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Abstract 

Diesel engines with their embedded control systems are becoming 

increasingly complex as the emission regulations tighten, especially 

concerning NOx pollutants. The combustion and emission formation 

processes are closely correlated to the intake manifold O2 

concentration. Consequently, the performance of the engine 

controllers can be improved if a model-based or sensor-based 

estimation of the O2 concentration is available. The paper addresses 

the modeling of the O2 concentration in a turbocharged diesel engine. 

Dynamic models, compared to generally employed steady state maps, 

capture the dynamic effects occurring over transients, when the major 

deviations from the stationary maps are found. Dynamic models 

positively affect the control system making it more effective and, 

exploiting information coming from sensors, they provide a more 

robust prediction performance. Firstly, a Nonlinear Output Error 

model (NOE), with simulation focus, fed with four inputs is presented. 

The considered nonlinear function set is the one of neural networks. 

The inputs are engine BMEP, engine RPM and EGR and VGT valves 

position. Two distinct datasets are used for training and validation of 

the NOE model. These sets are generated using GT-Power simulation 

software implementing a fine model of the engine, previously 

validated on experimental measurements taken on the real engine. 

Besides the transient validation, the NOE model was tested against 

GT-Power outputs on step tests involving the EGR and VGT actuators. 

At last the network output is compared with an O2 steady state map 

over a transient in normal and faulty conditions. The performance of 

the model is satisfactory in both conditions. Secondly, the potential 

benefits of installing an O2 sensor in the intake manifold is presented: 

a Nonlinear Auto-Regressive with eXogenous input (NARX) model is 

considered and compared to the previously investigated NOE. The 

results prove that, exploiting the output coming from the O2 sensor, the 

model prediction capability significantly improves. 

Introduction 

As environmental awareness grows, emissions limit legislation 

becomes increasingly more severe. To comply with these regulations 

in the automotive field a wide range of technological solutions have 

been developed. Exhaust Gas Recirculation (EGR) and Variable 

Geometry Turbochargers (VGTs) [1], high-pressure common rail 

injection systems [2-6], advanced combustion control and innovative 

combustion concepts [7-8] represent some of these technologies. 

Among these solutions, the development of model-based advanced 

controllers is becoming more and more important.  

It is generally agreed that diesel engines will remain the main 

propulsion system for heavy-duty vehicles at least for the following 

20-30 years. Consequently, the research effort in this field is moving 

toward the development of control strategies that take directly into 

account the pollutants. 

The air-path control system has to ensure that a fresh air-exhaust gases 

mixture of the desired composition and with sufficient oxygen content 

enters into the cylinders. At the same time the combustion control 

system has to determine the appropriate fuel quantity and injection 

timing for the given load request and cylinder content. The correct 

functioning of these two control systems allows the after-treatment 

controller to work properly reducing the pollutants to the regulated 

standards. In all these control systems the oxygen concentration in the 

intake manifold plays a key role in their operation. 

In this work the modeling of the intake O2 concentration is addressed. 

The choice of this variable is motivated by its strict linear correlation 

with NOx pollutant emissions. For a complete treatise refer to [9]. 

Therefore, the knowledge of the intake O2 concentration is 

fundamental to ensure the correct engine functioning and low engine-

out NOx emissions. Consequently, the performance of the main engine 

controllers can be improved significantly if a model-based or sensor-

based estimation of the intake O2 concentration is available in the 

ECU. The objective of this paper is the modeling of the intake O2 

concentration through neural networks. 

In the literature the intake O2 concentration is generally modeled 

through Mean Value Engine Models (MVEM) of the filling and 

emptying type based on energy and mass equations. An example of 

this kind of models can be found in [10]. In [11] the stability and 

observability properties of a MVEM model for the estimation of the 

intake oxygen concentration are discussed. Paper [12] proposes a 

linear parameter varying model while in [13] extended Kalman filter 

for the estimation of the intake O2 concentration is adopted. In [14] the 

existing transport delay between exhaust and intake manifold has been 

considered. Another approach is the use of multiple linear black-box 

models. This method is applied in [9] exploiting the systematic 

procedure described in [15]. 

In the following of the paper, Section Problem Definition presents the 

characteristics of the engine considered in this work and the training 

and validation datasets. Training and validation results are presented 

in Section RNN Performances Results together with actuators step 

tests, comparison with steady state map and sensor-based prediction. 

Conclusions are given in the last Section. 
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Problem Definition 

The intake manifold O2 concentration can be retrieved by means of 

different approaches.  

One of the most generally used approach is through steady state maps, 

that are function of engine RPM and BMEP as in engine practice is 

convenient to refer quantities to the engine working point. Starting 

from the engine calibration process, set points are defined from steady 

state measurements and stored as a function of RPM and BMEP.  

Another possibility to accomplish the intake O2 computation is 

exploiting EGR rate Xr and relative air-to-fuel ratio λ: 

 𝑂2 = 𝑎1
𝑋𝑟

𝜆
+ 𝑎2 (1) 

Using the linear relation described in Equation (1), where a1 and a2 are 

two scalar coefficients, it is possible to estimate in real time the O2 

value. A complete description of this last method and the use of steady 

state maps is given in [16]. It must be pointed out that both these 

approaches are stationary methods that cannot precisely describe the 

transient behavior of the intake O2 concentration. 

One more possibility is the direct measurement installing an O2 sensor 

in the intake manifold. The drawback of this solution is the increased 

engine setup complexity and the necessity to suitably process and filter 

the acquired signal. 

Here it has been chosen to identify a dynamic nonlinear model to 

simulate and predict the intake O2 concentration. This model is suitable 

for implementation within an air-path or combustion control system or 

for fault and diagnostic purposes. The O2 model overcomes the 

limitation of steady state maps or linear stationary models, as the one 

in Equation (1), being dynamic and able to account for multiple inputs, 

thus increasing the robustness of the system. The model has been 

developed for simulation purposes, which is for use without an O2 

sensor. Simulation means to use the model for an infinite step ahead 

output prediction without exploiting any information from the actual 

output. This has been chosen in order not to increase the complexity of 

the engine setup. Nonetheless, a model, with a different suitable 

structure, can also exploit the information coming from a sensor for 

one step ahead predictions. In this situation the predicted output is 

computed using the information from the actual output at the previous 

time steps. 

Table 1. FPT F1C Engine Main Specifications. 

Engine type FPT F1C EURO VI diesel engine 

Number of cylinders 4 

Displacement 2998 cc 

Bore x stroke 95.8 x 104 mm  

Rod length 160 mm  

Compression ratio 17.5 : 1 

Valves per cylinder 4 

Turbocharger VGT type 

Fuel injection system High pressure common rail 

 

Engine 

The engine considered in this work is an FPT F1C 3-litre EURO VI 

diesel modeled in GT-Power environment. It is endowed with short 

route EGR, VGT, Exhaust flap, Intercooler and EGR cooler. The main 

specifications of the engine are reported in Table 1 while the engine 

layout is shown in Fig.1. 

 

Figure 1. FPT F1C Engine layout. 

Recurrent Neural Network 

The nonlinear dynamic model considered in this work to compute the 

intake O2 concentration is obtained from the neural networks nonlinear 

function set [17].  

Four inputs are provided to the network to estimate the intake manifold 

O2 concentration. They are the opening positions 𝑢𝐸𝐺𝑅  𝑎𝑛𝑑 𝑢𝑉𝐺𝑇 of 

EGR and VGT valves, engine Brake Mean Effective Pressure 

(BMEP), 𝑢𝐵𝑀𝐸𝑃, and speed (RPM), 𝑢𝑅𝑃𝑀. The chosen regressor 

𝜑(𝑡) is shown in Equation (2) 

                     𝜑(𝑡) = [�̂�(𝑡 − 1) ⋯ �̂�(𝑡 − 𝑛𝑓),

𝑢𝐸𝐺𝑅(𝑡 − 𝑛𝑘) ⋯ 𝑢𝐸𝐺𝑅(𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1),
𝑢𝑉𝐺𝑇(𝑡 − 𝑛𝑘) ⋯ 𝑢𝑉𝐺𝑇(𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1),
𝑢𝐵𝑀𝐸𝑃(𝑡 − 𝑛𝑘) ⋯ 𝑢𝐵𝑀𝐸𝑃(𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1),

𝑢𝑅𝑃𝑀(𝑡 − 𝑛𝑘) ⋯ 𝑢𝑅𝑃𝑀(𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1)] 

 (2) 

where 𝑦 is the predicted output, that is to say the predicted O2 

concentration, nf and nb represent the numbers of signal past samples 

used as input to the network and nk the input delay. The output is 

expressed by the predictor (3) 

 𝑦(𝑡|𝜃) = 𝑔(𝜑(𝑡), 𝜃) (3) 

where θ is a vector containing the weights and biases and g is the non-

linear function realized by the neural network. The neural network uses 

hyperbolic tangent neurons in the hidden layer and linear functions in 

the output layer. 

The regressor in Equation 2 corresponds to a Nonlinear Output Error 

(NOE) model [18]. As the input layer consist of past predictions by 

including a feedback path from the output layer this model is 

equivalent to a Recurrent Neural Network (RNN). 
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Figure 2. a) Engine BMEP profile used for training. b) Engine speed profile 
used for training. 

In the Output Error (OE) model family, there is no attempt to model 

the noise characteristic that is assumed to be white. It directly affects 

the output, acting on top of it, without being filtered by a transfer 

function. The OE predictions are solely based on inputs, there is no 

feedback from measurements. Since the predictor solely focuses on the 

deterministic portion (no noise characteristic involved), this structure 

has an advantage under open-loop conditions. Technically, this open-

loop condition is known as “infinite step ahead prediction” or 

“simulation” [18]. 

On the data side, two separate datasets were used for training and 

validation purposes, that are the two needed procedural steps to obtain 

an effective model. These two sets of numerical data were generated 

using the GT-Power engine model. The commands of the valves were 

constituted by random amplitude signals while ramp profiles were 

used for engine BMEP and RPM both for training and validation 

purposes (Fig.2 and 3). These data were preliminarily scaled and 

normalized in order to obtain a dataset characterized by zero mean and 

variance equal to 1. This allows to reduce numerical errors and to have 

faster convergence of the training algorithm. The training was 

performed using the Levenberg-Marquardt method [19] and it was 

carried out in MATLAB environment through NNSYSID toolbox 

[20]. 

To further extend the validation tests, investigation was carried 

forward to check if the network was able to reproduce the effect of a 

single actuator. Then each one of the two actuators was commanded 

with a wave with random amplitude and keeping the other actuator 

position fixed. 

RNN Performances Results 

This section presents the simulation results of the training and 

validation steps of the estimated network, actuators step test results and 

comparison between simulation and prediction aims. 

 

Figure 3. a) Engine BMEP profile used for validation. b) Engine speed profile 
used for validation. 

Training and Validation 

The NOE model has been chosen among others because it has shown 

the best results. The network topology has been chosen among 

networks up to 5 neurons in the hidden layer and varying the regressor 

parameters nf, nk and nb from 1 to 4. Then the network that has shown 

the best performance in terms of Root Mean Square Error (RMSE) and 

computational cost has been chosen. 

The selected network, which is shown in Fig.4a, is characterized by 2 

hidden neurons and one-neuron output layer. The 5 neurons in the 

input layer correspond to the 4 physical inputs plus the feedback of the 

past value of the simulated output, as highlighted in Fig.4b. The 

corresponding parameters are nf = 1, nk = 1, and nb = 1. Training results 

are shown in Fig.5 and 6 respectively. On the y axis the scaled value 

of the intake O2 concentration is reported. It expresses only the 

variation of the oxygen with respect to the average value and for this 

reason it is indicated with ΔO2. 

From Fig.5 it is visible that the network is able to reproduce with good 

accuracy the training dataset. Moreover, as can be seen in Fig.6, the 

major deviations of model data from experimental data, that is the 

deviation of the blue points from the red line, coincide with the lower 

peaks of Fig.5 at time instants t=0s, t=200s and just after t=500s. The 

RMSE on this simulation is 0.41. Networks that have shown better 

training results happened to be ineffective in the validation process. 

On the validation side, by looking at Fig.7a, some differences between 

validation data and model output are noticed. The peak at time t=225s 

is due to aggressive opening of the EGR valve and closing of the VGT 

one at high engine load. This aggressive response of both actuators 

determines a reduction in the intake O2 concentration that the model is 

not able to follow. This also occurs, but with smaller amplitude, from 

time t=410s to time t=440s. However, the overall performance of the 

network is acceptable because hardly the actuators will move in such 

a way in real driving conditions. 
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Figure 4. a) 1112 NOE layout. b) Intrinsic feedback from simulated output. 

 

Figure 5. Neural network training results. 

 

Figure 6. Simulated vs. experimental values of the intake O2 concentration. 

The relative error on the validation dataset is shown in Fig.7b. It is 

generally within the ±5% range (dotted gray lines) apart from the peaks 

explained before exceeding the 10% (black dashed line). The RMSE 

on the validation simulation is 0.76 

 

Figure 7. a) Network validation simulation. b) Network validation error. 

Step Tests 

Figure 8a shows the simulation of an EGR valve step. Note that in this 

and following plots the total value of intake O2 concentration is shown, 

not only the variation with respect to the mean value, as in the previous 

ones. The model shows a slower and smaller amplitude response 

compared to the GT-Power one. In Fig.8b the error on the EGR step 

simulation in shown. It reaches the 2% on the upper peak 

corresponding to an overshoot occurring when the EGR valve is 

closed. On the EGR valve step the RMSE is 0.21. Figure 9a reports the 

results of the simulation of a VGT step. The model well approximates 

the response showing a first order behavior thus neglecting overshoots. 

However, an offset between the two responses is clearly visible. In 

Fig.9b the error of the network on the VGT step is reported. It is always 

positive and lower than the 2%. The resulting RMSE is 0.24. Both 

simulations present differences from the respective GT-Power data. 

Still, the results are acceptable since the error is lower than the 5%. 

 

Figure 8. a) Gt-Power and network simulation for an EGR step input. b) Error 
on the EGR step simulation. 
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Figure 9. a) Gt-Power and network simulation for a VGT step input. b) Error 
on the VGT step simulation. 

NOE and Steady State Map Comparison 

Figure 10 illustrates the comparison between the intake O2 

concentration estimated by the selected network and the one estimated 

by means of a steady state map, in which the intake O2 concentration 

is stored as a function of engine speed and load on the basis of the 

steady state working points. The limitation of a steady state map, 

compared to a dynamic model, is clear. The map does not contain 

information on the dynamics of the system, it only operates by 

interpolating the stored values. For this reason, its lack of performance 

especially during transient operations can produce undesired effects. 

However, thanks to their simplicity maps are widely used on 

production engines. 

NOE and Steady State Map Comparison 

Figure 10 illustrates the comparison between the intake O2 

concentration estimated by the selected network and the one estimated 

by means of a steady state map, in which the intake O2 concentration 

is stored as a function of engine speed and load on the basis of the 

steady state working points. The limitation of a steady state map, 

compared to a dynamic model, is clear. The map does not contain 

information on the dynamics of the system, it only operates by 

interpolating the stored values. For this reason, its lack of performance 

especially during transient operations can produce undesired effects. 

However, thanks to their simplicity maps are widely used on 

production engines. 

The simulation is shown in Fig.10a with the blue continuous line 

representing GT-Power data, the red dashed-dotted line representing 

the network and the black dashed line representing the O2 map. The 

network response well approximates the GT-Power data while the map 

underestimates the oxygen concentration. The error trends are shown 

in Fig.10b. Here the error of the network is contained in the ±5% region 

represented by the gray dotted lines with only the peaks exceeding it. 

By looking at the error of the steady state map it is visible that it is 

generally higher than the error of the network. 

 

Figure 10 a) Neural network and steady state map output comparison over a 
transient. b) Error comparison between estimated network and steady state 
map. 

The simulation is shown in Fig.10a with the blue continuous line 

representing GT-Power data, the red dashed-dotted line representing 

the network and the black dashed line representing the O2 map. The 

network response well approximates the GT-Power data while the map 

underestimates the oxygen concentration. The error trends are shown 

in Fig.10b. Here the error of the network is contained in the ±5% region 

represented by the gray dotted lines with only the peaks exceeding it. 

By looking at the error of the steady state map it is visible that it is 

generally higher than the error of the network. 

In addition to this test at normal working condition a simulation 

replicating it but in faulty condition with partially obstructed EGR 

valve has been performed (Fig.11). The obstruction has been modeled 

in GT-Power reducing the discharge coefficient of the EGR valve. 

Figure 11a illustrates the simulation of a transient performed with 

partially obstructed EGR valve. The GT-Power track, blue continuous 

line, is shifted upward compared to Fig.10a. This is due to the lower 

EGR rate caused by the obstruction. The other two tracks of the 

network, red dashed-dotted line, and the map, black dashed line, are 

the same as in Fig. 10a since no information is provided to them about 

the obstruction. 

The error on this simulation is shown in Fig.11b. In this scenario the 

performance of the network remains good with the error still being 

contained in the ±5% range. On the contrary the map error increases 

compared to the normal condition of Fig.10b. 

Exploiting the feedback from an O2 sensor it is possible to use the 

network as a reference of the correct engine functioning. If the 

difference between the sensor measurement and the network output 

exceeds a given threshold, say 20% for example, the probability of that 

the engine is not running in safe conditions will be high. The steady 

state map presents an error that is higher than the network one, so the 

possibility of incurring in a false positive is higher. 
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Figure 11 a) Neural network and steady state map output comparison over a 
transient with obstructed EGR. b) Error comparison between estimated 
network and steady state map. 

NOE simulation vs NARX prediction 

As final experiment the estimated NOE has been compared with a 

NARX of the same topology (na=nb=nk=1, with 2-neurons hidden layer 

and 1-neuron output layer). This was done to check the potential 

benefits of installing an O2 sensor in the intake manifold. Indeed the 

NARX model can exploit the measurements coming from the sensor 

to predict the future values of the estimated output. NARX models thus 

do not use feedback of their own predictions, substituting it with the 

sensor measurement; contrary to NOE models that use feedback. In 

other words, in NARX models the next value of the dependent output 

signal y(t) is regressed on previous values of the true output signal 

(instead of the estimated one, as in NOE models) and previous values 

of an independent (exogenous) input signal. In NARX models the 

predictor is exactly as in Equation (3), while the regressor now is  

                     𝜑(𝑡) = [𝑦(𝑡 − 1) ⋯ 𝑦(𝑡 − 𝑛𝑎),
𝑢𝐸𝐺𝑅(𝑡 − 𝑛𝑘) ⋯ 𝑢𝐸𝐺𝑅(𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1),
𝑢𝑉𝐺𝑇(𝑡 − 𝑛𝑘) ⋯ 𝑢𝑉𝐺𝑇(𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1),
𝑢𝐵𝑀𝐸𝑃(𝑡 − 𝑛𝑘) ⋯ 𝑢𝐵𝑀𝐸𝑃(𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1),
𝑢𝑅𝑃𝑀(𝑡 − 𝑛𝑘) ⋯ 𝑢𝑅𝑃𝑀(𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1)] 

 (4) 

where y(‧) represents the past samples of the sensor measured signal, 

na represents the numbers of signals past samples used as input to the 

network. The other parameters and signals are as in Equation (2). 

The exploitation of a sensor results in a more accurate model input. 

Furthermore, in the ARX model family the white noise (disturbance) 

is filtered by the system dynamics instead of acting directly on the 

output. This means that in ARX models the disturbances are part of the 

system dynamics. 

 

 

Figure 12 a) NOE simulation vs NARX 1-step ahead prediction comparison 
over the validation dataset. b) Error comparison between NOE and NARX. 

Figure 12a shows the result of this comparison over the validation 

dataset. GT-power data are represented with the blue continuous line 

while NOE simulation is in red dashed-dotted line and the NARX 

prediction is in black dashed line. The NARX prediction differs from 

the GT-Power data only on some of the higher peaks. By looking at 

the error reported in Fig.12b, it can be noted that the NARX one step 

ahead prediction is very accurate expressing a smaller error than the 

NOE simulation. 

This result states that the installation of an O2 sensor in the intake 

manifold allows the use of different families of models and that the 

prediction ability can be greatly enhanced by the direct measurement 

of this signal. 

Conclusions 

The paper addressed the modeling of the intake O2 concentration in a 

diesel engine. For this purpose, a neural network model is used instead 

of a traditional map-based approach. Among the different model 

classes and orders a first order NOE with 2-neurons hidden layer has 

shown the best performance. It has been validated over a transient 

dataset and tested over the single actuator variations. Then a 

comparison with the steady state map has been presented in normal 

and faulty conditions with obstructed EGR. The network has shown 

acceptable performance showing an error contained in the ± 5% range. 

Over transient conditions the prediction of the intake O2 concentration 

improved significantly compared to steady state maps. If the 

measurement of the intake O2 concentration is available, the NOE 

network could become a reference model for correct engine 

functioning and could be used for fault detection. 

The use of neural network allows to increase the potential of model-

based air-path control techniques due to their fast execution speed and 

low computational cost. Furthermore a precise intake O2 concentration 

can be exploited from other engine controls improving the overall 

performance of the engine  
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To improve the performance of the model the training test will be re-

designed avoiding undesired actuators combination. A further 

improvement can be obtained enlarging the test including single input 

step actuation over multiple engine points in a Design of Experiment 

(DOE) fashion. Furthermore, the adoption of an O2 sensor can be 

considered to increase the accuracy even more as shown in Subsection 

NOE simulation vs NARX prediction. 
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Definitions/Abbreviations 

a1, a2 Correlation parameters 

ARX Auto-Regressive with 

eXogenous input model 

BMEP Brake Mean Effective 

Pressure 

DOE Design of Experiment 
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ECU Electronic Control Unit 

EGR Exhaust Gas Recirculation 

FPT Fiat Powertrain 

Technologies 

IMAP Intake Manifold Pressure 

MAF Mass Air Flow 

MVEM Mean Value Engine Model 

nb, nf, nk signal past samples 

NARX Nonlinear Auto-Regressive 

with eXogenous input model 

NOx Nitrogen Oxides 

NOE Nonlinear Output Error 

model 

O2 Diatomic Oxygen 

ΔO2 Oxygen variation wrt 

average value 

RMSE Root Mean Square Error 

RPM Revolution per Minute  

t Time 

u Input – controlled variable 

VGT Variable Geometry Turbine 

Xr EGR rate 

y True ouput 

�̂� Predicted output 

 

 

 

 

Greek Symbols 

THETA Vector of weight and biases 

LAMBDA Air-to-fuel ratio 

PHI Regressor 

 


