conjugate, see [14, 18, 20]. A similar property holds
also for Ruban continued fractions; namely, the expansion of a quadratic irrational α is
periodic if and only if Q(α) can be embedded into the reals and αk · αc

k < 0 for every k
sufficiently large. Indeed, in [12] Ooto showed that

√
m with m < 0 cannot have periodic

Ruban continued fraction expansion, and not so much later Capuano, Veneziano and Zan-
nier [6] gave an effective criterion for the periodicity of quadratic irrationals. This criterion
heavily depends on the property that, for Ruban continued fractions, the partial quotients
are always positive. In the case of Browkin p-adic continued fractions the question ap-
pears to be more delicate, and up to our knowledge it is not known whether an analogous
of Lagrange’s theorem holds. In this context, Bedocchi [1] proved an analogue of Galois
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theorem, i.e., if α ∈ Qp has a periodic expansion, then it is purely periodic if and only if
|α|p > 1 and |αc|p < 1, where |·|p is the p–adic norm. In the first part of the paper, we
study periodicity of Browkin continued fraction expansions; more specifically, we first give
some properties of p-adic numbers with purely periodic Browkin continued fraction expan-
sions, using some simpler arguments with respect to the original ones used by Bedocchi,
and we extend some results that hold in the Ruban case, giving some sufficient conditions
for periodicity.

Another interesting problem in this setting is the study of the possible lengths appearing
as periods of square roots of integers in Qp. If m ∈ Z and

√
m ∈ Qp has periodic Browkin

continued fraction expansion, then the length of the pre-period is at most 2, for p odd.
Looking at the lengths of the periods, in [2], Bedocchi proved that

√
m has never period

1 and found infinitely many square roots of integers in Qp having periodic expansion with
period of length 2. On the other hand, in [3] he proved that, given an odd integer d > 0,
there are at most finitely many

√
m ∈ Qp with m ∈ Z such that the p-adic continued

fraction expansion is periodic with period of length d.
In the second part of the paper, we continue this investigation focusing on square roots of

integers with even period. In particular, we give a general construction that, starting from
a suitable finite continued fraction [a0, . . . , at−1] (that we call nice) of length t, provides
infinitely many α = pk

√
m with m ∈ Z and k ≥ 1 with Browkin continued fraction expan-

sion [0, a0, a1, . . . , at−1, at, at−1, . . . , a1, 2a0], i.e. of period length 2t. Using this method we
are able to construct, for every n > 0, infinitely many square roots of integers in Qp having
periodic Browkin continued fraction expansion with period length 2n. This in particular
extends previous results of Bedocchi [2] on square roots of integers with periodic expansion
of period 2. We finally conjecture that the same should be true for every even length.

Acknowledgements. The three authors are members of the INdAM group GNSAGA.
The first author is also member of DISMA, Politecnico di Torino, Dipartimento di Eccel-
lenza MIUR 2018-2022.

2. Preliminaries and notation

In this section we recall the definition of Browkin algorithm that we are going to use in
the paper and we provide some preliminary and known results about these p–adic continued
fractions.

In what follows we will fix a prime p > 2 and we will denote by |·|p and |·|∞ the p–adic
and the Euclidean norm respectively and by vp the usual p-adic valuation.

To generalise the usual definition of continued fraction expansion for real numbers, we
need first to define a good analogue of the integral part. For p-adic numbers there is no
canonical way to define it, since, given α ∈ Qp there are infinitely many a ∈ Z such that
0 ≤ |α− a|p < 1, and there is no canonical choice so that the analogues of theorems about
real continued fractions hold. Many authors (see [17, 16, 4]) gave different definitions
of p-adic continued fractions with the aim of recovering in this setting the same good
properties holding for real numbers. In this paper, we will focus on the definition given
by Browkin [5, 4], that has the good property of recovering finiteness for p-adic continued
fraction expansion of rational numbers. We will usually refer to this definition using the
abbreviation BCF .

Let us define the set Y := Z
[

1
p

]

∩
(

−p
2 ,

p
2

)

. Since Y ∩ (Y + pZ) = ∅, we have that Y
is a discrete subset of Qp, and given α ∈ Qp there exists a unique s(α) ∈ Y such that
0 ≤ |α − s(α)|p < 1. We define the Browkin s-function s : Qp −→ Y as the function that
associates to any α ∈ Qp the corresponding s(α).
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Given α ∈ Qp, we can determine its p–adic continued fraction expansion using the
following algorithm:

(1)







α0 = α,
an = s(αn),
αn+1 = 1

αn−an
if αn − an 6= 0.

The an’s and αn’s are called partial and complete quotients, respectively. Analogously to
the real case, we define the sequences (An)

∞
n=−1, (Bn)

∞
n=−1 by

An = anAn−1 +An−2, Bn = anBn−1 +Bn−2, n = 1, 2, . . . ,

with initial conditions

A−1 = 1, A0 = a0, B−1 = 0, B0 = 1.

Using matrices, we can write

An =

(

an 1
1 0

)

, Bn =

(

An An−1

Bn Bn−1

)

,

and we have

(2) Bn = Bn−1An = A0A1 . . .An.

This easily implies by induction the useful relation

(3) AnBn−1 −BnAn−1 = (−1)n+1 for every n ≥ 0.

Moreover, for every k ≥ 0 we have

(4) α =
αkAk−1 +Ak−2

αkBk−1 +Bk−2
.

For every n ∈ N the quotient Qn = An

Bn
gives the n-th convergent of the continued fraction

expansion, i.e.
Qn = [a0, . . . , an].

Notice that by construction we have that

|an|p = |αn|p, |an|p > 1,

for every n ≥ 1, and
|α|p = |a0|p = |Qn|p,

for every n ≥ 0. We define the following useful quantities:

ki := ki(α) = −vp(αi), Kn := Kn(α) =

n
∑

i=1

ki, K ′
n := K ′

n(α) = Kn + k0;

in this way, for every n ≥ 0 we have

vp(An) = −K ′
n, vp(Bn) = −Kn,

and

(5) vp(Qn − α) = 2Kn + kn+1 ≥ 2n+ 1.

By (5) the sequence of convergents {Qn}n≥0 is a Cauchy sequence with respect to the
p-adic metric and converges to α (see [4]). We denote its limit by

[a0, a1, . . .] = a0 +
1

a1 +
1

. . .

,

where, as said before, the limit is computed using the p-adic metric. We shall refer to this
expansion as the Browkin continued fraction (BCF ) for α.

For what follows, it will be also useful to consider the sequences (Ãn)
∞
n=−1 and (B̃n)

∞
n=−1,

where we denote by x̃ the prime-to-p part of an element x ∈ Z
[

1
p

]

, i.e., the numerator
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of the number. Since vp(an) = −kn, we have that ãn = pknan; moreover, the following
recurrence formulas hold:

(6) Ãn = ãnÃn−1 + pkn+kn−1Ãn−2, B̃n = ãnB̃n−1 + pkn+kn−1B̃n−2, n = 1, 2, . . . ,

with initial conditions

Ã−1 = 1, Ã0 = ã0, B̃−1 = 0, B̃0 = 1.

We conclude this section with the following proposition, which proves that if two p-adic
numbers have the same n-th convergent then they are sufficiently close with respect to the
p-adic metric. Namely, we have the following:

Proposition 2.1. If α, β ∈ Qp have the same n-th convergent in the p-adic expansion, i.e.

Qα
n = Qβ

n, then |α− β|p < 1
p2n

.

Proof. First notice that the hypothesis Qα
n = Qβ

n is equivalent to say that the first n + 1
partial quotients of α and β are the same. We argue by induction on n.

The claim is certainly true for n = 0, so assume that n ≥ 1 and Qα
n = Qβ

n. This implies

that a0 = s(α) = s(β) and Qα1
n−1 = Qβ1

n−1, hence |α1 − β1|p < 1
p2(n−1) . Since |α1β1|p ≥ p2

we have

|α− β|p =

∣

∣

∣

∣

a0 +
1

α1
− a0 −

1

β1

∣

∣

∣

∣

p

=
|α1 − β1|p
|α1|p|β1|p

<
1

p2(n−1)+2
=

1

p2n
,

proving the claim. �

3. Regular quadratic irrationalities

In this section we focus on quadratic irrational numbers, providing some results about
the periodicity of the Browkin algorithm described in Section 2.

This problem was one of the main questions raised by Browkin [4], who was interested
in finding a suitable algorithm for p-adic continued fraction satisfying good properties of
finiteness and periodicity. In [4], Browkin proved that its algorithm satisfies the good
property that α ∈ Qp has finite BCF if and only if it is rational. On the other hand, he
provided some examples of quadratic irrationals which seem not to have periodic BCF
expansion, but the problem of deciding whether a quadratic irrational has periodic BCF
expansion is still open. This is instead known for other p-adic continued fractions; for
example, in the case of Ruban continued fraction expansion [16], which is defined using

the same algorithm (1) but another s-function, namely taking the set Z
[

1
p

]

in place of

Y, an effective criterion to decide if a quadratic irrational has periodic continued fraction
expansion was given by Capuano, Veneziano and Zannier in [6]. Unfortunately, the same
criterion does not apply in our case since it strictly depends on the fact that in Ruban
expansion an > 0 for all n ≥ 0. The behaviour of the two expansions is really different; for
more, see [6].

It is easy to show that, if α ∈ Qp has periodic BCF expansion, then it is quadratic
irrational, and this depends only on the recurrence formulas satisfied by the convergents.
First of all notice that, if α is quadratic over Q, then all the complete quotients αk will be
quadratic irrationals and will lie in Q(α). If the expansion of α is periodic, then one of its
complete quotients will be purely periodic, hence without loss of generality we can assume
α itself to be purely periodic. Then, there exists k > 0 such that α = αk. By (4) we have

Bk−1α
2 − (Ak−1 −Bk−2)α−Ak−2 = 0.

This implies that [Q(α) : Q] ≤ 2; but we know that if α ∈ Q, then the BFC expansion of
α is finite, which gives that α is quadratic irrational.

In the following, α ∈ Qp will be quadratic over Q and, for any element x in Q[α], we
will denote by xc the conjugate of x.

Proposition 3.1. Assume that vp(α) < 0 and vp(α
c) > 0. Then, for every n ≥ 0,
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a) vp(αn) < 0 and vp(α
c
n) > 0;

b) − 1
αc
n+1

=
[

an, . . . , a0,− 1
αc
0

]

.

Proof. a) By construction vp(αn) < 0 for every n ≥ 1. For αc
n we have inductively

vp(α
c
n) = −vp(α

c
n−1 − an−1) = −vp(an−1) = −vp(αn−1) > 0.

b) Let us put βn = − 1
αc
n
. By conjugating the expression

αn = an +
1

αn+1
,

we get − 1
αc
n+1

= an − αc
n, hence βn+1 = an + 1

βn
for n ≥ 0. Moreover, by a), vp(α

c
n) > 0

for n ≥ 0, so that s(βn+1) = an proving the claim. �

We will call α regular if vp(α) < 0 and vp(α
c) > 0. By Proposition 3.1, if α is regular

then αn is regular for every n ≥ 0. Moreover, in this case

vp(α
c
n+1) = −vp(αn), vp(tr(α)) = vp(α), vp(N(α)) > vp(α),

where tr(·) and N(·) denote the trace and the norm of a quadratic irrational.

Proposition 3.2. If |α− αc|p ≥ 1
p2n

, then αn+2 is regular.

Proof. Let us write

α = [a0, a1, . . .], αc = [b0, b1, . . .]

and let k0 be the smallest index k such that ak 6= bk. By Proposition 2.1 we have that
k0 ≤ n and αk0 6≡ αc

k0
(mod p). Moreover, it is always true that |αn|p > 1 for every n ≥ 1.

Therefore, up to relabeling the indices it suffices to show that

if α 6≡ αc (mod p), then |αc
2|p < 1.

Since |α− s(α)|p < 1, we have |αc − s(α)|p ≥ 1, hence

|αc
1|p =

∣

∣

∣

∣

1

αc − s(α)

∣

∣

∣

∣

p

≤ 1.

Now, if |αc
1|p < 1, then α1 (and thus α2) is regular and we are done. If |αc

1|p = 1 , then
|αc

1 − a1|p = |a1|p > 1, so that

|αc
2|p =

1

|αc
1 − a1|p

=
1

|a1|p
< 1,

proving the claim. �

Proposition 3.3. Assume that the BCF for α is purely periodic, of the form

α = [a0, . . . , aN−1].

Then α is regular,

− 1

αc
= [aN−1, . . . , a0] and αc = [0,−aN−1, . . . ,−a0].

Proof. Assume that α = [a0, . . . , aN−1]; then, for every k ≥ 1, the minimal polynomial of
α is

X2 − AkN−1 −BkN−2

BkN−1
X − AkN−2

BkN−1
=

X2 −
(

AkN−1

BkN−1
− BkN−2

BkN−1

)

X − AkN−2

BkN−2

BkN−2

BkN−1
.

Then we see that

lim
k

BkN−2

BkN−1
= −αc,
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where we consider the limit with respect to the p-adic norm. Therefore, in Qp,

− 1

αc
= lim

k

BkN−1

BkN−2

= [aN−1, . . . , a0]

Since a0 = aN , with N ≥ 1, vp(α) = vp(a0) < 0. Analogously, vp
(

− 1
αc

)

= vp(aN−1) < 0,
so that α is regular. �

Proposition 3.4. Assume that the BCF for α is periodic. Then

a) it is purely periodic if and only if α is regular.
b) the length of the pre-period of α coincides with the smallest n such that αn is regular.

c) let n0 be the smallest natural number greater or equal to
vp(α−αc)

2 ; then the length
of the pre-period of α is less or equal to n0 + 1.

Proof. a) If the BCF for α is purely periodic then, by Proposition 3.3, α must be regular.
Conversely, assume that α is regular and the BCF for α is

[a0, . . . , at−1, at, . . . , at+N−1] with at−1 6= at+N−1.

Then αt = [at, . . . , at+N−1] is purely periodic and Proposition 3.3 implies that

− 1

αc
t

= [at+N−1, . . . , at].

On the other hand, by Proposition 3.1 we have that

− 1

αc
t

=

[

at−1, . . . , a0,−
1

αc

]

.

Comparing the two expressions gives that at−1 = at+N−1, contrarily to our assumptions.
It follows that the BCF for α has pre-period empty, so it is purely periodic.

b) Follows immediately from a).
c) By Proposition 3.2, αn0+2 is regular. Then the assertion follows from b).

�

Remark 3.5. We point out that the results contained in Propositions 3.3 and 3.4 point a)
were also proved by Bedocchi [1] in a different and more elaborated way.

We end the section by noticing that Proposition 3.3 implies the following easy corollary:

Corollary 3.6. Assume that α has purely periodic BCF expansion; then it is palindrome
and only if N(α) = −1.
In particular, if α has a palindrome periodic expansion, then α is a real quadratic irrational.

Although we are not able to prove non-periodicity, it seems that the condition N(α) =
−1 does not guarantee in general that the expansion is periodic. For example, if we take
p = 5 and α = 8+δ

5 where δ ∈ Q5 is the square root of 89 which is congruent to 3 modulo
5, then the BCF of α is

[−9/5,−2/5,−59/25, 2/5,−9/5, 23/25, 3/5, 1/5, 51/25, 8/5, 2/5,−7/5,−12/5, 6/5, ...],

which doesn’t show a periodic pattern.

4. Some general criteria for periodicity

In this section we are going to prove some general criterion to detect in principle peri-
odicity of Browkin continued fractions.

If α ∈ Qp is quadratic irrational over Q, then we can always write it as

α =
b0 + δ

pk0c0
,
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with b0, c0, k0 ∈ Z, p ∤ c0, δ ∈ Qp, δ
2 = ∆ non square integer. Eventually replacing b0, c0,∆

by b0c0, c
2
0 and c0∆ we can always assume that the coefficients satisfy the extra condition

c0 | ∆ − b20. In this way, it is easy to prove that the sequence of complete quotients
{αn}n ≥ 0 of the BCF expansion of α is given by

αn =
bn + δ

pkncn
,

with bn, cn ∈ Z, p ∤ cn, δ2 = ∆ and an, bn, cn and kn satisfying the recurrence formulas

(7)

{

bn + bn+1 = anp
kncn

pkn+kn+1cncn+1 = ∆− b2n+1

These formulas hold also for Ruban continued fractions, where the expansion is computed

using the same algorithm but another s-function, namely taking the set Z
[

1
p

]

∩ [0, p) in

place of Y. For more about this, see [6]. We will usually refer to Ruban continued fraction
expansions using the abbreviation RCF .

In the following proposition, we show a general criterion which gives necessary and
sufficient condition for periodicity.

Proposition 4.1. Let α ∈ Qp be quadratic over Q. Then, the BCF expansion is periodic
if and only if there exists a sequence nt → ∞ such that {|bnt |} is constant.

Proof. Assume first that α has a periodic BCF expansion. Then, there exist M0 > 0
and h > 0 such that, for every m ≥ M0, αm+h = αm, hence for every t ∈ N, we have
αm = αm+th. This means that if we take nt := m+ th, then bm+th = bm as wanted.

Conversely, assume that there exists a sequence {|bkn |} which is constant. We call this
constant b. From (7), we have that

pktn−1+ktncktn−1
cktn = ∆− b2.

Notice that the ctn ’s are non-zero integers and the ktn ’s are all positive; therefore, we
have |pktnctn | ≤ |∆ − b2| for every n ≥ 0. This implies that there exists a finite number
of possibilities for the ktn ’s and ctn ’s, so that αtn = b+δ

pktn ctn
varies among a finite range

of possibilities, hence there exists N,M ≥ 0 such that αtN = αtM , giving periodicity as
wanted. �

This implies the following corollary:

Corollary 4.2. For every n ≥ 0, we denote by ξn the image of the complete quotient αn

in C. If there exists tn → ∞ such that N(ξtn) < 0, then α has periodic BCF expansion.

Proof. This is an easy consequence of the previous proposition. Indeed, if there exists a

sequence of tn → ∞ such that N(ξtn) < 0, then
b2tn−∆

p2ktn ctn
2
< 0, which implies that |btn | ≤ ∆

for every n ≥ 0. As the btn ’s are integers, this implies that on the sequence tn they take a
finite number of possibilities; hence, there exists a subsequence in which the bj are constant.
Applying Proposition 4.1, this implies that α has periodic BCF expansion as wanted. �

Remark 4.3. We point out that the hypothesis of the corollary can happen only in the case
in which α can be embedded in the reals, i.e. if ∆ > 0. In Ruban’s case, this is also a
necessary condition, while this is not the case for BCF expansion as shown in the following
example.

Example 4.4. Choose any a0, a1 ∈ Y such that vp(a0), vp(a1) < 0 and −4 < a0a1 < 0. Let
α = [a0, a1]. Then, α is a root of the polynomial a1X

2 − a0a1X − a0, whose discriminant
is a0a1(a0a1 + 4) < 0.
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Remark 4.5. In [6, Proposition 6.4], the authors prove that α has periodic RCF expansion
if and only if the sequence |bn| is bounded from above. Their proof uses only the recurrence
formulas (7), so it applies also to our case. If we compare it with our Proposition 4.1, this
implies the following easy consequence:

Corollary 4.6. Let α ∈ Qp be quadratic over Q. Then, there exists a sequence nt → ∞
such that {|bnt |} is constant if and only if the sequence of {|bn|} is bounded from above.

In particular, Corollary 4.2 implies that we have to study only the case in which the
norms of the complete quotients become positive from a certain point on.

We also point out that, if the partial quotients an of the BCF satisfies 0 < an < p
2 , then

it coincides with the BCF expansion, so for these classes of α we can apply [6, Theorem
1.3] which gives a necessary and sufficient condition to have periodic continued fraction
expansion. This class of α is not empty, as showed in the following example:

Example 4.7. Take p = 3 and consider δ the only square root of 37 in Q3 which is congruent

to 1 mod 3. Take then α = 1+δ
6 ; then the BCF expansion of α is

[

1
3

]

, which coincides

with the Ruban one.

In the case in which the norms of the (real) embeddings of the complete quotients αn

of the BCF expansion of α are negative for “enough” consecutive quotients, then we can
conclude that we have periodicity, and we have an effective bound for the period of the
BCF expansion, similar to the one obtained in [6]. More specifically, we have the following
result:

Proposition 4.8. Let α ∈ Qp be a quadratic irrational and for every n > 0 denote by

ξn and ξ′n the two images αn in C and by t = ⌊
√
∆⌋. Assume that ∃n0 > 0 such that

N(ξn) < 0 for every n ∈ [n0, n0+K] with K := (2t+1)∆+1− t(t+1)(2t+1)
3 ; then, the BCF

expansion of α is periodic of period of length at most K.

Proof. The proof is similar to Step b) in the proof of [6, Theorem 6.5]. Assume that
N(ξn) < 0 from a certain n0 > 0 on; then ∆ − b2n > 0. From the recurrence formulas (7)
we have that the ci’s have all the same sign; therefore, for every fixed value bn, the second
equation of (7) implies that the quantity pkncn can assume at most ∆−b2n different values.
On the other hand, bn can assume at most 2t+1 different values between −t and t. Using
this we have that, if N(ξn) < 0 for at most 1 +

∑t
i=−t(∆ − i2) =: K steps, we have a

repetition in the sequence of the complete quotients, which implies periodicity of the BCF
of α as wanted. Finally, K gives an effective estimate for the length of the period of the
expansion of α, which completes the proof. �

Remark 4.9. We point out that there exist examples of α with periodic BCF expansions
and with N(ξn) with oscillating signs and also examples with N(ξn) > 0 for every n > n0

for a certain n0, as shown in the following example.

Example 4.10. Let p = 5 and α = −13+
√
19

30 . Then the BCF for α is purely periodic with
period 12:

α = [4/5,−11/5,−3/5,−4/25, 274/125,−4/25,−3/5,−11/5, 4/5, 1/5, 24/25, 1/5].

It can be verified that all complete quotients have norm > 0.

Similarly, in the case in which the norms of the complete quotients have ’oscillating
signs’ for enough steps, we have a similar criterion to detect periodicity and an effective
bound for the length of the period of the BCF expansion. More precisely, we have the
following result:

Proposition 4.11. Let α ∈ Qp be a quadratic irrational and for every n > 0 denote as

before by ξn and ξ′n the two images αn in C and by t = ⌊
√
∆⌋. Assume that ∃n0 > 0

such that N(ξn) and N(ξn+1) have alternating signs for every n ∈ [n0, n0 + 2K] with
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K := (2t + 1)∆ + 1 − t(t+1)(2t+1)
3 ; then, the BCF expansion of α is periodic of period of

length at most 2K.

Proof. Assume without loss of generality that there exists a n0 > 0 such that N(ξn) < 0
for the odd n ≥ n0 and that N(ξn) > 0 for the even n ≥ n0. This implies that for

n = 2m+1 we have |bn| <
√
∆. Using again the recurrence formulas (7), we have that the

an and the two subsequences c2n and c2n+1 will have alternating signs; in particular, if we
restrict to the sequence c4m+1, then it will have constant sign. We can argue similarly to
the previous proposition on the subsequence 4m + 1; indeed, for every fixed value b4m+1,
the second equation of (7) implies that the quantity pk4m+1c4m+1 can assume at most
∆− b24m+1 different values. On the other hand, b2m+1 can assume at most 2t+ 1 different
values between −t and t. Using this we have that, if N(ξ4m+1) < 0 and N(ξ4m+2) > 0 for
at most 1 +

∑t
i=−t(∆ − i2) =: K consecutive m’s, we have a repetition in the sequence

of the complete quotients, which implies periodicity of the BCF of α as wanted. Finally,
2K gives an effective estimate for the length of the period of the expansion of α, which
completes the proof. �

5. Periodicity of square roots

In this section we will assume that α is a quadratic irrational such that tr(α) = 0. Then
vp(α) = vp(α

c), so that α is not regular, but we have the following cases:

• if vp(α) = 0, then vp(α
c
1) = 0. In this case α1 is not regular and α2 is regular;

• if vp(α) < 0, then vp(α
c−a0) = vp(−α−a0) = vp(2a0) < 0; in this case vp(α

c
1) > 0

and α1 is regular;
• if vp(α) > 0, then α1 = 1

α
has trace 0 and v(α1) < 0, hence α1 is not regular and

α2 is regular.

Thus, if the BCF for α is periodic, then the preperiod has length 1 when vp(α) < 0 and
2 when vp(α) ≥ 0. Assume vp(α) < 0 (so that α1 is regular) and let

α = [a0, a1, . . .].

Then

0 = α+ αc = 2a0 +
1

α1
+

1

αc
1

,

so that

− 1

αc
1

= 2a0 +
1

α 1
.

Assume furtherly that |a0| < p
4 , so that 2a0 ∈ Y; then

− 1

αc
1

= [2a0, a1, a2, . . .].

If the BCF for α is periodic with period d, by Proposition 3.3 we have that

ad = 2a0, ad−1 = a1, . . . , ad−j = aj , for j = 1, . . . ,

⌊

d

2

⌋

.

It follows that the BCF expansion for α is

(8) [a0, a1, a2, . . . , a2, a1, 2a0],

where a1, a2, . . . , a2, a1 denotes a palindromic sequence (of any length, odd or even). Then,
we can write

α = [a0, a1, a2, . . . , a2, a1, a0 + α];

by (4) we have that

α =
(a0 + α)Ad−1 +Ad−2

(a0 + α)Bd−1 +Bd−2
,

which gives

Bd−1α
2 + (a0Bd−1 +Bd−2 −Ad−1)α− (a0Ad−1 +Ad−2) = 0.
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Since by assumption tr(α) = 0, this implies that

Bd−1α
2 − (a0Ad−1 +Ad−2) = 0,(9)

Ad−1 = a0Bd−1 +Bd−2.

Proposition 5.1.

• If d = 2t is even, then

a0Ad−1 +Ad−2 = At−1(At +At−2),

Bd−1 = Bt−1(Bt +Bt−2).

• If d = 2t+ 1 is odd, then

a0Ad−1 +Ad−2 = A2
t +A2

t−1,

Bd−1 = B2
t +B2

t−1.

Proof. Let us consider the palindromic BCF continued fraction of length d + 1 given by
[a0, a1, . . . , a1, a0]. By (2), for this sequence we have that

Bd =

(

a0Ad−1 +Ad−2 Ad−1

a0Bd−1 +Bd−2 Bd−1

)

=

{

BtBT
t−1 if d = 2t

BtBT
t if d = 2t+ 1

The result follows by equaling the coefficients. �

From now on we will focus our attention on the periodicity properties of square roots of
integer numbers lying in Qp. In the late eighties this problem was approached by Bedocchi,
who proved the following facts.

• There are no square roots of integer numbers having a BCF expansion of period
1 [2, Prop. 1] and 3 [3, Prop. 1].

• For every fixed odd number k, there are only finitely many square roots of integer
numbers having a BCF expansion of period k [3, Prop. 1].

• For p > 3, there are infinitely many square roots of integers numbers having a
BCF expansion of period 2 [2, Prop. 2].

It is then natural to ask what happens if we consider BCF expansions of other even period
length. Inspired by the proof of [2, Prop. 2], we are going to develop a general technique to
produce many examples of square roots of integer numbers having a periodic BCF of even
period. In particular, Theorem 5.19 will tell us that, for every natural number n ≥ 1, there
are infinitely many square roots of integer numbers having a BCF expansion of period 2n.

Assume d = 2t; then, by (9) and Proposition 5.1, we have that

(10) Bt−1(Bt +Bt−2)α
2 = At−1(At +At−2).

Let us now consider β = pk
√
m, where m ∈ Z \ pZ is not a perfect square and k ≥ 1, and

let us put α = β1 =
1
β
=

√
m

pkm
; then, α is a root of

p2kmX2 − 1.

Our goal is to characterise the integers p2km such that the BCF expansion of α is periodic
of the form (8) with an even period d = 2t, i.e.

α = [a0, a1, . . . , at−1, at, at−1, . . . , a1, 2a0]

β = [0, a0, a1, . . . , at−1, at, at−1, . . . , a1, 2a0].

If α2 = 1
p2km

, then (9) and (10) become

Bt−1(Bt +Bt−2) = p2kmAt−1(At +At−2).(11)

In the following we will use the notation x̃, introduced in Section 2, to denote the prime-
to-p part of an element x ∈ Z[1

p
]. i.e. x̃ = xpvp(x). Using that ãn = pknan and since k = k0,

by multiplying (11) by p2Kt−1+kt we have

B̃t−1(B̃t + pkt+kt−1B̃t−2) = mÃt−1(Ãt + pkt+kt−1Ãt−2).(12)
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In the next definition we shall introduce a class of finite BCF s [a0, . . . , at−1], called nice.
We will show in Theorem 5.6 that every nice BCF can be completed in infinitely many
different ways by adding a term at ∈ Y such that the p-adic limit of the infinite BCF of
the form [a0, a1, a2, . . . , a2, a1, 2a0] is equal to 1

pk0
√
m

for some m ∈ Z.

Definition 5.2. A finite BCF [a0, . . . , at−1] is nice if:

a) |a0|p > 1 and |a0|∞ < p
4 ;

b)
∣

∣

∣

At−1

At−2

∣

∣

∣

∞
> 4

p
;

c) there exists an integer q such that B̃t−1 | q | B̃2
t−1 and the class of q modulo Ã2

t−1

belongs to the multiplicative subgroup generated by the class of p.

Example 5.3. The BCF given by
[

1
p
, 1
p

]

is nice. Indeed, condition a) is easily verified. To

prove b), notice that
A1

A0
= a1 +

1

a0
=

1

p
+ p =

p2 + 1

p
>

4

p
.

Finally, in this case, B̃1 = ã1 = 1, so c) holds automatically.

We remark that, when the partial quotients are positive, in some cases condition b) of
Definition 5.2 is easier to verify, as showed by the following proposition:

Proposition 5.4. Let [a0, . . . , at−1] be a BCF such that a0, . . . , at−1 > 0 and assume that
at−1 >

4
p
. If conditions a) and c) of Definition 5.2 are fulfilled, then [a0, . . . , at−1] is nice.

Proof. We have
At−1

At−2
= at−1 +

At−3

At−2
.

Since all partial quotients are positive, then
∣

∣

∣

∣

At−1

At−2

∣

∣

∣

∣

∞
≥ |at−1|∞ >

4

p

by hypothesis, so that condition b) of Definition 5.2 is also satisfied. �

Remark 5.5. Condition c) in Definition 5.2 is fulfilled in the following particular cases

• B̃t−1 = ±1;
• ±p is a primitive root modulo Ã2

t−1. In this case, it is well known that Ãt−1 must
be either 2 or a power of an odd prime.

These facts can be exploited in order to produce examples, as we shall see in Section 5.2.

In the following theorem we will give the general construction which will allow us,
starting from a suitable nice BCF , to give infinitely many examples of periodic BCF
expansions of square roots of integers in Qp of even period.

Theorem 5.6. Let [a0, . . . , at−1] be a nice BCF ; then, there exist infinitely many at ∈ Y
such that the periodic BCF [a0, a1, . . . , at−1, at, at−1, . . . , a1, 2a0] converges to a quadratic
irrational number of the form 1

pk0
√
m

for some m ∈ Z. The at can be chosen of the form

at = 2ct, with ct ∈ Y.

Proof. Let [a0, . . . , at−1] be a nice BCF of length t. By condition c) of Definition 5.2,

there exists q ∈ Z such that q ≡ pω mod Ã2
t−1 for some ω ∈ Z. Eventually adding suitable

multiples of the multiplicative order of p, we can take ω > k0 + 2Kt−1. Put

b =
pω − q

Ã2
t−1

;

kt = ω − k0 − 2Kt−1;

c̃ =
−pkt+kt−1Ãt−2 + (−1)t−1 q

B̃t−1

Ãt−1

.
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By construction kt > 0 and, as by assumption B̃t−1 | q, we have that −pkt+kt−1Ãt−2 +
(−1)t−1 q

B̃t−1
is an integer. We show that c̃ ∈ Z. Indeed,

B̃t−1

(

−pkt+kt−1Ãt−2 + (−1)t−1 q

B̃t−1

)

= −pkt+kt−1Ãt−2B̃t−1 + (−1)t−1q,

and, since by (3) Ãt−1B̃t−2 − Ãt−2B̃t−1 = (−1)tpk0+2Kt−2+kt−1 , using the definitions of b
and kt we get

B̃t−1

(

−pkt+kt−1Ãt−2 + (−1)t−1 q

B̃t−1

)

= (−1)tpω − pkt+kt−1Ãt−1B̃t−2 + (−1)t−1q

= (−1)tbÃ2
t−1 − pkt+kt−1Ãt−1B̃t−2

= Ãt−1((−1)tbÃt−1 − pkt+kt−1B̃t−2).

Since (Ãt−1, B̃t−1) = 1, it follows that Ãt−1 divides −pkt+kt−1Ãt−2 +(−1)t−1 q

B̃t−1
, proving

that c̃ ∈ Z. Moreover by the above calculations we obtain

c̃Ãt−1 + pkt+kt−1Ãt−2 = (−1)t−1 q

B̃t−1

,(13)

c̃B̃t−1 + pkt+kt−1B̃t−2 = (−1)tbÃt−1.(14)

We want now to show that, if ω is sufficiently large, then we have 2c̃
pkt

∈ Y. Indeed, since

q | B̃2
t−1, we have

|c̃|∞ ≤ pkt+kt−1

∣

∣

∣

∣

∣

Ãt−2

Ãt−1

∣

∣

∣

∣

∣

∞

+

∣

∣

∣

∣

∣

B̃t−1

Ãt−1

∣

∣

∣

∣

∣

∞

.

Using the recurrence formulas (6), we have

Ãt−1

Ãt−2

= pkt−1
At−1

At−2
and

Ãt−1

B̃t−1

= pk0
At−1

Bt−1
,

so that

|c̃|∞ ≤ pkt
∣

∣

∣

∣

At−2

At−1

∣

∣

∣

∣

∞
+

1

pk0

∣

∣

∣

∣

Bt−1

At−1

∣

∣

∣

∣

∞
= pkt

(∣

∣

∣

∣

At−2

At−1

∣

∣

∣

∣

∞
+

1

pk0+kt

∣

∣

∣

∣

Bt−1

At−1

∣

∣

∣

∣

∞

)

< pkt
(

p

4
+

1

pk0+kt

∣

∣

∣

∣

Bt−1

At−1

∣

∣

∣

∣

∞

)

,

where we used condition b) of Definition 5.2. Now, if we choose ω large enough (and hence

kt), we have |c̃|∞ < pkt+1

4 , so
∣

∣

∣

2c̃
pkt

∣

∣

∣

∞
< p

2 as wanted. We can now put at =
2c̃
pkt

and consider

the finite BCF given by [a0, a1, . . . , at−1, at]. By (13) and (14) we have

Ãt + pkt+kt−1Ãt−2 = 2(c̃Ãt−1 + pkt+kt−1Ãt−2)

= 2(−1)t−1 q

B̃t−1

;

B̃t + pkt+kt−1B̃t−2 = 2(c̃B̃t−1 + pkt+kt−1B̃t−2)

= 2(−1)tbÃt−1.

Therefore 2Ãt−1 divides B̃t + pkt+kt−1B̃t−2 and Ãt + pkt+kt−1Ãt−2 divides 2B̃t−1. Let

q1 =
B̃2

t−1

q
; then,

2B̃t−1(B̃t + pkt+kt−1B̃t−2) = (−1)t−1q1(Ãt + pkt+kt−1Ãt−2)(−1)t2bÃt−1

= −2bq1Ãt−1(Ãt + pkt+kt−1Ãt−2).

Then equation (12) holds with m = −bq1, proving that, if we take α the limit of the
BCF given by [a0, a1, . . . , at−1, at, at−1, . . . , a1, 2a0], then it is a root of the polynomial
p2kmX2 − 1 = 0 as wanted. �
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5.1. Conjectures about niceness. Using Theorem 5.6, if we start with a nice sequence
[a0, . . . , at−1], one can provide a collection of integers m, coprime to p, such that the BCF
expansion of pk0

√
m is periodic of period 2t. The existence of a nice sequence of length t for

every t ≥ 1 has some experimental support (see Section 5.2). We formulate the following:

Conjecture 5.7. For every t ≥ 1 there exists a nice BCF of length t, except when t = 1
and p = 3.

We also obtain experimental confirmations for the following stronger assertions (with
the exception p = 3, t = 1):

Conjecture 5.8. For every a0, . . . , at−2 > 0 in Y with |a0|∞ < p
4 there exists at−1 ∈ Y

such that the BCF [a0, . . . , at−1] is nice.

Conjecture 5.9. For every t ≥ 1 there exists at+1 ∈ Y such that the BCF
[

1
p
, . . . , 1

p
, at−1

]

is nice.

By Theorem 5.6, the truth of any of the above assertions would imply the following
result:

Conjecture 5.10. For every prime p and for every t ≥ 1 except in the case p = 3, t = 1
there are infinitely many integers p2km with k ≥ 1 and m ∈ Z \ pZ not a square such that
α = 1

pk
√
m

has a BCF of the form

[a0, a1, . . . , at−1, at, at−1, . . . , a1, 2a0]

and at = 2c, with c ∈ Y.
In particular there are infinitely many b ∈ Z such that the BCF expansion of

√
b has period

2t.

5.2. Some particular cases. In this section we are going to prove some cases of Conjec-
ture 5.10 by providing nice BCF expansions of given length for some particular t.

5.2.1. The case t = 1. This case was proven in [2, Proposition 2]. Here B̃t−1 = B̃0 = 1

and A1
A0

= a0, so that condition c) in Definition 5.2 is always satisfied and, if p ≥ 5, then

every BCF [a0] such that |a0|p > 1 and 4
p
< |a0|∞ < p

4 is nice. By Theorem 5.6 there exist

infinitely many a1 ∈ Y such that the periodic BCF [a0, a1, 2a0] represents a quadratic
irrational of the form 1

pk
√
m

, with m ∈ Z.

Example 5.11. Take p = 5, a0 =
6
5 . The order of 5 in Z×

36 is 6. By setting ω = 6, 12, 18 . . .
in the proof of Theorem 5.6 we obtain the following BCF ’s:

• [65 ,−2604
3125 ,

12
5 ] =

1
5
√
−434

;

• [65 ,−40690104
48828125 ,

12
5 ] =

1
10

√
−1695421

;

• [65 ,−635782877604
762939453125 ,

12
5 ] =

1
5
√
−105963812934

.

5.2.2. The case t = 2. In this case B̃t−1 = B̃1 = ã1. Notice that, if a0 ∈ Y is such

that 0 < a0 < p
4 , then, for every h ≥ 1, the sequence

[

a0,
1
ph

]

is nice. Indeed for this

sequence B̃1 = 1, so c) is satisfied, and A1
A0

= 1
ph

+ 1
a0

> 4
p
. Then, Theorem 5.6 allows to

find infinitely many a2 ∈ Y such that the periodic BCF
[

a0,
1
ph
, a2,

1
ph
, 2a0

]

represents a

quadratic irrational of the form 1
pk

√
m

, with m ∈ Z.

Example 5.12. Take p = 3, and consider the BCF
[

1
3 ,

1
3

]

. Then Ã1 = 10, and the order

of 3 in Z×
100 is 20. By setting ω = 20, 40, 60 . . . in the proof of Theorem 5.6 we obtain the

following BCF ’s:

• [13 ,
1
3 ,− 38742049

129140163 ,
1
3 ,

2
3 ] =

1
66

√
−72041

;
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• [13 ,
1
3 ,−135085171767299209

450283905890997363
1
3 ,

2
3 ] =

1
66

√
−251191435104482

;

• [13 ,
1
3 ,− 471012869724624483492160369

1570042899082081611640534563
1
3 ,

2
3 ] =

1
66

√
−875850377587111642857323

;

Another suggestive way to obtain examples is to force Ã1 to be a prime ℓ such that p is a
primitive root modulo ℓ2.

Fix an odd prime p ≥ 5. Artin conjecture (see [7]) on primitive roots predicts that

the density of primes ℓ such that p is a primitive root modulo ℓ is ∼ Cp
π(x)
x

for x → ∞,
where Cp denotes Artin’s constant. Moreover, it is well-known that, if a is a primitive root
modulo ℓ, then exactly ℓ−1 between the ℓ liftings a+ tℓ with t = 0, . . . , ℓ−1 are primitive
roots modulo ℓ2. The above considerations justify to conjecture the existence of an integer
k1 > 1 (depending on p) such that there is a prime ℓ in the interval

pk1+1 + 4pk1−1 < ℓ <
3

2
pk1+1

and p is a primitive root modulo ℓ2. Put ã1 = ℓ− pk1+1 and a1 = ã1
pk1

. Then a1 ∈ Y and

we can consider the BCF [1
p
, a1]. We have

∣

∣

∣

∣

A1

A0

∣

∣

∣

∣

∞
=

|ã1 + pk1+1|∞
pk1

>
4

p
.

hence [1
p
, a1] is nice and Theorem 5.6 gives infinitely many a2 ∈ Y such that the periodic

BCF
[

1

p
, a1, a2, a1,

2

p

]

represents a quadratic irrational of the form 1
pk

√
m

, with m ∈ Z.

Example 5.13. Let p = 3 and k1 = 4; then, 3 is a primitive root modulo 3532 and 35+4·33 <
353 < 35

2 . We put ã1 = 353 − 35 = 110, and consider the BCF
[

1
3 ,

110
81

]

. The discrete

logarithm of 110 in base 3 modulo 3532 is ω0 = 31861, and the multiplicative order of 3
modulo 3532 is s = 124256. Following the proof of Theorem 5.6 we construct

b =
331861 − 110

3532
,

k2 = 31861 − 9 = 31852,

c̃ =
−331856 − 1

353
,

ã2 = 2c̃,

a2 =
ã2

331852
.

By setting ω = ω0 + hs with h ∈ N we obtain infinitely many other examples.

5.2.3. The case t = 3.

Proposition 5.14. The BCF
[

1
p
, 1−p

p
, 1+p

p

]

is nice. Therefore there are infinitely many

integers b such that the BCF expansion of
√
b has period 6.

Proof. We have B2 = 1−p2

p2
+ 1 so that B̃2 = 1. Moreover A2

A1
= p3+p2+1

p(p2−p+1)
> 4

p
; indeed the

polynomial function

x3 − 3x2 + 4x− 3

is increasing and has a positive value in x = 1.
�
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More generally, it is possible to show that for p ≥ 5 and every integer h ≥ 1 the BCF
[

1
ph
, 1−ph

ph
, 1+ph

ph

]

is nice. Then, Theorem 5.6 implies that for every h there are infinitely

many integers m coprime with p such that the BCF expansion for ph
√
m has the form

[

0,
1

ph
,
1− ph

ph
,
1 + ph

ph
, a4,

1 + ph

ph
,
1− ph

ph
,
2

ph

]

;

in particular, it has period 6.

5.2.4. The case t = 5.

Proposition 5.15. The BCF
[

1
p
,−p3−1

2p2
, 1
p
,− 2

p2
, 1
p

]

is nice. Therefore there are infinitely

many integers b such that the BCF expansion of
√
b has period 10.

Proof. We have B4 = − 1
p6

so that B̃4 = −1, and A4
A3

= 4p6−4p3−2
p(p6−5p3−2)

> 4
p
. �

5.2.5. The case t = 2n. This section is devoted to exhibit, for every n, k ≥ 1, a nice
sequence βk

n of length 2n having all partial quotients with denominator pk. Notice that the
case n = 0 has been dealt with in Section 5.2.1.
In what follows, it will be sometimes useful to write B̃r(a0, . . . , an) (n ≥ r), in order to
put in evidence the dependence on partial quotients.

Lemma 5.16. Consider a BCF of the form

α =

[

ã0
pk

,
1

pk
,
ã2
pk

,− 1

pk
. . . ,

ã2j
pk

, (−1)j
1

pk
, . . .

]

,

and define

α• =

[

ã0
p2k

,− ã2
p2k

,
ã4
p2k

. . . , (−1)j
ã2j
p2k

, . . .

]

.

Put B•
j = Bj(α

•). Then, for every i ∈ N,

a) B2i = (−1)i(B•
i −B•

i−1);

b) B2i+1 =
1
pk
B•

i ;

c) A2i+1 = A•
i +B•

i ;
d) A2i = (−1)ipk(A•

i −A•
i−1 +B•

i −B•
i−1).

Proof. We prove the Lemma by induction on i. The claim is certainly true for i = 0;
indeed,

A0 =
ã0
pk
, A1 =

ã0
p2k

+ 1, B0 = 1, B1 =
1
pk

A•
−1 = 1, A•

0 =
ã0
p2k

, B•
−1 = 0, B•

0 = 1.
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Assume now by inductive hypothesis that the thesis holds true for i. Then,

B2i+2 =
ã2i+2

pk
B2i+1 +B2i; by inductive hypothesis

=
ã2i+2

p2k
B•

i + (−1)i(B•
i −B•

i−1)

= (−1)i+1

(

(−1)i+1 ã2i+2

p2k
B•

i +B•
i−1 −B•

i

)

= (−1)i+1(B•
i+1 −B•

i );

B2i+3 =
(−1)i+1

pk
B2i+2 +B2i+1; by inductive hypothesis

=
1

pk
(

B•
i+1 −B•

i +B•
i

)

=
1

pk
B•

i+1;

A2i+3 =
(−1)i+1

pk
A2i+2 +A2i+1; by inductive hypothesis

=
(−1)i+1

pk
((−1)i+1pk(A•

i+1 −A•
i +B•

i+1 −B•
i )) +A•

i +B•
i

= A•
i+1 +B•

i+1;

A2i+2 =
ã2i+2

pk
A2i+1 +A2i; by inductive hypothesis

=
ã2i+2

pk
(A•

i +B•
i ) + (−1)ipk(A•

i −A•
i−1 +B•

i −B•
i−1)

= (−1)i+1pk
(

(−1)i+1 ã2i+2

p2k
A•

i +A•
i−1

)

+ (−1)i+1pk
(

(−1)i+1 ã2i+2

p2k
B•

i +B•
i−1

)

+

+ (−1)ipk(A•
i +B•

i )

= (−1)i+1pk(A•
i+1 +B•

i+1 −A•
i −B•

i ).

�

For n, k ≥ 1 we can construct inductively a BCF βk
n of length 2n as follows

• βk
1 =

[

1
pk
, 1
pk

]

;

• if βk
n = [b0, . . . , b2n−1], then

βk
n+1 =

[

b0,
1

pk
,−b1,−

1

pk
, b2,

1

pk
, . . . , (−1)ibi, (−1)i

1

pk
, . . . , b2n−1,−

1

pk

]

Proposition 5.17. For every n, k ≥ 1, βk
n is nice, and B̃2n−1(β

k
n) = 1.

Proof. Consider the following system of recurrence relations:

(15)















x(n, k) = x(n− 1, 2k) + y(n− 1, 2k),
y(n, k) = 1

pk
y(n− 1, 2k),

z(n, k) = −pk(x(n − 1, 2k) − z(n− 1, 2k) + y(n− 1, 2k) − w(n− 1, 2k)),
w(n, k) = −z(n− 1, 2k) + w(n − 1, 2k).

By Lemma 5.16 the quadruple (A2n−1(β
k
n), B2n−1(β

k
n), A2n−2(β

k
n), B2n−2(β

k
n)) is a solu-

tion of (15), subjected to the initial conditions:

(16) x(1, k) =
1

p2k
+ 1, y(1, k) =

1

pk
, z(1, k) =

1

pk
, w(1, k) = 1.



ON PERIODICITY OF p-ADIC BROWKIN CONTINUED FRACTIONS 17

In order to determine explicit formulas for A2n−1(β
k
n), B2n−1(β

k
n),A2n−2(β

k
n), B2n−2(β

k
n),

we introduce the following polynomials, for n ≥ 1,

Ũ(n,X) =
n
∑

j=1

X2j + 1;

Ṽ (n,X) = X2(2n−1−1) −
n−2
∑

j=0

X2(2j−1);

S̃(1,X) = 1; S̃(n+ 1,X) = X2S̃(n,X2)− 1−X2 − 2

n
∑

j=2

X2j ,(17)

and define the sequences of rational functions

U(n,X) =
Ũ(n,X)

X2n
, V (n,X) =

Ṽ (n,X)

X2n−2
,

S(n,X) =
S̃(n,X)

X2n−1
, W (n,X) =

1

X2n−1
.

Then, the quadruple (S(n, pk), U(n, pk), V (n, pk),W (n, pk)) is a solution of system (15)
subjected to she same initial conditions (16), so that we find

S(n, pk) = A2n−2(β
k
n), U(n, pk) = A2n−1(β

k
n),

V (n, pk) = B2n−2(β
k
n), W (n, pk) = B2n−1(β

k
n).

First, notice that B2n−1(β
k
n) = W (n, pk) = 1

pk(2
n
−1) , hence B̃2n−1(β

k
n) = 1.

By (17), S̃(1,X) = 1 and S̃(2,X) = −1; moreover, using an induction argument, for

every n ≥ 3 we have that S̃(n,X) is a polynomial of degree 3 · 2n−2 − 2 of the form

S̃(n,X) = −(1 + 2
∑

X2ij ),

for some indexes 1 ≤ ij ≤ 3 · 2n−2 − 2. Using this property we deduce |S̃(1, pk)| =

|S̃(2, pk)| = 1 and, for n ≥ 3,

(18) |S̃(n, pk)| ≤ 2

∣

∣

∣

∣

∣

∣

3·2n−3−1
∑

j=0

p2jk

∣

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

p3·2
n−2k − 1

p2k − 1

∣

∣

∣

∣

∣

< 2p3·2
n−2k.

Furthermore, for n ≥ 1, we have

(19) |Ũ(n, pk)| > p2
nk.

To prove niceness it remains to verify condition b) in Definition 5.2. We have

A2n−1(β
k
n)

A2n−2(βk
n)

=
U(n, pk)

S(n, pk)
=

Ũ(n, pk)

pkS̃(n, pk)
.

For n = 1 we have
∣

∣

∣

∣

A1(β
k
1 )

A0(βk
1 )

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Ũ(1, pk)

pkS̃(1, pk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

p2k + 1

pk

∣

∣

∣

∣

> pk >
4

p
,

and for n = 2,
∣

∣

∣

∣

A3(β
k
1 )

A2(βk
1 )

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Ũ(2, pk)

pkS̃(2, pk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

p4k + p2k + 1

pk

∣

∣

∣

∣

> p3k >
4

p
.

Using (18) and (19), for n ≥ 3 we finally have
∣

∣

∣

∣

A2n−1(β
k
n)

A2n−2(βk
n)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Ũ(n, pk)

pkS̃(n, pk)

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

p2
nk

2p3·2
n−2k

∣

∣

∣

∣

=
1

2
pk(2

n−3·2n−2) =
1

2
p2

n−2k >
4

p
,

proving the claim. �
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Remark 5.18. It turns out that the sequence βk
n represents the BCF expansion of the

rational number
U(n, pk)

W (n, pk)
=

1 + p2k + p4k + . . .+ p2
nk

pk
.

We also point out that βk
n can be defined by a “folding” procedure, as described in [13,

Theorem 1].

Finally, Theorem 5.6 and Proposition 5.17 implies the following result:

Theorem 5.19. For every n, k ≥ 1 there are infinitely many integers m coprime to p such
that the BCF expansion for pk

√
m has period 2n.

5.3. Comparison with Ruban expansion of square roots. We conclude this section
by making a parallelism with the periodicity of numbers with trace 0 in the case of Ruban.
In [6, Corollary 6.10], the authors proved that a certain class of numbers of the form

α =
√

1 + kph, with (k, p) = 1 cannot have periodic RCF expansion. Actually, up to now it

is not know any example of a number of the form
√
∆, with (∆, p) = 1 with periodic Ruban

continued fraction expansion. We continue this investigation in the following proposition.

Proposition 5.20.

• There exist infinitely many α with tr(α) = 0 and vp(α) < 0 having periodic RCF;

• If α = pk
√
m for some m ∈ Z \ pZ and k > 0, then the RCF expansion is not

periodic.

Proof. For the first statement, we exhibit an example of a family of α of the first type such
that the RCF expansion is periodic. Indeed, for h ≥ 0 let us consider δ ∈ Qp the square

root of 1 + ph which is congruent to 1 modulo p and let us take αh = δ
ph

; then, the Ruban

continued fraction expansion of αh is equal to
[

1
ph
, 2
ph

]

. To prove this, notice that a0 =
1
ph

,

hence

α1 =
1

ph
+ α;

from this we have a1 =
2
ph

and α1 = α2, which proves the desired periodicity.

To prove the second statement, consider α = pk
√
m ∈ Qp with k > 0; then, vp(α) > 0,

hence a0 = 0 and α1 =
1
α
=

√
m

pkm
with vp(α1) < 0. Now a1 will be of the form ã1

pk
for some

0 < ã1 ≤ pk+1. Then we have that

α2 = pk
√
m+ ã1m

(1− ã21m)
,

where we recall that from Ruban algorithm we have that pk | (1 − ã1m). But now if we
consider the two real embeddings of α2 this are both negative, which applying [6, Theorem
6.5] gives that α2 is not periodic as wanted. �

6. Some further periodic expansions

In this section, we give some other families of quadratic irrationals having periodic
expansions of period 4 and 6, which are not obtained applying the construction given in
Theorem 5.6.

Theorem 6.1.

(1) For p ≥ 3 and t ≥ 2, we have
√

1− pt+2

2p
= ±

[

p2 − 1

2p
,−2

p
,− 1

pt−1
,
2

p
,−1

p

]

;
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(2) For p ≥ 5 and t ≥ 3, we have
√

pt + 1

2
= ±

[

−p− 1

2
,
2

p
,− 1

pt−2
, 1− 2

p
,−1− 2

p
,

1

pt−2
,−1 +

2

p
, 1 +

2

p

]

;

(3) For p ≥ 5 and t ≥ 3, we have
√

pt + 1

2pt−2
= ±

[

pt−1 + 1

2pt−2
, 1− 2

p
,−1− 2

p
,

1

pt−2
,−1 +

2

p
, 1 +

2

p
,− 1

pt−2

]

.

Proof. The period of this continued fraction converges to an irrational α1 that can be
evaluated considering the matrix

M =

(

M11 M12

M21 M22

)

=

(−2
p

1

1 0

)(− 1
pt−1 1

1 0

)(2
p

1

1 0

)(−1
p

1

1 0

)

.

Its characteristic polynomial is x2 + 2
(

2
pt+2 − 1

)

x+ 1, and the eigenvalues are

µ1,2 = 1− 2p−t−2 ±
√

p−2t−4 − p−t−2.

Then

α1 = lim
n

Aµn
1 +Bµn

2

Cµn
1 +Dµn

2

=
A

C
,

where the limit is computed with respect to the p-adic norm and µ1 is the eigenvalue with
larger p–adic norm. Moreover, the coefficients A,B,C,D are the solutions of the systems

{

A+B = 1

Aµ1 +Bµ2 = M11
,

{

C +D = 0

Cµ1 +Dµ2 = M21
,

from which

α1 =
µ2 −M11

M21
,

and the limit of the continued fraction is α0 =
p2 − 1

2p
+

1

α1
. By direct calculation one can

check that α0 =
1− pt+2

2p
. For cases 2. and 3. the proof is similar once the suitable matrix

M is considered. �
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