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Abstract. Dealing with time-varying high dimensional data is a big problem for 

real time pattern recognition. Non-stationary topological representation can be ad-

dressed in two ways, according to the application: life-long modeling or by forget-

ting the past. The G-EXIN neural network addresses this problem by using life-long 

learning. It uses an anisotropic convex polytope, which, models the shape of the 

neuron neighborhood, and employs a novel kind of edge, called bridge, which car-

ries information on the extent of the distribution time change. In order to take into 

account the high dimensionality of data, a novel neural network, named GCCA, 

which embeds G-EXIN as the basic quantization tool, allows a real-time non-linear 

dimensionality reduction based on the Curvilinear Component Analysis. If, instead, 

a hierarchical tree is requested for the interpretation of data clustering, the new net-

work GH-EXIN can be used. It uses G-EXIN for the clustering of each tree node 

dataset.  

This chapter illustrates the basic ideas of this family of neural networks and 

shows their performance by means of synthetic and real experiments.  

Keywords: bridge, convex polytope, curvilinear component analysis, dimensionality reduc-

tion, fault diagnosis, hierarchical clustering, non-stationary data, projection, real-time pattern 

recognition, seed, unsupervised neural network, vector quantization. 

Open problems in cluster analysis and vector quantization 

The topological representation of data is an important challenge for unsupervised 

neural networks. They build a covering of the data manifold in form of a directed 

acyclic graph (DAG), in order to fill the input space. However, above all for high 
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dimensional data, the covering is prone to the problem of the curse of dimensional-

ity, which requires, in general, a large number of neural units. The nodes of the 

graph are given by the weight vectors of the neurons and the edges, if present, by 

their connections. The weight estimation, in several cases, implies the minimization 

of an error function based on some error (e.g. vector quantization, VQ). In other 

cases, only the iterative technique is given. In general, VQ is performed by using 

competitive learning (neural units compete for representing the input data): it can 

be either hard (HCL, e.g. LBG [1] and k-means [2]) or soft (SCL, e.g. neural gas 

[3] and Self Organizing Maps, SOM, [4]). In HCL only the winning neuron (the 

closest to the input in terms of weight distance) changes its weight vector. For this 

reason, it is also known winner-take-all. Instead, in SCL, a.k.a. winner-take-most, 

both the winner and its neighbors adapt their weights. This approach needs a defi-

nition of neighborhood, which requires a network topology, as a graph, whose edges 

are in general found by means of the Competitive Hebbian Rule (CHR [5]), as in 

the Topology Representing Network [6], or by back-projecting a fixed grid as in 

SOM.  

 

Incremental or growing neural networks do not require a prior choice of the ar-

chitecture, which is, instead, determined by the data (data-driven). All these tech-

niques need a novelty test in order to decide when a new neuron has to be created. 

All tests demand, in general, a model representing the portion of input space ex-

plained by each unit. This model is, in general, a hypersphere, because it is as sim-

plest as possible: only a scalar hyperparameter, its radius, is needed. All existing 

algorithms determine, in a way or another, this threshold. It can be set a user-de-

pendent global parameter (IGNG [7]), or it can be automatically and locally esti-

mated. The single-layer Enhanced Self-Organizing Incremental Neural Network 

(ESOINN [8]) uses a threshold for each neuron, which is defined as the largest dis-

tance from its neighbors. Furthermore, in AING [9], it is given by the sum of dis-

tances from the neuron to its data-points, plus the sum of weighted distances from 

its neighboring neurons, averaged on the total number of the considered distances. 

In both cases, the influence region of the neuron depends on the extension of its 

neighborhood, but not on its shape. An exhaustive description can be found in [10]. 

However, this simple model is isotropic, in the sense that it does not take into ac-

count the orientation of the vector connecting the new data to the winner, but only 

its norm. Hence, it does not consider the topology of the manifold of data of the 

winner Voronoi set. The use of an anisotropic criterion should be justified by the 

need of representing in more detail the data manifold. 

 

Data manifolds can be stationary or time-changing (i.e., non-stationary). It 

should be important to have a neural network able to automatically detect the data 

evolution. Tracking non-stationary data distributions is an important goal. This is 

requested by applications like real time pattern recognition: fault diagnosis, novelty 

detection, intrusion detection alarm systems, speech, face and text recognition, com-

puter vision and scene analysis and so on. The existing neural solutions tackle this 
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problem by means of different approaches, depending both on their architecture and 

on the application at hand. These techniques can be mainly classified into two cat-

egories: forgetting and life-long learning networks. The first class comprises the 

networks with a fixed number of neurons (not incremental). Indeed, they cannot 

track a varying input distribution without losing the past representation (given by 

the old weight vectors). Furthermore, if the distribution changes abruptly (jump), 

they cannot track it anymore. They are used if only the most recent representation 

is of interest. The fastest techniques of this class are linear, like the principal com-

ponent analysis (PCA) networks. However, they are not suited for non-linear prob-

lems. In this case, the best non-linear network is a variant of SOM, called DSOM 

[11], which is based on some changes of the SOM learning law in order to avoid a 

quantization proportional to the data distribution density. However, what is more 

interesting is the use of constant parameters (learning rate, elasticity) instead of 

time-decreasing ones. As a consequence, DSOM is able to promptly react to chang-

ing inputs, at the expense of forgetting the past information. Indeed, it only tracks 

the last changes. Forgetting networks are not suited in case the past inputs carry 

useful information.  

 

Life-long learning addresses the fundamental issue of how a learning system can 

adapt to new information without corrupting or forgetting previously learned infor-

mation, the so-called Stability-Plasticity Dilemma [12]. It should have the ability of 

repeatedly training a network using new data without destroying the old nodes. For 

this reason, they must have the capability to increase the number of neurons in order 

to track the distribution (the previous neurons become dead units but represent past 

knowledge). This kind of networks, like SOINN and its variants [8], record the 

whole life of the process to be modelled. The precursor is the Growing Neural Gas 

(GNG [13]), but it is not well suited for these problems because the instant of new 

node insertion is predefined by a user-dependent parameter. However, its variant 

GNG-U [14] is a forgetting network, which uses local utility variables to estimate 

the probability density of data in order to delete nodes in regions of low density. 

 

The same observation can be repeated for the data stream clustering methods 

[15]. There exist techniques which can be categorized according to the nature of 

their underlying clustering approach, as: GNG based methods, which are incremen-

tal versions (e.g., G-Stream [16]) of the Growing Neural Gas neural network, hier-

archical stream methods, like BIRCH [17] and ClusTree [18], partitioning stream 

methods, like CluStream [19], and density-based stream methods, like DenStream 

[20] and SOStream [21], which is inspired by SOM.  

The first neuron layers of online Curvilinear Component Analysis (onCCA) [22] 

and Growing Curvilinear Component Analysis (GCCA) [23, 24, 25, 26], use the 

same threshold as ESOINN, but introduce the new idea of bridge, i.e. a directed 

interneuron connection, which signals the presence of a possible change in the data 

distribution. Bridges carry information about the extent of the time change by means 

of its length and density and allow the outlier detection.  
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G-EXIN 
G-EXIN [27] is an online, self-organizing, incremental neural network whose 

number of neurons is determined by the quantization of the input space. It uses seeds 

to colonize a new region of the input space, and two distinct types of links (edges 

and bridges), to track data non-stationarity. Each neuron is equipped with a weight 

vector to quantize the input space and with a threshold to represent the average 

shape of its region of influence. In addition, it employs a new anisotropic threshold 

idea, based on the shape (convex hull) of neuron neighborhood to better match data 

topology. G-EXIN is incremental, i.e. it can increase or decrease (pruning by age) 

the number of neurons. It is also online: data taken directly from the input stream 

are fed only once to the network. The training is never stopped, and the networks 

keeps adapting itself to each new datum, that is, it is stochastic in nature. 

 

 
Fig. 1 G-EXIN flowchart 

The G-EXIN Algorithm 
The starting structure of G-EXIN is a seed (couple of neurons connected through 

a link) based on the first two data. 
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Then, each time a new datum, say xi 𝜖 𝑋, is extracted from the input stream, it is 

fed to the network and the training algorithm, described in Fig. 1, is performed. All 

neurons are sorted according to the Euclidean distances 𝑑i between xi and their 

weights. The neuron with the shortest distance (𝑑1) is the first winner, say w1; the 

one with the second shortest distance (𝑑2) is the second winner, say w2, the third one 

w3, and so on. Then, the novelty test between the new data xi and w1 is performed. 

If xi passes it, a new neuron is created; otherwise, it follows the weight adaptation, 

linking and doubling phase. 

 

Novelty test. An input data xi is considered novel w.r.t. the neuron γ if it satisfies 

two conditions: their distance d is greater than the neuron local threshold Tγ and xi 

is outside the neighborhood of γ, say NGγ.  

Tγ provides the minimal resolution of the test. Indeed, if a lower threshold is not 

given, there is the potential risk of a too large amount of neurons. The choice of this 

minimum implies neighbor neurons are not too close, which results in a apriori 

granularity (resolution). Tγ represents the radius of a hypersphere centered on the 

neuron. It is given by the average of the distances between γ and its topological 

neighbors according to: 

 
𝑇𝛾 =  

1

|𝑁𝐺𝛾|
  ∑ ‖𝛾 − 𝑤𝑖‖

𝑤𝑖 ∈ 𝑁𝐺𝛾

 
(1) 

The neighborhood NGγ can be represented in different ways. However, if we want 

to respect its geometry and, in the same time, to avoid complicating too much the 

model, a good compromise is the convex hull (bounded convex polytope) of the 

weight vector of neuron γ and the weights of its topological neighbors. Indeed, it is 

simple linear approach that considers not only the neighbors, but also the direction-

ality of the corresponding edges, which implies to take into account the anisotropy 

of the region of influence. In this context, neurons connected through bridges are 

excluded, only those connected through edges are taken into account.  

Depending on the network configuration, two scenarios can occur: 

1) γ has less than two topological neighbors, then, it is impossible to 

build the convex hull. In this case, for the novelty detection, only the iso-

tropic hypersphere centered on γ and with radius Tγ is used. If the input 

data xi is outside the sphere, then the novelty test is passed, otherwise, it is 

failed. 

2) γ has at least two topological neighbors then, for the novelty de-

tection, a more sophisticated strategy is adopted. First, the convex hull of 

γ and its topological neurons is built. Then, if d is sufficiently big (i.e. 

greater than Tγ) the isotropic hypersphere with radius Tγ is replaced by the 

following simple and time-efficient anisotropic test to determine if xi be-

longs or not to the NGγ region. The difference vectors δi between xi and 

NGγ weight vectors and their sum vector ψ = Σ δi are computed. If all the 
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scalar products between δi and ψ have the same sign (null products are 

ignored), then xi is outside the polytope. Otherwise, xi is inside the poly-

tope. 

 

Neuron creation. If xi passes the novelty test, a new neuron, whose weight vec-

tor is given by xi, is created. w1 is linked to xi by a bridge and their activation flags 

are set to false. Finally, Txi
 is set equal to d1. 

 

Adaptation, linking and doubling. If xi fails the novelty test, it is checked if the 

first winner, whose weight is w1, and the second winner, whose weight is w2, are 

connected by a bridge: 

 

1. If there is no bridge, these two neurons are linked by an edge (whose age 

is set to zero) and the same age procedure as onCCA is used as follows. 

The age of all other links of NGw1
 is incremented by one; if a link age is 

greater than the agemax scalar parameter, it is eliminated. If a neuron re-

mains without links, it is removed (pruning). Then: 

a) if xi is inside NGw1
 (i.e. inside the convex hull), xi neighbor neuron 

weights are adapted according to the Soft Competitive Learning 

(SCL): 

 

 ∆𝑤𝑖 =  𝛼1(𝑤𝑖 −  𝑥i)             i = 1  

∆𝑤𝑖 =  𝛼𝑛(𝑤𝑖 −  𝑥i)    otherwise
 

(2a) 

(2b) 

where 𝛼1 =
𝛼

𝑁𝑖
  as in k-means [18] and 𝛼𝑛 = 𝛼 ∗  exp ( −

(𝑤𝑖− 𝑥i)2

2𝜎2 ). Here, 

Ni is the total number of times wi has been the first winner and, α and σ are 

two user-dependent parameters.  

b) if xi is outside NGw1
, only (2a) is used (Hard Competitive Learn-

ing, HCL).  

Next, for all the neurons that have been moved, i.e. whose weight vector 

has changed, say φ-neurons, their thresholds are recomputed, and their ac-

tivation flags are set to true.  

Finally, all the φ-neurons bridges, both ingoing and outgoing, are checked 

and all those which have both neurons at their ends with activation flags 

equal to true become edges. 

 

2. If there is a bridge, it is checked if w1 is the bridge tail; in this case, step 1 

is performed and the bridge becomes an edge. Otherwise, a seed is created 

by means of the neuron doubling:  

a) a virtual adaptation of the w1 weight is estimated by HCL (only 

(2a) is used) and considered as the weight of a new neuron (dou-

bling).  
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b) w1 and the new neuron are linked with an edge (age set to zero) 

and their thresholds are computed (they correspond to their Eu-

clidean distance). 

 

Growing Curvilinear Component Analysis (GCCA) 
Dealing with time-varying high dimensional data is a big problem for real time 

pattern recognition. Only linear projections, like principal component analysis, are 

used in real time while nonlinear techniques need the whole database (offline). On 

the contrary, when working in real time requires a data stream, that is, a continuous 

input, the algorithm needs to be defined as online. This is the case, for example, of 

fault and pre-fault diagnosis and system modeling.  

The techniques and the concepts presented above can be applied to different sce-

narios and applications. For instance, they can be used to perform an online quanti-

zation and dimensionality reduction (DR) of the input data, such as in the Growing 

Curvilinear Component Analysis (GCCA) neural network.  

GCCA, whose flowchart is shown in Fig. 2, has a self-organized incremental 

(pruning by age) architecture, which adapts to the nonstationary data distribution. It 

performs simultaneously the data quantization and projection. The former is based 

on G-EXIN in the sense that it exploits the same techniques, such as seeds and 

bridges, to perform an online clustering of the input space. Seeds are pairs of neu-

rons which colonize the input domain, bridges are a different kind of edge in the 

manifold graph, signaling the data non-stationarity. The input projection is done 

using the Curvilinear Component Analysis (CCA), a distance-preserving reduction 

technique, here called offline CCA. 

Data projection is a tool used frequently as a preprocessing stage; therefore, in 

a scenario such as that one characterized by an input fast-changing data stream (e.g. 

fault and pre-fault diagnosis), it needs to be as fast as possible. For this reason, the 

use of convex polytopes has been avoided and the novelty test is based only on the 

isotropic hypersphere whose radius is locally computed as the average of the dis-

tances from a neuron and its neighbors. The remaining has been designed as in G-

EXIN with the difference that each neuron is equipped with two weight-vector, one 

in the input space X and one in the projected space Y. Moreover, an additional hy-

perparameter, λ, is needed, as in CCA, to tune the projection mechanism.  

The projection works as follows. For each pair of different weight vectors in the 

X space (input space), a between-point distance 𝐷𝑖𝑗 is calculated as 𝐷𝑖𝑗 =

‖𝑥𝑖 − 𝑥𝑗‖. At the same time, the distance 𝐿𝑖𝑗  of the associated Y-weights in the 

latent space, is computed as 𝐿𝑖𝑗 = ‖𝑦𝑖 − 𝑦𝑗‖. CCA aims to project data such that   

𝐿𝑖𝑗  = 𝐷𝑖𝑗 . Obviously, this is possible only if all input data lay on a linear manifold. 

In order to face this problem, CCA defines a distance function, which, in its simplest 

form, is the following: 
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   (3) 

 

That is a step function for constraining only the under threshold between-point 

distances 𝐿𝑖𝑗 . In this way, the CCA favors short distances, which implies local dis-

tance preservation. 

Defining as 𝒚(𝑗) the weight of the j-th projecting neuron in the Y space, the 

stochastic gradient algorithm for minimizing the error function follows: 
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                          (4) 

 

where 𝛼 is the learning rate. 

Each time a datum fails the novelty test a new neuron is created. As in G-EXIN, 
its weight vector in the input space X is the datum itself. To determine the weight 
in the latent space, i.e. the Y-weight, a two-step procedure is applied. First, the start-
ing projection (y0) is estimated using the triangulation technique defined in [23]. To 
compute y0 the winner and second winner projections are used as the centers of the 
two circles, whose radii are the distances in data space from the input data, respec-
tively. The circles intersect in two points, the farthest from the third winner projec-
tion is chosen as the initial y0. Then, y0 is refined with one or several CCA iterations 
(4), in which the first and second winner projections are considered as fixed  (ex-
trapolation). 

The same projecting algorithm is applied in case of neuron doubling. In this case, 
the new neuron to be considered as input is w1new , that is the unit just born from the 
first winner w1 doubling. 

On the other side, if the datum fails the novelty test, the CHL and the SCL tech-
niques are applied. Due to the weight updates of SCL, the first winner and its neigh-
bors’ distances Dij change. Hence, the projections of the neuron whose distances 
from w1 have to be updated. The CCA rule (4) is used but in an opposite way (in-
terpolation). The first winner projection is fixed and the other neuron projection are 
moved accordingly to (4). 

  

 
 
 

 

 
 

ij 

ij 
ij L 

L 
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    if 1 

   if 0 
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Fig. 2 GCCA flowchart: black blocks deal with G-EXIN quantization while red ones, spe-

cifically, with GCCA projection 

GH-EXIN 
Hierarchical clustering is an important technique to retrieve multi-resolution in-

formation from data. It creates a tree of clusters, which corresponds to different 

resolution of data analysis. Generally, e.g. in data mining, the outcome is a richer 

information if compared with plain clustering. 

The growing hierarchical GH-EXIN [28], [29] neural network builds a hierar-

chical tree based on a stationary variant (i.e. without bridges) of G-EXIN, called 

sG-EXIN. As before, the network is both incremental (data-driven) and self-orga-

nized. It is a top-down, divisive technique, in which all data start in a single cluster 

and, then, splits are done recursively until all clusters satisfy certain conditions. 

The algorithm starts from a single root node, which has associated fictitiously 

the whole dataset; then, using vertical and horizontal growths, it builds a hierar-

chical tree. Vertical growth refers to the addition of further layers to leaf nodes until 

a higher resolution is needed; it always implies the creation of a seed, i.e. a pair of 

neurons, which represents the starting structure of a new sG-EXIN neural network. 

On the other side, horizontal growth is the process of adding further neurons to the 

seed. This characteristic is important in order to be able to create complex hierar-

chical structures; indeed, without it, it would be possible to build only binary trees. 

This process is performed by the neuron creation mechanism during the sG-EXIN 
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training. As G-EXIN, GH-EXIN uses convex hull to define neuron neighborhood, 

which implies the anisotropic region of influence for the horizontal growth. In ad-

dition, upon time, it performs outlier detection and, when needed, it reallocates their 

data by using a novel simultaneous approach on all the leaves. 

The GH-EXIN training algorithm starts, as already mentioned, from a single root 

node whose Voronoi set is the whole input dataset. It is considered as the initial 

father node. A father neuron Ψ is the basis for a further growth of the tree; indeed, 

new leaves are created (vertical growth), whose father is Ψ and whose Voronoi sets 

are a partition (i.e. a grouping of a set's elements into non-empty subsets, whose 

intersection is the empty set) of the Ψ one. More specifically, for each father neuron 

Ψ, which does not satisfy the vertical growth stop criterion, a new seed is created as 

in G-EXIN and, then, an sG-EXIN neural network is trained using the father Voro-

noi set as training set. The neurons yielded by the training, which defines a so-called 

neural unit, became the sons of Ψ in the tree determining a partition of its Voronoi 

set. If the resulting network does not satisfy the horizontal growth stop criterion, the 

training is repeated for further epochs (i.e. presentation of the whole Ψ dataset) until 

the criterion is fulfilled.  

At the end of each training epoch, if a neuron remains unconnected (no neigh-

bors) or is still lonely, it is pruned, but the associated data are analyzed and possibly 

reassigned as explained later in this section.  

At the end of each horizontal growth, the topology abstraction check is per-

formed to search for connected components within the graph of the resulting neural 

unit. If more than one connected component is detected, the algorithm tries to ex-

tract an abstract representation of data; at this purpose, each connected component, 

representing a cluster of data, is associated with a novel abstract neuron, which be-

comes the father node of the connected component neurons, determining a double 

simultaneous vertical growth. As weight vectors of the abstract neurons are used the 

centroids of the clusters they represent. 

Then, each leaf, in the same level of the hierarchy of Ψ, that does not satisfy the 

vertical growth stop criterion, is considered as a father node and the growth algo-

rithm is repeated, until no more leaves are available in that specific level.  

Finally, the overall above procedure is repeated on all the leaves of the novel, 

deeper level yielded from the previous vertical growth; therefore, the tree can keep 

growing until the needed resolution is reached, that is, until the vertical growth stop 

criterion is satisfied for all the leaves of the tree. 

It is worth to be noticed that such mechanism allows a simultaneous vertical and 

horizontal growth; indeed, due to node creation (seed) below a father an additional 

level is added to the tree (i.e. vertical growth) and, at the same time, thanks to sG-

EXIN training, several nodes are added to the same level (i.e. horizontal growth).  

The novelty test (Semi-Isotropic Region of Influence), the weights update (SCL) 

and the pruning mechanism (pruning by age) are the same as in G-EXIN. The dif-

ference is that GH-EXIN is based on sG-EXIN which, as stated above, does not 

have bridges; as a consequence, each time a new neuron is created along the GH-

EXIN training process, it is created as a lonely neuron, that is a neuron with no 



11 

edges. Then, in the next iterations connections may be created according to the 

Competitive Hebbian Rule; if, at the end of the epoch, the neuron is still lonely, it 

will be removed according to the pruning rule.  

When a neuron is removed, its Voronoi set data remain orphans and are labelled 

as potential outliers to be checked at the end of each epoch; for each potential outlier 

x, i.e. each datum, GH-EXIN seeks a possible new candidate among all leaf nodes. 

If the closest neuron w among the remaining, i.e. the new winner, belongs to the 

same neural unit of x but the datum is outside its region of influence (the hy-

persphere and the convex-hull), x is not reassigned; otherwise, if x is within a winner 

region of influence within the same neural unit or in case the winner belongs to 

another neural unit, it is reassigned to the winner Voronoi. 

The growth stop criteria are used to drive, in an adaptive way, the quantization 

process; for this reason, they are both based on the H index, which, depends on the 

application at hand, and it is used to measure clusters heterogeneity and purity, i.e. 

their quality. For the horizontal growth, the idea is to check if the H average esti-

mated value of the neurons of the neural unit being built falls below a percentage of 

the value of the father node. On the other side, in the vertical growth stop criterion, 

a global user-dependent threshold is used for H; at the same time, to avoid too small, 

meaningless clusters, a mincard parameter is used to establish the minimum cardinal-

ity of Voronoi sets, i.e. the maximum meaningful resolution. 

 

 
Fig. 3 GH-EXIN flowchart 

 

Experiments 
The performance of the above-mentioned neural networks has been tested on 

both synthetic and real experiments. The aim has been to check their clustering ca-

pabilities and to assess their specific abilities (e.g. projection). 
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G-EXIN 
The first experiment deals with data drawn uniformly from a 5000-points square 

distribution, which, after an initial steady state (stationary phase), starts to move 

vertically (non-stationary phase). Indeed, in the beginning, the network is trained 

with data randomly extracted (without repetition) from the 5000-points square. 

Then, after the presentation of the whole training set, the (support of the) distribu-

tion starts to move monotonically, with constant velocity, along the y-axis in the 

positive direction. The results of G-EXIN (agemax = 2, α = 1, σ = 0.03) are presented 

in Fig. 4 and Fig. 5 both for the stationary and non-stationary phases, respectively. 

Firstly, the network is able to properly quantize the input distribution even along its 

borders; then, it is able to fully understand the data evolution over time and to track 

it after the end of the steady state. The importance of the density of bridges as a 

signal of non-stationarity is also revealed in Fig. 6, which shows how the number 

of bridges changes in time. In particular, the growth is linear, which is a conse-

quence of the constant velocity of the distribution. G-EXIN correctly judges the 

data stream as drawn by a single distribution with fully connected support, thanks 

to its links (i.e., edges and bridges). Fig. 5 also shows G-EXIN performs life-long 

learning, in the sense that previous quantization is not forgotten. 

Resuming, the use of different, specific, anisotropic, links has been proved to be 

an appropriate solution to track non-stationary input changes into the input distri-

bution. 

 

 
Fig. 4 G-EXIN: vertical moving square, stationary phase. Neurons (circles) and their 

links: edges (green), bridges (red). 
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Fig. 5 G-EXIN: vertical moving square, non-stationary phase. Neurons (circles) and their 

links: edges (green), bridges (red). 

 
Fig. 6 G-EXIN: vertical moving square, number of bridges (Y-axis) over time (X-axis) 

The second experiment deals with data drawn uniformly from a 5000-points 
square distribution whose support changes abruptly (jump) three times (from NW 
to NE, then from NE to SW and, finally, from SW to SE), in order to test on abrupt 
changes. Fig. 7 shows the results of G-EXIN (agemax = 9, α = 1, σ = 0.06) on such 
dataset, where neuron weights are represented as small dots and links as green 
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(edges) and red segments (bridges); the same color is used for all neurons because 
the network does not perform any classification task. 

Not only G-EXIN learns the data topology and preserves all the information 

without forgetting the previous history, as in the previous experiment, but it is able 

to track an abrupt change in the distribution by means of a single, long, bridge. The 

length of the bridges is proportional to the extent of the distribution change. 

Fig. 7 also shows the G-EXIN graph is able to represent well the borders of the 

squares because of its anisotropic threshold. On the contrary, this is not possible 

with a simpler isotropic technique. 

 

 
Fig. 7 G-EXIN: three jumps moving square. Neurons (circles) and their links: edges 

(green), bridges (red). 

The third experiment deals with a more challenging problem: data drawn from 
a dataset coming from the bearing failure diagnostic and prognostic platform [30], 
which provides access to accelerated bearing degradation test. In particular, the test 
is based on a non-stationary framework that evolves from an initial transient to its 
healthy state to a double fault. Fig. 8 shows G-EXIN (agemax = 3, α = 0.2, σ = 0.01) 
on the experiment dataset during the complete life of the bearing: the initial transi-
ent, the healthy state and the following deterioration (the structure and color legenda 
are the same as in the previous figures). The transient phase is visible as the small 
cluster in the bottom left part of the figure. Then, the long vertical bridge signals 
the onset of the healthy state, which is represented as the central region made neu-
rons connected by green and red edges. Finally, on the right and upper of this region 
there is the formation of longer and longer bridges which detect the deterioration of 
the bearing.  

Resuming, all these experiments have shown that G-EXIN is able to fully track 
the non-stationarity by means of bridges, whose length and density carry infor-
mation on the extent of the non-stationarity of the data distribution. 
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Fig. 8 G-EXIN: bearing fault experiment. Neurons (circles) and their links: edges (green), 

bridges (red). 

GCCA 
The simulation for GCCA deals with a more challenging synthetic problem: data 

drawn from a uniform distribution whose domain is given by two interlocked rings 

(see Fig. 9 upper left). Using a batch of 1400 data the projection of the offline CCA 

has been computed, by using a number of epochs equal to 10 and λ equal to 1. Fig. 

9 lower left shows that the offline CCA correctly unfolds data (the rings are sepa-

rated). GCCA has then been applied to the same problem. The following parameters 

have been chosen: agemax = 2, α = 1, σ = 0.03, λ = 0.05. Fig. 9 upper right shows the 

result of the input space quantization together with the initial dataset. Fig. 9 lower 

right yields the GCCA projection. There is a good unfolding (separation) in both 

the projections; however, it is evident from Fig. 9 that GCCA online projection, 

based on a single epoch, performs as good as the offline CCA, which, on the con-

trary, needs 10 presentations, i.e. epochs, of the training set.   
In order to check the robustness of GCCA to white noise, an additional experi-

ment has been made, starting from the same training set, but adding a Gaussian 
noise of zero mean and standard deviation set to 0.1. Fig. 10 top left shows the 
resulting noisy distribution. The parameters are the same as in the previous experi-
ment. Fig. 10 top right yields the X-weight quantization of GCCA. Fig. 10 bottom 
left and bottom right show the results of offline CCA and GCCA, respectively. It 
can be observed not only the robustness of GCCA, but also the better accuracy of 
its projection w.r.t. the offline CCA, trained on a batch composed of the same data 
presented to GCCA.  

From the previous simulations and logical considerations, some conclusions 
about the features of GCCA can be drawn. It retains the same properties of the of-
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fline CCA, that is the topological preservation of smallest distances and the unfold-
ing of data. The adaptive features allow non-stationary data to be tracked by means 
of the quantization and the corresponding projection. Finally, GCCA is inherently 
robust to noise.  

 
Fig. 9 GCCA: interlocked rings - no noise 

 

Fig. 10 GCCA: interlocked rings - Gaussian noise 
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GH-EXIN 
Considering that GH-EXIN has been conceived for hierarchical clustering, a da-

taset composed of two Gaussian mixture models has been devised: the first model 

is made of three Gaussians, the second one of four Gaussians, as shown in Fig. 11. 

The results, visualized in Fig. 12 and Fig. 13, clearly show that GH-EXIN (Hmax 

= 0.001, Hperc = 0.9, αγ0 = 0.5, αi0 = 0.05, agemax = 5, mincard =  300) builds the correct 

hierarchy (the tree is visualized in Fig. 14): two nodes in the first layer (level), which 

represent the two clusters, and as many leaves as Gaussians in the second layer, 

which represent the mixtures. Neurons are also positioned correctly w.r.t. the cen-

ters of the Gaussians.  

 

 
Fig. 11 GH-EXIN: Gaussian dataset. Data (blue points) and contours 

 
Fig. 12 GH-EXIN: Gaussian dataset, first level of the hierarchy. Data (yellow points) and 

neurons (blue points). 
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Fig. 13 GH-EXIN: Gaussian dataset, second level of the hierarchy. Data (yellow points) 

and neurons (blue points). 

 
Fig. 14 GH-EXIN: Gaussian dataset, final tree and cardinality of nodes and leaves 

Conclusions 
This chapter addresses the problem of inferring information from unlabeled data 

drawn from stationary or non-stationary distributions. At this aim, a family of novel 

unsupervised neural networks has been introduced. The basic ideas are imple-

mented in the G-EXIN neural network, which is the basic tool of the family. The 
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other neural networks, GCCA and GH-EXIN, are extensions of G-EXIN, for di-

mensionality reduction and hierarchical clustering, respectively. All these networks 

exploit new peculiar tools: bridges, which are links for detecting changes in the data 

distribution; anisotropic threshold for taking into account the shape of the distribu-

tion; seed and associated neuron doubling for the colonization of new distributions; 

soft-competitive learning with the use of a Gaussian to represent the winner neigh-

borhood.  

The experiments show these neural networks work well both for synthetic and 

real experiments. In particular, they perform long-life learning, build a quantization 

of the input space, represent the data topology with edges and the non-stationarity 

with bridges, perform the CCA non-linear dimensionality reduction with an accu-

racy comparable to the offline CCA, yield the correct tree in case of hierarchical 

clustering. These are fast algorithms that require only a few user-dependent param-

eters.  

Future work will deal with the search of new automatic variants, which self-

calibrate their parameters, and more challenging applications.  
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