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Abstract: I solved the Eliashberg equations for a multiband non-phononic s± wave spin-glass
superconductor, calculating the temperature dependence of the gaps and of superfluid density.
Their behaviors were revealed to be unusual: showing non-monotonic temperature dependence and
reentrant superconductivity. By considering particular input parameters values that could describe
the iron pnictide EuFe2(As1−xPx)2, a rich and complex phase diagram arises, with two different
ranges of temperature in which superconductivity appears.

Keywords: superconductivity and magnetism; Fe-based superconductors; multiband Eliashberg
theory; spin-glasses

1. Introduction

The discovery of the new iron-based superconductor family based on EuFe2 As2 [1–8] allowed to
investigate more deeply the interplay of magnetism and superconductivity. Compared to the past,
there is now a new aspect to be considered: magnetism not only competes with superconductivity
but also can be involved in the mechanism of superconductivity itself, as in the case of cuprates, heavy
fermions and iron-based superconductors.

The case of the family of iron-based superconductors EuFe2 As2 [1–8] is particularly interesting
because the ferromagnetic and superconducting transition temperatures are close, where the first
is connected to the ordering of Eu2+ local magnetic moments. It can also happen that the
superconducting critical temperature is higher than that of magnetic ordering [1–8]. In these systems,
a complex phenomenology of magnetic phases is observed: below the critical superconducting
temperature, two distinct magnetic transitions take place; the ordering at higher temperature is
associated with the antiferromagnetic interlayer coupling; whereas the behaviour at lower temperature
might be identified as the change over to a spin-glass state, where the moments between the layers are
decoupled [2,7]. Usually the spin-glass state [9] occurs in substitutionally disordered alloys [10–12],
where, by means of the long-range Rudermann–Kittel–Kasuya–Yosida interaction, mediated by
conduction electrons, the randomly distributed localized magnetic moments interact. Due to the
fact that not all magnetic moments can be simultaneously satisfied in their spin orientation with
respect to the others, it happens that frustration in the magnetic ordering arises. This fact produces
an infinite number of random configurations that are degenerate in energy but separated by large
energy barriers. In such a situation, the existing state cannot evolve into another (equally convenient
from an energetic point of view) in experimentally accessible time scales. A freezing temperature
TSG is associated with the spin-glass state, below which the spins freeze into one of these random
configurations. The magnetic susceptibility in the spin-glasses shows a cusp at TSG, while nothing
happens to specific heat other than a broad maximum around TSG and no Bragg peaks, which usually
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are a signal of long-range magnetic order, is found in neutron scattering experiments. The correct order
parameter for these systems has to be related to the probability that a spin with a given direction at a
finite time will have the same direction in the infinite-time limit. The frozen nature of the spin-glass
state is reflected in this order parameter, but no spatial correlations are present as instead happens for
other magnetic order parameters. Is it possible to reproduce this phenomenology connected with the
superconducting state, coexisting with a spin-glass system, inside a theory? In this paper, I discuss
the predictions of the theory on some physical quantities for a multiband spin-glass non-phononic
s±-wave superconductor in the framework of Eliashberg equations, and I take as example the particular
case of EuFe2(As1−xPx)2 [5]. Of course, I do not claim to fully reproduce the complex experimental
phenomenology of this material but simply to obtain indications on the relevant input parameters
that need to be included in the Eliashberg equations in the hope that one day it will be possible to
find a material where only the superconducting state and the spin-glass state appear without any
other complications. The starting point will be the theoretical work of M.J. Nass [13–15] and J.P
Carbotte [16–19] that describe a single-band spin-glass s-wave phononic superconductor always in the
framework of Eliashberg theory.

2. The Model

By introducing the order parameter for the spin-glass state as q = limt→+∞ < Si(t) · Si(0) >,
it is possible to describe mathematically this spin freezing [9]. This order parameter is proportional
to the probability that a given spin that has a particular direction at t = 0 will still be orientated in
that direction an infinite time later. This situation is quite different from having a order parameter
in a ferromagnetic or antiferromagnetic system which reflects space as well as time correlations.
Although each spin is essentially fixed in direction, in the absence of a magnetic field, upon averaging
over all spins, the total spin is zero at all temperatures. By introducing a probability distribution, it
is possible to reproduce the randomness of the exchange interaction and to then average over this
distribution. It is necessary to use the replica approach in order to carry out averaging of the free
energy over this distribution of exchange interactions and to succeed in finding a new order parameter
defined as the configuration average of the equal time spin operators at a given site in different replicas
of the system [9].

In the past papers [13–19], the developed theory is on phononic superconductors, where it was also
added a contribution of antiferromagnetic spin fluctuations (dynamic part) and spin-glass (static part).
In this case, it is not necessary to introduce the dynamic part (which is already considered since it is
responsible for the pairing of electrons to form Cooper pairs) but only the static part, which is formally
equal to the contribution of magnetic impurities with an additional dependence on temperature.
The antiferromagnetic spin fluctuations have two components [13–19]: a dynamical component
responsible for s± superconductivity and a static component responsible for the spin-glass behaviour,
that goes to zero at spin-glass critical temperature TSG. For T > TSG, the static component disappears
and the material behaves like a normal s± superconductor. In the old phononic low-temperature
superconductors, the dynamic part is, usually, negligible and pair breaking, whereas in the multiband
iron pnictide superconductors, it is the responsible for superconductivity. Contribution of the spin-glass
phase can be represented in an approximate way in the Eliashberg equations by a term (ΓM(T)) similar
to that associated with the presence of magnetic impurities but with a temperature dependence.
Precisely, the magnetic impurities scattering rate [16–19] that mimics the spin-glass state is ΓM(T) =
πN(0)J2S2[1− ( T

TSG
)β], where N(0) is the total density of states at the Fermi level, J is a exchange

constant, S is the spin of the magnetic element and β is a number [16–19] that can be 1 or 2 depending
on the physical characteristic of the magnetic element (Eu in this case) and on the host material (the
specific iron pnictides). At this moment, there are not enough data to understand if β is 1 or 2; therefore,
I solve the Eliashberg equations in both cases. This theory stems from the desire to build a very simple
model that still manages to grasp the fundamental physics of a multiband spin-glass superconductor.
More sophisticated theories [20–24] start from multi-orbital Hubbard models that produce richer phase
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diagrams and triplet superconductivity. For solving the Eliashberg equations, a lot of input parameters
connected with the characteristic of the physical system are necessary. In the following, I will refer to
EuFe2(As0.835P0.165)2: a material belonging to the iron pnictide family. The electronic structure of the
compound EuFe2(As0.835P0.165)2 can be approximately described, in principle, as almost all electrons
doped iron-based materials [25,26], by a three-band model with two electron bands (indicated in the
following as bands 1 and 2) and one hole band (indicated in the following as band 3) [27]. In this way,
the gap of the hole band, ∆3, has an opposite sign to the gaps residing on the electrons bands ∆1 and ∆2.
For example, in the hole-doped iron compounds, within the five-orbital model [28], the Fermi surface
comprises four sheets: two hole pockets around the point (0, 0) and two electron pockets around
the points (π,0) and (0,π) [29], but usually, the two electron bands are very similar so it is possible to
approximate the real situation with just a electron band with a density of states at the Fermi level that
is the sum of the two contributions of the two bands. For the electron-doped materials, the opposite
happens and it is possible to sum the contributions of the two hole bands. In both cases, in the end, it
is possible to describe the superconductor with a 3-band model [25]. For completeness, it is necessary
to mention an alternative approach to explain the superconductivity in the iron pnictides based on the
appearance of the nontrivial Berry connection [30–32].

The compound EuFe2(As0.835P0.165)2 is especially fascinating, since, despite the proximity of
the magnetic and superconducting phases observed at rather high temperatures, there is just a
little variation of their transition temperatures to these two phases [5]. The same happens for the
stoichiometric material RbEuFe4 As4, where the superconductivity and a long range magnetic orders
exist independently from each other [33]. In this simple model, the effect of spin-glasses are simulated
by some functions of temperature ΓM

jk (T) that go to zero before Tc (precisely to TSG < Tc), and in this
way, they do not affect the critical temperature but change the behaviour of some physical quantities
below Tc.

In the iron pnictides, the phonons are responsible for intraband coupling (ph) [26,34] and usually
are neglected while the antiferromagnetic spin fluctuations (sf ) are connected to interband coupling
between holes and electrons bands (s± wave model [26,34]). With the intention to reduce the number
of free parameters, I use an effective two-band model (band 1 electrons and band 2 holes), where it is
not possible to set to zero the intraband coupling and where the electron-boson coupling constants
do not have an immediate interpretation [35,36] because this model simulates the true physical
situation (three bands) with effective values of electron boson coupling constants in a two-band
model. I investigate what happens in a multiband system, and for simplicity, I study a two bands
system that simulates a real three-band system. In the following, the s± wave two-band Eliashberg
equations [37–40] are written. To calculate the critical temperature and the gaps, it is necessary to solve
4 coupled equations: 2 for the renormalization functions Zj(iωn) and 2 for the gaps ∆j(iωn), where j, k
are band index (that range between 1 and 2) and ωn are the Matsubara frequencies. The imaginary-axis
equations [41–46] read as follows:

ωnZj(iωn) = ωn + πT ∑m,k ΛZ
jk(iωn, iωm)NZ

k (iωm)+

+∑k
[
ΓN

jk + ΓM
jk (T)

]
NZ

k (iωn)
(1)

Zj(iωn)∆j(iωn) = πT ∑m,k
[
Λ∆

jk(iωn, iωm)− µ∗jk(ωc)
]
×

×Θ(ωc − |ωm|)N∆
k (iωm) + ∑k[ΓN

jk − ΓM
jk (T)]N

∆
k (iωn)

(2)

where ΓN
jk and ΓM

jk (T) are the scattering rates from nonmagnetic and magnetic impurities that, in this
model, represent the term connected with the spin-glass phase. For spin-glass superconductors, the
magnetic impurities scattering rates are ΓM

jk (T) = cjkπN(0)J2S2[1− ( T
TSG

)β] = k jk[1− ( T
TSG

)β], where

cjk are weight connected with the bands (
cjk
ckj

= Nk(0)
Nj(0)

as the usual impurity scattering rates [41–43])

and, of course, k jk = cjkπN(0)J2S2. I set the nonmagnetic scattering rates ΓN
jk equal to zero because
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I suppose good single crystals (no disorder). In the previous equations, I have ΛZ
jk(iωn, iωm) =

Λph
jk (iωn, iωm) + Λs f

jk (iωn, iωm) and Λ∆
jk(iωn, iωm) = Λph

jk (iωn, iωm)−Λs f
jk (iωn, iωm), where

Λph,s f
jk (iωn, iωm) = 2

∫ +∞

0
dΩΩα2

jkFph,s f
jk (Ω)/[(ωn −ωm)

2 + Ω2],

Θ is the Heaviside function, and ωc is a cutoff energy. The quantities µ∗jk(ωc) are the elements of

the 2× 2 Coulomb pseudopotential matrix, and finally, N∆
k (iωm) = ∆k(iωm)/

√
ω2

m + ∆2
k(iωm) and

NZ
k (iωm) = ωm/

√
ω2

m + ∆2
k(iωm). The electron-boson coupling constants are defined as λ

ph,s f
jk =

2
∫ +∞

0 dΩ
α2

jk Fph,s f
jk (Ω)

Ω .
In order to have the smallest number of free parameters and the simplest model that still grasps

the physics of this system, I make further assumptions that have been shown to be valid for iron
pnictides [41–43]. I assume, following Reference [34], that the total electron-phonon coupling constant
is small (the upper limit of the phonon coupling in the usual iron-arsenide compounds is ≈0.35 [47]),
so I set, in first approximation, the phonon contribution equal to zero (λph

jk = 0) and, following
Mazin [26], the Coulomb pseudopotential matrix: µ∗jj(ωc) = µ∗jk(ωc) = 0 as well [26,41–43]. After all
these approximations, I write the electron-boson coupling constant matrix λjk in this way: [25,41–43]:

λjk =

(
λ

s f
11 λ

s f
12

λ
s f
21 = λ

s f
12ν12 λ

s f
22

)
(3)

where ν12 = N1(0)/N2(0) and Nj(0) is the normal density of states at the Fermi level for the
jth band. Based on experimental data and theoretical calculations [41–43], I choose for the
electron-antiferromagnetic spin fluctuation spectral functions α2

jkFs f
jk (Ω) a Lorentzian shape:

α2
jkFs f

jk (Ω) = Cjk
{ 1
(Ω + Ωjk)2 + Y2

jk
− 1

(Ω−Ωjk)2 + Y2
jk

}
, (4)

where Cjk is a normalization constant, necessary to obtain the proper values of λ
s f
jk , while Ωjk and Yjk

are the peak energies and the half-widths of the Lorentzian functions, respectively [43]. Following the
experimental data [48], I put Ωjk = Ω0, i.e., I assume that the characteristic energy of spin fluctuations
is a single quantity for all the coupling channels, and Yjk = Ω0/2. The spectral function used here,
normalized to one, is shown in inset (a) of Figure 1.

The factors νjk in the definition of λjk (Equation (3)) are unknown so I assume that they are equal,
for example, to the Ba(Fe1−xRhx)2 As2 electron-doped case [49] so ν12 = 0.8333 as well as the coupling
constants [49], and I change slightly just the value of λ22 for obtaining the correct critical temperature
Tc = 22 K. At the end, the values are λ11 = 1.00, λ12 = −0.17 and λ22 = 2.65 for an averaged

coupling constant λt =
Σjk Nj(0)λjk

Σj Nj(0)
= 1.75. For iron pnictides, it was experimentally found [50,51] that

the empirical law Ω0 = 2Tc/5 holds; therefore, the value of the energy peak Ω0 of the Eliashberg
spectral functions α2

jkFs f
jk (Ω) is fixed. To finish, in the numerical calculations, I used a cutoff energy

ωc = 180 meV. These input parameters produce, by numerically solving the Eliashberg equations,
exactly a critical temperature of 22 K.
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Figure 1. (Color online) The gaps ∆i(iωn=0) in function of temperature obtained by solving the
Eliashberg equations on an imaginary axis: solid lines are for ∆1(iωn=0), and dashed lines are for
∆2(iωn=0) in the case k11 = k12 = 0.2k22 and β = 1. Black lines are for k22 = 0 meV, red lines are for
k22 = 1 meV, green lines are for k22 = 2 meV, dark blue lines are for k22 = 3 meV, cyan lines are for
k22 = 3.5 meV, magenta lines are for k22 = 4 meV, violet lines are for k22 = 4.05 meV and orange lines
are for k22 = 5 meV. In inset (a), the antiferromagnetic spin fluctuation function, normalized to one, is
shown, while in inset (b), the temperature dependence of kjk is shown (the black solid line represents
β = 1, and the red solid line represents β = 2) with kjk = 1 .

3. Calculation of Superconducting Gaps

In the iron pnictides, usually, the impurities are almost all concentrated in one band, i.e., in the hole
band for the electron-doped materials as this case and in the electron band [52–54] for the hole-doped
materials [55]. This means that, in the electrons-doped materials, k22 >> k11, k12. It is possible also to
include orbital degrees of freedom that lead, in the BCS formalism, to a fully gapped s±wave state very
fragile [56] against impurities, while the experiments revealed that the suppression of Tc is weaker than
expected [57,58] for this model. The agreement with the experiment is found by considering strong
coupling effects [59] and by going beyond the Born approximation when, in the materials, a large
amount of impurities is present [49,60,61]. Indeed, the pure interband Eliashberg theory, also in the
limit of weak coupling, is different from BCS theory [62]. I choose k11 = k12 = 0.2k22 as happen in the
Ba(Fe1−xCox)2 As2 [52]. By using the typical parameters of iron pnictides and spin-glass systems, I find
that k22 ' 3.1 meV (N(0) = 5.6 states/eV, S = 7/2, J = 0.12 meV and TSG = 15 K) [5,63]. Because the
true values of the parameters in the last bracket are just approximate, I solve the Eliasberg equations
for values close to 3.1 as k22 = 0, 1, 2, 3, 3.5, 4, 4.05, 5 meV in the two cases: β = 1 and β = 2. In the
ideal case, it would be necessary to know the law that links TSG at the value of k22. Here, TSG = 15 K
is an experimental input [5]. In Figures 1 and 2, the temperature dependence of gaps ∆1,2(iωn=0) are
shown. It is possible to see in Figure 1 that the absolute values of the gaps with increasing temperature
at first increases until TSG and then decreases. This behaviour appears when magnetic impurities
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(also without temperature dependence) and disorder are present, both in s ++ and s± superconductor
or if only disorder is present in s± two bands superconductor [64,65].

0 2 4 6 8 10 12 14 16 18 20 22
-3
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-1

0

1

2

3

4

5
D i

(iw
n=

0,T
)  

(m
eV

)

Temperature  (K)
Figure 2. (Color online) The gaps ∆i(iωn=0) in function of temperature obtained by solving the
Eliashberg equations on imaginary axis: solid lines are for ∆1(iωn=0), and dashed lines are for
∆2(iωn=0) in the case k11 = k12 = 0.2k22 and β = 2. Black lines are for k22 = 0 meV, red lines
are for k22 = 1 meV, green lines are for k22 = 2 meV, dark blue lines are for k22 = 3 meV, cyan line are
for k22 = 3.5 meV, magenta lines are for k22 = 4 meV, violet lines are for k22 = 4.05 meV and orange
lines are for k22 = 5 meV.

For k22 = 5 meV and β = 1, reentrant superconductivity is obtained. As it is shown in Figure 2, in
the case of β = 1, the effect is similar but stronger and, besides having reentrant superconductivity
for k22 = 5 meV, it is possible to see an even more complex situation for k22 = 4.05 meV. In the
last case, the system has three different critical temperatures: I think that it would be difficult to
observe this behaviour in a real system because it arises from fine tuning of the input parameter.
In an s-wave superconductor, the magnetic order destroys the superconductivity, but the increasing
temperature weakens both the magnetic order and the coupling between the electrons in the Cooper
pairs so the “reentrant” behaviour can emerge from the balance between the effect of magnetism and
temperature. The reentrant superconductivity appears also in the single band case [17–19], but for a
more realistic and complete model such as the one proposed in this paper, the phase diagram is richer
and more complex. I solved the Eliashberg equations, for completeness, also in the case k12 = 0.2k22

and k11 = k22 always with β = 1 and β = 2. The results are shown in Figure 3 and are similar to
previous ones in the general trend as a function of the value of k22. In all cases, of course, for T > TSG,
the effect of “magnetic impurities” disappeared and the behaviour is the same as a standard two-band
superconductor.
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Figure 3. (Color online) The gaps ∆i(iωn=0) in function of temperature obtained by solving the
Eliashberg equations on imaginary axis: solid lines are for ∆1(iωn=0), and dashed lines are for
∆2(iωn=0) in the case k11 = k22 = 5k12. Black lines are for k22 = 0 meV, red lines are for k22 = 1 meV
and β = 1, orange lines are for k22 = 1 meV and β = 2, green lines are for k22 = 3 meV and β = 1,
olive lines are for k22 = 3 meV and β = 2, dark blue lines are for k22 = 5 meV and β = 1, and magneta
lines are for k22 = 5 meV and β = 2.

4. Calculation of the Penetration Depth

The penetration depth (or the superfluid density as it is shown in Figures 4–6) can be computed
starting from the renormalization functions Zj(iωn) and the gaps ∆j(iωn) by using the following
formula [66]:

λ−2(T) = (
ωp

c
)2

2

∑
j=1

wjπT
+∞

∑
n=−∞

∆2
j (ωn)Z2

j (ωn)

[ω2
nZ2

j (ωn) + ∆2
j (ωn)Z2

j (ωn)]3/2
(5)

where ωp,i is the plasma frequency of the ith band and ωp is the total plasma frequency in order that

wj =
(
ωp,j/ωp

)2 is the weights of the single bands.
The low-temperature value of the penetration depth λL(0) should, in principle, be related to

the plasma frequency by ωp = c/λL(0) [67] and appears as a multiplicative factor of the summation.
Here, w1 = 0.72 and w2 = 0.28 as in the Co-doped iron compounds [52]. In principle, the
calculation of superfluid density (penetration depth) is important in order to compare theoretical
predictions with the experiment because it is easier to find these measurements in the literature [61].
In Figures 4 and 5, the superfluid density in function of temperature is shown when k11 = k12 = 0.2k22,
k22 = 0, 1, 2, 3, 3.5, 4, 4.05, 5 meV with β = 1 and β = 2. In Figure 6, I show the superfluid density when
k12 = 0.2k11 = 0.2k22, k22 = 0, 1, 3, 5 meV with β = 1 and β = 2. These results are a clear prediction
of possible situations that can be easily identified. Unfortunately, there is still no experimental data
to compare with these theoretical predictions. The behavior of the penetration depth as a function
of temperature shows how the presence of a spin-glass state in competition with superconductivity
substantially changes the phase diagram of a superconductor, making it extremely richer. Also, for
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superfluid density, it is clear when reentrant superconductivity appears as well as the case of three
critical temperatures (see Figure 5 violet line). In Figures 1 and 2, in the cases with k22 = 4.00 meV and
k22 = 4.05 meV, the values of ∆1(iωn=0) and ∆2(iωn=0) at very low temperatures are almost zero but
the corresponding superfluid density at the same temperatures is different from zero in an appreciable
way. How is this possible? From the numerical solution of Eliashberg equation in the standard case
(when the k jk are equal to zero), the maximum value of |∆i(iωn)| is for n = 0 and |∆i(iωn)| decreases
when |n| increases while, when k jk is different from zero, the dependence from |n| is different and
not usual. In the inset of Figure 5, the calculated values of ∆1(iωn) and ∆2(iωn) in the k22 = 4.05 meV
and β = 2 cases at T = 0.125 K in function of n is shown. In this case, it is possible to see that
the dependence of ∆j(iωn) from n is not standard. In this case, the maximum value of |∆i(iωn)| is
found for n = 0, so also if ∆i(iωn=0) ' 0 meV, the corresponding superfluid density can be different
from zero.

0 2 4 6 8 10 12 14 16 18 20 22
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

n s
(T
)

Temperature  (K)
Figure 4. (Color online) The superfluid density ns(T) normalized at the value at T = 0 K in the case k22 = 0
in function of temperature obtained by solving the Eliashberg equations on an imaginary axis in the case
k11 = k12 = 0.2k22 and β = 1: black lines are for k22 = 0 meV, red lines are for k22 = 1 meV, green lines are
for k22 = 2 meV, dark blue lines are for k22 = 3 meV, cyan lines are for k22 = 3.5 meV, magenta lines are for
k22 = 4 meV, violet lines are for k22 = 4.05 meV and orange lines are for k22 = 5 meV.
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Figure 5. (Color online) The superfluid density ns(T) normalized at the value at T = 0 K in the case
k22 = 0 in function of temperature obtained by solving the Eliashberg equations on an imaginary axis
in the case k11 = k12 = 0.2k22 and β = 2: black lines are for k22 = 0 meV, red lines are for k22 = 1 meV,
green lines are for k22 = 2 meV, dark blue lines are for k22 = 3 meV, cyan lines are for k22 = 3.5 meV,
magenta lines are for k22 = 4 meV, violet lines are for k22 = 4.05 meV and orange lines are for k22 = 5
meV. In the inset, the dependence, obtained by numerical solution of Eliashberg equations in the
k22 = 4.05 meV case at T = 0.125 K, of the two order parameters ∆j(iωn) from the index n is shown.
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Figure 6. (Color online) The superfluid density ns(T) normalized at the value at T = 0 K in the case
k22 = 0 in function of temperature obtained by solving the Eliashberg equations on imaginary axis in
the case k11 = k22 = 5k12: black lines are for k22 = 0 meV, red lines are for k22 = 1 meV and β = 1,
orange lines are for k22 = 1 meV and β = 2, green lines are for k22 = 3 meV and β = 1, olive lines are
for k22 = 3 meV and β = 2, dark blue lines are for k22 = 5 meV and β = 1, and magenta lines are for
k22 = 5 meV and β = 2.
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5. Conclusions

In conclusion, I have calculated the temperature dependence of gaps and superfluid densities for a
two-band non-phononic s±-wave spin-glass superconductor. In general, the temperature dependence
of superconducting properties shows a lot of different behaviours that should be observable in
experiment. In this system, two competing orders modulated by temperature are present. The
magnetic order breaks down superconductivity, but a complex phase diagram arises from the fact
that both magnetic and superconducting coupling can depend on temperature in different ways.
In addition, reentrant behavior could be a possible signature of a spin-glass state.
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