
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Translation from Layout-based to Visual Android Test Scripts: an Empirical Evaluation / Coppola, Riccardo; Ardito, Luca;
Torchiano, Marco; Alégroth, Emil. - In: THE JOURNAL OF SYSTEMS AND SOFTWARE. - ISSN 0164-1212. -
ELETTRONICO. - 171:(2021), pp. 1-26. [10.1016/j.jss.2020.110845]

Original

Translation from Layout-based to Visual Android Test Scripts: an Empirical Evaluation

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.jss.2020.110845

Terms of use:

Publisher copyright

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.jss.2020.110845

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2848261 since: 2021-06-22T12:02:00Z

Elsevier

Translation from Layout-based to Visual Android Test
Scripts: an Empirical Evaluation

Riccardo Coppolaa, Luca Arditoa, Marco Torchianoa, Emil Alégrothb

aDepartment of Computer and Control Engineering, Polytechnic University of Turin, Italy.
e-mail: first.last@polito.it

bDepartment of Software Engineering, Blekinge Institute of Technology of Karlskrona,
Sweden. e-mail: emil.alegroth@bth.se

Abstract

Mobile GUI tests can be classified as layout-based – i.e. using GUI properties
as locators – or Visual – i.e. using widgets’ screen captures as locators –. Visual
test scripts require significant maintenance efforts to be kept aligned with the
tested application as it evolves or it is ported to different devices.

This work aims to conceptualize a translation-based approach to automati-
cally derive Visual tests from existing layout-based counterparts or repair them
when graphical changes occur, and to develop a tool that implements and vali-
dates the approach.

We present TOGGLE, a tool that translates Espresso layout-based tests for
Android apps to Visual tests that conform to either SikuliX, EyeAutomate, or
a combination of the two tools’ syntax. An experiment is conducted to measure
the precision of the translation approach, which is evaluated on maintenance
tasks triggered by graphical changes due to device diversity.

Our results demonstrate the feasibility of a translation-based approach, show
that script portability to different devices is improved (from 32% to 93%), and
indicate that translation can repair up to 90% of Visual locators in failing tests.

GUI test translation mitigates challenges with Visual tests like maintenance
effort and portability, enabling their wider use in industrial practice.

Keywords: GUI Testing, Mobile testing, Empirical Software Engineering,
Software Validation.

1. Introduction1

The Android operating system has recently reached its ninth release and has2

been confirmed as the platform of choice for nearly 90% of mobile users as of the3

first half of 2019. Modern Android applications (henceforth referred to as apps)4

are complex, generally on par with desktop software with interactive graphical5

user interfaces (GUI) and large-scale server back-ends. Similar to desktop soft-6

ware, apps are also developed using modern development processes in quick and7

Preprint submitted to Journal of Systems and Software October 13, 2020

short delivery cycles. Short deliveries that make quick, and thorough, verifica-8

tion and validation phases crucial in both open-source and industrial settings.9

Android apps are also GUI-intensive, putting emphasis on testing their visual10

correctness in addition to their functional behaviour.11

During the last ten years, many end-to-end (from now on referred to as E2E)12

testing tools have been proposed for Android app testing. E2E tests are defined13

as repeatable test scripts that automate the interaction with the application14

as a whole, without isolating its components (i.e. a black-box approach), to15

emulate operations that a human user would perform [1].16

(a) Sample 2nd generation test script (b) Sample 3rd generation test script

Figure 1: Examples of 2nd and 3rd generation test scripts. The test scripts perform the same
interaction and checks

These tools fall into one of three generations of testing tools, as defined in17

the literature. 1st generation tools are the oldest ones, in which the interaction18

with the user interface is guided by exact screen coordinates as locators of GUI19

objects. However, scripts developed with these tools have low robustness to20

GUI change, leading to large maintenance costs, and are therefore seldom used21

in practice. 2nd generation tools instead use widget properties as locators or22

oracles for assertions (see fig. 1a).23

In the case of Android applications, typical 2nd generation tools use the wid-24

get properties specified in XML layout files as locators, e.g., unique identifiers,25

text content, content descriptions. However, because of the reliance on widget26

property access, these tools are limited to testing applications written in specific27

programming languages and are not able to test, for instance, dynamic content28

(e.g. animations, video or real-time content such as games).29

Because of the limitations of 2nd generation tools, 3rd generation testing tools30

have been proposed that use image recognition technology to test the apps’ vi-31

sual appearance or, more commonly, their behaviour through the pictorial user32

interface. These script-based test scenarios therefore include screen captures33

(see fig. 1b) that are used as locators to identify widgets. The screen cap-34

tures are also used as oracles that compare the current appearance of the app35

to the visually expected result after the interactions are performed. Because36

3rd generation tools rely on image recognition, they are, in contrast to 2nd ge-37

neration tools, agnostic to platform/system/programming language, requiring38

only access to the pictorial GUI of the SUT to run tests. However, compared39

2

to 2nd generation, because of the computationally heavy and imprecise image40

recognition algorithms, tools of this approach generally have lower test execution41

time performance and lower robustness to graphical change.42

2nd and 3rd generation testing tools currently coexist in practice of the testing43

community, although 2nd generation tools are more common than 3rd generation44

ones. We also stress that the adopted categorization of the generations of GUI45

testing approaches is strictly chronological and do not reflect that later gener-46

ations should be more effective/efficient. For instance, image-recognition based47

tools (3rd generation) are not considered more effective/efficient or a replace-48

ment for Layout-based (2nd generation) tools for GUI-based testing. Research49

into 2nd and 3rd generation tools has instead shown that they have complemen-50

tary benefits and characteristics [2].51

Regardless of generation, automated GUI testing is a costly practice, both52

in terms of required development and maintenance efforts. These costs prohibit53

companies from combining generations of techniques and companies instead54

tend to focus on 2nd generation tools, complemented with manual testing of the55

GUI’s visual appearance.56

The use of 2nd generation tools for mobile software development can also57

be explained by the availability of 2nd generation tools and a gap in research58

and lack of availability of 3rd generation tools. In particular, and to the best of59

our knowledge, no study has explored the complementary benefits of paired use60

of 2nd generation and 3rd generation tools on Android apps similar to desktop61

applications [2]. However, Android GUI testing seems well-suited for a paired62

testing approach because of the close coupling between app functionality and63

GUI appearance. This coupling results in both layout-based and visual locators64

to frequently change, and therefore require frequent testing [3].65

Additionally, Android apps are developed to be used on a myriad of different66

mobile devices, with varying properties, such as pixel density, resolution or67

screen ratio [4][5]. This presents a challenge for Visual testing since image68

recognition algorithms are sensitive to changes in size of expected images. As69

such, Visual tests developed on one device might not be portable to another,70

which in practice multiplies the cost of visual test script management by the71

number of devices on which the tests need to be executed.72

Unfortunately, these issues, in particular cost and robustness issues, have73

proved to be deterrents for the broad adoption of automated GUI testing among74

Android developers [6]. Thus, presenting a need for research and development75

into more efficient approaches for the creation of effective (robust) Visual tests.76

In this paper, we investigate the creation of 3rd generation Android app77

test scripts by translating them from 2nd generation test scripts that are used78

as templates. We base this approach on the premise that 2nd and 3rd gene-79

ration tools share several commonalities in terms of the test structure, such80

as step-wise test sequences of interactions/assertions of widgets, similar timing81

constraints and similar test purpose for functional tests. The main objective82

of this work is therefore to improve the value of existing 2nd generation test83

scripts by providing practitioners with a cost-efficient extension of their existing84

2nd generation testing capabilities to 3rd generation testing as well.85

3

This manuscript introduces our approach, which is implemented in a tool86

called TOGGLE (Translation Of Generations of UI tests at Low Effort). The87

tool uses 2nd generation Espresso test scripts as templates to create 3rd genera-88

tion EyeAutomate, SikuliX or mixed scripts. However, the approach is theoreti-89

cally adaptable and applicable for any pair of testing tools of the two generations.90

In summary, this paper provides the following advances to the current state91

of the art in the field of automated GUI testing for mobile apps:92

• A test creation approach built on the translation of 2nd to 3rd generati-93

on GUI test cases for Android apps. GUI test translation has previously94

been demonstrated for Web-based applications [7] but, to the best of our95

knowledge, not for Android apps except for our previous work that served96

as the basis of the work presented here [8];97

• The general architecture and implementation details of a tool that demon-98

strates the approach, TOGGLE. The implementation details are comple-99

mented with an extended proof of concept study of the tool based on100

previous research [9];101

• Results from evaluation of the success rate of the implemented approach in102

the translation of 2nd generation test scripts to 3rd generation scripts, the103

translated tests’ execution success rate on Android apps and the ability104

of the approach to mitigate graphic and fragmentation-induced fragility.105

• As a side-effect of this work, the study shows how existing 3rd generati-106

on testing tools can be applied to Android applications, which provides a107

contribution to 3rd generation software testing research [10].108

The paper is organized as follows: Section 2 provides background on the dif-109

ferent generations of testing approaches, and a review of available testing tools110

for Android apps; Section 3 provides additional motivating details about the111

adoption of a translation-based approach; Section 4 describes the architecture112

and the implementation details of the TOGGLE translator; Section 5 describes113

the experiments that we conducted to evaluate the feasibility and benefits guar-114

anteed by such an approach; Section 6 discusses the implications of the results115

and the current limitations of the approach; Section 7 analyzes related work116

available in the literature; Section 8 concludes the manuscript and lists possible117

prosecutions of the work.118

2. Background119

In this section, we describe the basic concepts of the 2nd and 3rd generation120

testing tools, the available tools for testing Android apps, and the challenges121

they expose to developers and testers.122

4

2.1. Layout-based (2nd generation) testing of Android apps123

Second generation (or Layout-based) testing tools are based on a model124

of the graphical user interface, that is decomposed in layouts and hierarchies125

of components. Properties and values are associated with each component of126

the GUI, allowing the properties to be used as locators (to identify widgets127

throughout the test cases) or as oracles (to verify the outcome of a test scenario128

based on widget state). In the case of Android testing, the 2nd generation GUI129

testing tool leverages the properties defined in the XML layout files to that130

extent. This type of information describes Android screens as they are organized131

using the Android application framework peculiarities. However, it does not give132

insights about the actual appearance of the widgets, as they are shown to the133

user.134

According to the mapping study by Linares Vasquez et al. [11], who identified135

over 80 testing tools for Android apps, three categories can be derived to describe136

Android 2nd generation testing tools, based on how the sequences of interactions137

are defined.138

Automation Frameworks and APIs provide means to interact with the GUI139

of a given AUT automatically; the interaction sequences are coded in JUnit-140

like test methods, which are run on instrumented Android devices. The testing141

tools officially developed by Android, Espresso (for testing a single application142

at a time), and UI Automator (for testing multiple apps together with the143

operating system interface and capabilities) are among the most commonly used144

automation frameworks and APIs.145

Other open-source and widely-adopted alternatives in the literature are Robolec-146

tric [12] and Robotium [13].147

Record & Replay testing tools allow testers/developers to create test cases148

through manual executions of sequences of inputs on an instrumented device.149

These test sequences can be enriched with verification of specific state informa-150

tion of the SUT or its GUI, which are stored in repeatable test scripts.151

Several of the available Record & Replay Tools are conceived as extensions of152

existing GUI Automation APIs, to provide another way of creating test scripts:153

this is the case for the Espresso Test Recorder [14], Robotium Recorder, and the154

Xamarin Test Recorder. Other examples of testing tools cited in the literature155

that leverage the record and replay approach are RERAN [15], VALERA [16],156

Mosaic [17], Barista [18], ODBR [19].157

The most recent research in the field of Android testing has focused on Au-158

tomated Test Input Generation Techniques, which are seen as a way of reducing159

the effort and cost of manually writing or recording test scripts. The creation160

of input sequences can be random (e.g., SAPIENZ [20], CrashsScope [21] and161

Stoat [22]), or model-based (e.g., MobiGUITAR [23]).162

2.2. Visual (3rd generation) testing tools163

Third generation testing tools can automate any graphical user interface164

using screen captures of the individual widgets, which are used both as locators165

and oracles to verify the state of the AUT after several interactions. These166

5

tools are mostly agnostic to the implementation of the AUT, and they can,167

therefore, be used to automate any kind of application provided with a GUI –168

given that it is emulated on a desktop pc where the visual recognition engine169

can be run. Some examples of general-purpose 3rd generation GUI testing tools170

are SikuliX [24], EyeAutomate (evolution of JAutomate [25]), or AppliTools.171

Third generation testing tools do not possess the same level of control of172

the assertions that can be used in JUnit-like 2nd generation test cases since173

they cannot verify individual properties that the GUI objects possess. Third174

generation assertions, instead, are based only on the visual appearance of the175

GUI as it is rendered on the current GUI of the app in a given state.176

The validity of the 3rd generation approach to GUI testing has been proved177

by several studies available in the literature. As an example, case studies with178

the open-source SikuliX tool have been conducted at Spotify, Saab and other179

companies [26] [27] [28]. Other studies have proven that 3rd generation testing180

tools typically can guarantee easy implementation and setup, at the cost of181

higher expenses for maintenance [29].182

To the best of our knowledge, very few studies have proposed 3rd generation183

testing approaches specific to the mobile domain. An exception is provided by184

SPAG-C [30], which obtains screen captures from an external camera that are185

then used to define 3rd generation SikuliX scripts.186

2.3. Challenges in Android automated testing187

There is a substantial unanimity in the literature about the low adoption of188

Automated GUI testing by Android developers. Many interview studies with189

practitioners have highlighted that most of the time, the preferred way of per-190

forming system testing of Android apps is to rely only on manual test cases.191

The low adoption of Automated GUI testing practices is not specific to the192

mobile domain, as several works in the literature report similar behaviour in193

the Web-development domain. Some of the main reasons for the lack of adop-194

tion include: the fast life cycle of software projects that prohibit automation195

of high-level tests, the lack of proper documentation of software tools making196

them costly to adopt, and the high costs for developing and maintaining test197

artifacts [31] [6].198

On the other hand, Automated GUI testing for Android apps also suffers199

from a series of issues that are specific to the Android ecosystem: a very frequent200

amount of maintenance is needed on test cases, and the tests are also impacted201

by hardware and software fragmentation. Furthermore, even if in some cases202

they do not require high setup and development effort, GUI test cases typically203

exhibit a very high maintenance cost required throughout the evolution of the204

AUT [29].205

A GUI test case can be defined fragile if it requires intervention when the206

application evolves (i.e., between two consecutive releases) due to any modifi-207

cation applied to the SUT [32][33]. As stated, mobile test cases are also heav-208

ily subject to fragilities since frequent changes are applied to the GUI during209

the app’s lifespan and test cases defined with 2nd or 3rd generation automation210

6

frameworks are strictly tied to it. Many different causes can concur with the211

fragility in GUI test cases: in our previous works, we defined a taxonomy of 30+212

types of actions on the AUT that may trigger test fragilities [34]. At a higher213

level, we note that it is possible to distinguish between 2nd generation-related214

fragilities when changes are applied to the widget definition thus causing failures215

in 2nd generation test cases, and 3rd generation-related fragilities, when visual216

modifications are performed on the pictorial GUI, and hence visual locator may217

not be found.218

The Fragmentation issue includes two different concepts [35]. First, Hardware-219

based fragmentation is related to the fact that any Android app must be run220

on different devices, with varying hardware specifications. Hardware fragmen-221

tation has a major impact on 3rd generation (Visual) testing since also screen222

sizes, and pixel densities change significantly between one device and another.223

A valid locator or oracle for one device may therefore be unusable on a device224

where the same image is rendered at a different pixel density. Additionally, An-225

droid allows the developers to define different layout files for the same activities226

that are inflated based on the specific screen size or orientation of the device227

where the application is run. This type of device-related variability may impact228

2nd and 3rd generation generation test cases that can be invalidated because the229

widgets with scripted interactions are rendered in different ways or substituted230

with other components. Hardware fragmentation, thus, has high costs on the231

practice of testing, because test cases should be re-recorded, or at least verified,232

on each of the devices with which the AUT must be compatible.233

Second, Software-based fragmentation refers to the fact that several versions234

of the Android OS coexist, and typically apps provide compatibility to many235

of them. Additionally, vendors of mobile devices typically install customized236

versions of the Android OS. Different operating system versions typically have237

different graphics, hence creating the possibility of failing 3rd generation loca-238

tors.239

3. Motivation240

As mentioned above, combining 2nd and 3rd generation test suites can have241

complementary benefits, though managing them manually is often unfeasible in242

practice due to high associated costs [27]. Automated creation could mitigate243

these costs and give practitioners the value of 3rd generation scripts in a feasible244

manner, as shown in related work on Web-based applications [7]. For instance,245

the translation-based approach could be used to create visual test suites for246

multiple devices from a single 2nd generation test suite applicable to those de-247

vices. However, translation in the mobile domain is subjected to a couple of248

challenges not common to other platforms:249

• More complex native interactions (e.g. hand gestures) that do not natu-250

rally translate to the mouse/keyboard inputs offered by most 3rd genera-251

tion tools.252

7

2nd generation pass 2nd generation failure

3rd generation pass 2nd generation: FN 2nd generation: TP

3rd generation: FN 3rd generation: FN

3rd generation fail 2nd generation: FN 3rd generation: TP

3rd generation: TP 3rd generation: TP

Table 1: Possible combinations of 2nd generation and 3rd generation test execution in presence
of faults. TP - True positive, FN - False negative.

• Fragility and fragmentation issues of moving tests between devices of dif-253

ferent pixel-density and resolution that are not as prominent in the web-254

or even desktop domain.255

(a) Expected final screen (b) Actual final screen

Figure 2: Example of 3rd generation true positive and 2nd generation false negative

Furthermore, it is important to note that even if a 3rd generation test suite256

is translated from a 2nd generation counterpart, the resulting suite will not be257

semantically equivalent. The reason is because of their varying means of in-258

teraction, where 2nd generation tests, as described, use widget locators whilst259

3rd generation tests relies entirely on the widgets graphical appearance. These260

differences prohibit 2nd generation tests from verifying the visual appearance of261

the GUI as it is shown to the user and vice versa for 3rd generation scripts to262

explicitly verify the correctness of some widget properties, e.g. ids, types, etc.263

Thus highlighting their shortcomings, but also complementary values, in the264

presence of faults when used in combination. Table 1 summarizes the different265

theoretical outcomes of the two techniques in the presence of faults. In detail,266

the different outcomes can be explained as follows:267

• A fault is present but both 2nd generation and 3rd generation268

8

pass: In this case, both techniques fail to report a fault, i.e. a false269

negative result. This scenario is unlikely, and we struggle to come up with270

any theoretical example where this test behaviour would occur.271

• A fault is present and both 2nd generation and 3rd generation272

fail: In this case, both techniques have successfully found the fault. For273

instance, this could occur if a component has been drastically changed or274

removed.275

• A fault is present and only 2nd generation fails whilst 3rd ge-276

neration passes: In this case, the 2nd generation reports a true positive277

whilst the 3rd generation reports a false negative. Faults of this type can be278

related to specific widget properties, e.g. change of ID numbers, which are279

not reflected in the widget’s visual appearance and therefore overlooked280

by the 3rd generation test driver.281

• A fault is present but the 2nd generation reports a pass whilst282

3rd generation fails: In this case, the 3rd generation test case reports a283

true positive whilst the 2nd generation test case reports a false negative.284

Faults of this type generally relate to the visual appearance of the app285

and are not verifiable by 2nd generation test assertions. Figure 2 presents286

an example where sub-figure “a” reports the expected output whilst sub-287

figure “b” shows the actual output. The cause of the test result discrep-288

ancy could, for instance, be that the graphics library failed to load the289

image to the container. The 2nd generation test is only able to verify that290

the container is rendered, but not its visual content, and therefore passes291

incorrectly.292

Worth noting is that, in all of these four examples, the purpose of the test293

must be considered when discussing the correct test behaviour. For example,294

for the fourth example where the 2nd generation test fails to see that the image295

is not loaded correctly, this is only a false negative if the intended purpose of the296

test was to verify that the image was properly loaded. If the intent was simply297

to verify the existence of a container, regardless of content, the 2nd generation298

test behaved correctly by passing. This example further demonstrates that the299

techniques have varying capabilities, which the user must be aware of, but does300

not diminish the contribution of this work, i.e. the cost-efficient creation of301

visual tests through translation. As such, TOGGLE is perceived to provide the302

following benefits:303

• Automated creation of visual test scripts: This effectively enhances304

the existing value of available 2nd generation test cases and provides the305

user with automated visual testing capability at a reduced cost.306

• Reduced impact of fragmentation: 2nd generation test scripts are de-307

vice agnostic, meaning that a single suite can be used to create 3rd gene-308

ration test cases for multiple devices. Thus, mitigating the test hardware309

fragmentation fragility [36].310

9

(a) Done button before graphic
changes

(b) Done button after graphic
changes

Figure 3: Sample of graphic changes applied to a widget, with layout-based properties (i.e.,
the ID of the button) unchanged

• Reduced impact of graphic fragilities: Similarly to fragmentation,311

translation-based creation can help in solving fragilities caused by vi-312

sual changes to the GUI over time through continuous re-translation of313

3rd generation tests from 2nd generation test cases. Whilst this limits the314

regression-testing capability for the version of the app on which the trans-315

lation occurred, the benefits of automatic visual testing can still be reaped.316

Figure 3 shows an example of fragility where the text and background317

colour of a button has been changed. The 2nd generation test is still valid318

because it disregards the visual appearance, but a previously translated319

3rd generation test would fail, reporting a false positive. As such, in this320

case, re-translation would be required for a new test that could, given321

that this change remains in the next version of the app, be used for visual322

regression testing.323

4. TOGGLE324

We implemented the translation-based approach in a tool, TOGGLE (Trans-325

lation Of Generations of GUI testing at Low Effort). The core idea behind the326

proposed translator is to use the information provided by 2nd generation test327

scripts to create 3rd generation scripts. A first theoretical proof-of-concept of328

the translation approach (including the design for a backward translator, from329

3rd to 2nd generation test scripts) has been presented in our previous work [9].330

There we provided a high-level description of the building blocks of the architec-331

ture, and we conceptually validated the approach by modifying and translating332

manually 2nd generation test scripts. With the present work, we detail the ac-333

tual implementation of the framework, and we evaluate it with real test cases334

developed for Android apps.335

10

Figure 4: Architecture of TOGGLE for translation from 2nd to 3rd generation test scripts

The translation procedure is split into two parts. First, the test scenario336

– a series of GUI interactions and checks – is obtained through the execution337

and examination of a 2nd generation test script. Second, the GUI interactions338

are identified, abstracted, and finally translated into the syntax of the target339

3rd generation tool. Theoretically, the approach can be applied to any 2nd gene-340

ration syntax, given that a module capable of parsing the specific syntax of the341

tool is provided.Similarly, the output 3rd generation script can be created using342

the syntax of different test drivers, given that a module for the creation of the343

scripts is developed. In our implementation, we selected Espresso as the origin344

2nd generation testing tool, because it emerged from the literature as one of the345

most adopted tools among open-source developers [37][6]. As target 3rd gene-346

ration tools, we provided translation mechanisms to both EyeAutomate and347

SikuliX, since they are the most cited in empirical studies about visual testing.348

Figure 4 shows the building blocks of the proposed 2nd to 3rd generation test349

translator, along with the intermediate artefacts that are created.350

The high-level architecture contains four main modules:351

• Enhancer: it parses a 2nd generation test script, to inject function calls352

from the TOGGLE library into the code. This is required to extract353

screen captures and XML files containing the dump of the current screen354

hierarchy (from now on simply referred to as dumps);355

• Executor: it executes the enhanced 2nd generation script on a real or356

emulated Android Virtual Device, checking the outcome of the test whilst357

saving screen captures and screen hierarchy dumps on the device memory,358

while logging the trace of the performed interactions;359

11

• Log Parser: it parses the log saved from the executor, reconstructing the360

properties of each interaction and finding the exact visual locators to use361

in the 3rd generation test cases;362

• Third generation script creator: it translates the intermediate and363

tool-agnostic sequence of interactions to the desired 3rd generation syntax.364

The individual modules are detailed in the following subsections.365

4.1. Enhancer366

The Enhancer module, which is tool-specific, receives a 2nd generation test367

script as input and parses it to find the sequence of interactions that are per-368

formed against the GUI of the Android AUT.369

The Enhancer module is necessary since native Android test cases are part370

of the application package and therefore instrumented and executed on the371

Android Virtual Device itself. This differs from GUI tests on web applications372

since it is not possible on Android to use libraries to intercept the interactions373

externally from the AVD: the visual captures and dump extractions have to be374

executed in the AVD.375

The inspection of 2nd generation test cases was performed using the Java-376

Parser library1, identifying method calls of 2nd generation interactions. For each377

identified interaction, the following method calls from the TOGGLE library are378

added:379

• TakeScreenCapture: The method uses the UI Automator framework [38]380

to take a capture of the current screen of the application. The full-screen381

capture is saved, as a Bitmap file, in the emulated external storage of the382

AVD. The screen capture is named after the test case name, followed by383

a progressive identifier number.384

• DumpScreen: The method uses the UI Automator framework to extract385

the dump of the current screen hierarchy. The dump is an XML file,386

which reports all the layout properties of the widgets that are shown on387

the screen at a given time. The dump is saved in the emulated external388

storage of the AVD. Similar to the corresponding screen capture, it is389

named after the test case name, followed by a progressive id number.390

• LogInteraction: The method uses the Android built-in LogCat tool, to log391

information about the interaction that has been performed. The logged392

line contains the following parameters: (i) search type, i.e. the type of393

widget property used as a locator (e.g., ”id”, ”text”, ”content-desc”);394

(ii) search keyword, i.e. the specific value of the locator (e.g., the id395

”search button”); (iii) interaction type, i.e. the type of interaction per-396

formed on the widget (e.g., ”click”, ”type-text”); (iv) interaction params,397

1https://github.com/javaparser/javaparser

12

i.e. optional parameters that may be required to specify the interaction398

(e.g., the input text in case of the ”type-text” interaction”).399

The output of the Enhancer module is hence an enhanced 2nd generation test400

script, which can still be run using the original 2nd generation tool, but that con-401

tains additional method calls able to log the nature of the gestures performed402

on the AUT’s GUI and capture the appearance of the widgets. A sample en-403

hancement is shown in figure 5: the dummy test case contains interaction with404

two widgets, using an id and textual content as locators.405

The Enhancer module is currently developed to support Espresso test cases,406

and is primarily tailored to identify Espresso interactions that are defined start-407

ing with an onView ViewInteraction, which is the primary interface - offered408

by the tool - to perform interactions and assertions on individual widgets of the409

GUI.410

In the enhanced test cases, two statements are added at the beginning of411

each test method, in order to enable the extraction of screen captures and412

dump files from the emulated device. First, an Instrumentation object (that413

allows monitoring all the interactions between the system and the application)414

is obtained through a call to the getInstrumentation system method. Then, an415

instance of the UiDevice object - i.e., the UIAutomator object used to access to416

state information about the device - is obtained. The UiDevice instance is then417

used to extract the screen dump at each interaction.418

The Enhancer module parses the code to find all the Espresso instructions419

that are supported by the tool. Each statement that corresponds to an Espresso420

interaction is thereby reported in the enhanced test script right after the ad-421

dition of a pre-defined set of statements, including the three methods of the422

TOGGLE library that were described above. Each set of statements also in-423

cludes obtaining the currently visible Activity, used to get the screen capture of424

the app. This behaviour is repeated for all lines of the original test method that425

contain Espresso commands; if a line does not contain any recognized Espresso426

interaction, it is reported in the Enhanced test file as it is, so that the layout-427

based test method remains executable.428

Currently, the Enhancer supports most of the interactions (each defined by429

a ViewAction class) that are supported by Espresso. However, some excep-430

tions (e.g., scrolling and pressing the custom IME action buttons, and all on-431

Data-based commands) are still under development. The Enhancer also covers432

the layout-based assertions that are compatible to be translated to pure visual433

checks: isDisplayed(), which verifies that the widget is shown on screen, and434

withText(), which verifies if a text view contains a given string.435

The enhanced 2nd generation test case also includes a sleep instruction be-436

tween the interactions. These sleep instructions are not added to the created437

3rd generation test cases, they are only present in the enhanced test cases to438

allow the system to have the time to obtain the screen captures and dumps.439

Since this sleep instruction only impacts the translation phase of the script and440

not the execution of the visual test scripts, we have adopted a fixed sleep time of441

two seconds. Such a time was observed to be sufficient for a fault-free creation442

13

(a) Sample test case before the enhancement

(b) Sample test case after the enhancement

Figure 5: A sample test case before and after the enhancement phase

14

of screen captures on the storage of the emulated devices.443

4.2. Executor444

After the 2nd generation test scripts are enhanced, the Executor module is in445

charge of executing them on the selected Android Virtual Device (AVD). The446

Executor launches the chosen AVD, installs the AUT’s .apk on it (if already447

present, it simply calls the ADB ”clear” command on it to reset its data) and448

executes the test cases. The device does not need to be rooted, given that449

the AUT is provided with the required storage permissions. Android Debug450

Bridge (ADB) commands are used to perform these operations. The module451

also ensures that the Android project is instrumented correctly and includes all452

the required libraries.453

During the test case execution, the added methods from the TOGGLE li-454

brary are called to take screen captures (.bmp images), dumps of widget in-455

formation (XML files) of the screens in which the interactions are performed,456

and to log the information to recreate the interactions. Images, dump files,457

and interactions are stored in 1-to-1 correspondence since they follow the same458

naming convention.459

The Executor also checks the outcome of the original 2nd generation test: if460

the test triggers any exception (failed test), the developer is notified, and the461

translation process is aborted. This feature is added to minimize translations of462

invalid tests. In fact, the fundamental prerequisite for the translation to 3rd ge-463

neration test cases is that the original layout-based counterpart can go through464

the entire sequence of interactions without triggering any invalid state in the465

app.466

4.3. Log parser467

The Log Parser module is run after the Executor to capture – from the468

external storage of the AVD where the tests have been run – all information469

that is required for the translation to the 3rd generation scripts.470

The LogParser module is in charge of performing the following operations471

for all the logged interactions:472

1. It reads an interaction from the log, retrieving its parameters;473

2. Using the progressive number of the interaction inside the test case, it474

retrieves the screen hierarchy dump which was created in the external475

storage at runtime;476

3. Searches in the dump files for the interaction parameters (i.e., searches477

for a widget with the value of search type equal to search keyword, and478

extract the boundaries of the interacted widget). This step allows more479

precise captures of the location where the widget has been rendered at480

runtime. Thus, eliminating problem factors such as what device the app481

was launched on, the apps orientation, the position of the element in a482

list, etc. Hence, information that cannot be retrieved from static analysis483

of layout files;484

15

(a) Log excerpt

(b) Screen hierarchy dump with highlighted 2nd generation locator

(c) Full screen capture with highlighted bounding box for the interacted widget

(d) Visual locator for the interacted widget

Figure 6: Examples of files managed by the Log Parser module

16

4. Using the progressive id number of the interaction inside the test case, it485

retrieves the full-screen capture associated with the interaction;486

5. Using the boundaries found in step 3, it cuts the bounding box of the487

interacted widget (i.e., the smallest rectangle that includes the image of488

the widget).489

We report an example of the operations performed by the Log Parser in490

figure 6: starting from the first instruction found in the log (fig. 6a), the Log491

Parser identifies the exact widget inside the hierarchy dump (highlighted in fig.492

6b), then uses the full screen capture of the screen to cut the exact visual locator493

for the widget (highlighted in figs. 6c and 6d). This visual locator, paired with494

the interaction info, will be the output used to create 3rd generation scripts.495

Figure 7: The TOGGLEInteraction Class

The information characterizing each set of widget properties is stored in-496

side a TOGGLEInteraction object. This format is a completely tool-agnostic497

representation of each interaction with the device. The format of the TOG-498

GLEInteraction object is shown in figure 7; the fields contain the following499

information: packagename is the name of the tested .apk, concatenated to the500

name of the test file, to differentiate between different test sessions; search type,501

search keyword, interaction type, interaction args are the field retrieved from502

the log line related to the interaction; time is the timestamp at the moment of503

the execution, and serves as a unique id for the interaction; screen capture and504

dump are pointers to the files in external storage obtained during the execution;505

cropped image is the visual locator for the interacted widget; top, left, right,506

bottom are the coordinates of the bounding box of the interacted widget.507

17

Table 2: Commands covered by the TOGGLE Script Creator

Espresso command Android-specific Required visual instructions

Click No 1
Double Click No 2
Long click No 3
Press Back Yes 1
PressKey No 1
PressMenuKey Yes 1
CloseSoftKeyboard Yes 1
Swipe[Up/Left/Down/Right] Yes 4
ClearText No 2
TypeIntoFocusedView Yes 1
TypeText No 2
ReplaceText No 3

4.4. Third generation Script Creator508

The 3rd generation Script Creator module depends on the Visual testing509

tool towards which the test case is translated. It receives as input a sequence510

of TOGGLEInteraction objects that are each translated into the target syntax.511

In general, a 1-to-1 mapping between 2nd generation interactions to 3rd ge-512

neration ones is not possible since 2nd generation interactions often act directly513

on the recognized views (e.g., insert a string directly inside a TextView without514

putting it in focus or access an item in a list which is not expanded). The515

development of the Script Creator module hence entails an analysis of what516

type of commands can be executed against the GUI of an Android app, to517

find the proper way of translating them into the commands featured by the518

3rd generation test drivers.519

This analysis requires additional effort compared to other domains where520

translation has been proposed. For example, for desktop and web applications521

mouse and keyboard operations are sufficient to replicate all possible commands.522

However, for mobile devices, hand gestures must also be covered.523

In table 2 we report the commands that are currently supported by the524

TOGGLE translation tool. The table indicates if the commands are specific to525

Android or not and the number of visual interactions they are decomposed into.526

The detailed translation into 3rd generation commands in the chosen target syn-527

taxes is provided in Appendix A. For instance, a click on a TextView is needed528

before sending keyboard inputs to write inside it; a swipe needs to be broken529

down into a button press, followed by a move command and finally a button530

release. Commands for pressing the buttons of Android devices (i.e., Press-531

MenuKey, PressBack, CloseSoftKeyboard) are translated by pressing hotkeys532

that are captured by the Android Virtual Device.533

Since the transitions in the GUI may be not immediate, depending on the534

app characteristics, animations, and possible race conditions with other apps535

running on the emulated devices, we leverage commands of the target script536

syntaxes to dynamically wait for the appearance of the desired widgets. These537

commands wait for an amount of time, that can be fixed by the programmer538

before the test ends up in a failure. We have set this timeout to 30 seconds, a539

reasonable amount of time after which the app is likely no longer changing its540

18

Table 3: Sleep instructions added in created visual test scripts

Interaction Sleep time

Long-click 600 ms
Swipe 200 ms
Multiple key press (e.g., Ctrl.+M) 20 ms
Replace Text 50 ms
EyeAutomate failure 5000 ms
SikuliX failure 5000 ms

GUI state. In the created test scripts, we have also added an explicit and fixed541

sleep instruction of one second after each interaction. This addition was made542

to avoid cases in which performing taps on the GUI too fast after the previous543

interaction could cause interactions to not be properly intercepted from the544

GUI engine. Finally, we have added fixed sleep times, according to the way545

some specific interactions - that require multiple atomic mouse and keyboard546

commands - are performed by the Android engine; those wait times are reported547

in table 3.548

Another important design decision made for the Translator module was549

about where to insert the assertions in the created 3rd generation test scripts.550

2nd generation assertions can verify varying aspects of the widgets, e.g., their551

textual content or parameters like their visibility on screen, whereas 3rd gene-552

ration tools can only verify the visual appearance of widgets. Starting from553

the assumption that the Enhanced test is executed on a stable version of the554

application, we resorted to capturing visual oracles for every assertion found in555

2nd generation code. Additionally, we added a final check of the whole screen556

at the end of each translated test script. This allows us to verify that the final557

appearance of the application, after the execution of all the test steps. A final558

full check is crucial to ensure that all the interactions of the test script were559

replayed as expected, because errors of the image recognition driver may lead560

3rd generation tools to perform intermediate operations on wrong elements of561

the GUI (because of similarities with the locators used in the script) without562

signalling any failure. Since the EyeAutomate library suffered from false posi-563

tives at the final full check, because of too many details in the images to locate,564

we added the possibility to tune the EyeAutomate recognition algorithm by565

changing the Confirmation Threshold parameter, which sets up the minimum566

similarity between the visual oracle and the rendered final screen to return a567

positive full check.568

The output of the Script Creator is a visual test script, which can be run569

immediately against the app after its launch on an AVD to verify its appear-570

ance. Alternatively, the test script is added to an existing test suite for future571

regression testing. Hence, in addition to testing the system according to the572

same sequences as the 2nd generation test scripts, the visual scripts also verify573

the AUT’s appearance.574

At its current stage of development, TOGGLE supports translation to Eye-575

Automate and SikuliX scripts. The translated scripts have native formats for576

the two tools (i.e. plain text scripts for EyeAutomate and Python scripts for577

19

Table 4: Translation alternatives

Name Meaning

EA EyeStudio Text Script
S SikuliX Ide Python Script

EAJ EyeAutomate Java Method
SJ SikuliX Java Method

CES Combined Java Method, EyeAutomate First
CSE Combined Java Method, SikuliX First

SikuliX) that can be run by the tools’ respective IDEs: EyeStudio and SikuliX578

IDE. However, since both tools provide Java APIs, we also equipped the 3rd ge-579

neration script creator with a Java code writer. The translation of the scripts580

into Java test cases provides the user with richer programming capabilities that581

neither the native scripting languages in EyeAutomate or SikuliX provide. For582

instance, the created scripts could, after translation, be augmented with direct583

back-end interaction capability such as manipulation of the AUT’s database584

through Java-based queries or further improved with other technical function-585

ality. Hence, we perceive a scenario where the translator can be used to quickly586

get a baseline test suite that developers build upon instead of developing the587

baseline manually from scratch.588

Additionally, the Java APIs allow translations of the 2nd generation scripts589

into combined test cases that use the Java APIs of both 3rd generation tools.590

These combined scripts can use the image recognition algorithms of both tools591

such that if one tools’ image recognition fails, the script will try to perform the592

interaction, or the check, with the other. Two different combined, Java-based,593

test script types can thereby be obtained with the considered output tools: (1)594

with EyeAutomate interactions first, followed by SikuliX if EyeAutomate fails,595

and (2) with SikuliX interactions first, followed by EyeAutomate if SikuliX fails.596

Table 4 summarizes the possible translations for 2nd generation test cases597

that are currently supported by the 3rd generation script creator, along with the598

acronyms that are used in the continuation of the paper. In the remainder of599

the paper, we will indicate with E the original Espresso test suite.600

5. Evaluation601

This section describes the experimental evaluation conducted on TOGGLE,602

the adopted procedure and its results.603

5.1. Experimental Subjects604

After mining GitHub repositories for Android apps that contained Espresso605

test cases, we found out that such repositories are scarce. Those available typ-606

ically contain small-sized test suites with few test methods and trivial interac-607

tions with the GUI of the AUT. We therefore selected five different applications608

on which we developed Espresso test suites, on which to apply the translation-609

based approach for Visual test generation. One of the authors of this paper –610

20

(a) Omni-Notes (b) PassAndroid (c) MiMangaNu

(d) K9-Mail (e) TravelMate

Figure 8: Screen captures of considered applications

21

from now on called Tester – selected the mobile applications for this evaluation611

phase. The Tester was not involved in the development of the different modules612

of the tool. The other authors of the paper did not influence the creation of the613

test suites.614

The following criteria guided the apps selection:615

• the applications had to be native to Android;616

• the application had to be open-source, and its code had to be available on617

GitHub;618

• the application had to be a realistic Android application, i.e., not a toy619

application or an application with minimal features;620

• the application had to have recent updates and had to follow recent guide-621

lines for the design of Android interfaces (i.e., not implementing old design622

patterns).623

• the application had to be released to the public or already adopted as an624

experimental subject in related or previous empirical studies.625

The search for suitable apps was limited in time to one working day. It was also626

influenced by possible issues encountered when building and compiling code627

cloned from GitHub repositories.628

We selected five applications whose screenshots are reported in fig. 8. They629

are:630

• K9-Mail: a popular e-mail client, which has a long release history on the631

GitHub platform. The application has been used by several experimental632

studies in the field of mobile development and testing [39][40][41].633

• MiMangaNu: an application for reading and organizing comics from634

online repositories. It served as the example of an app with possible long-635

running operations (the download operations of the comics) to see how636

they were handled with the insertion of static sleep instructions. The app637

is not available on the PlayStore. It has been used as an experimental638

subject in related literature [42][43].639

• OmniNotes: an application for managing text notes and checklists, with640

possible multimedia attachments. The app is also available on F-Droid641

and the PlayStore. We used this application as an experimental object642

in one of our previous studies for the comparison of Second-generation to643

Visual-based approaches [44], as well as in many other studies not limited644

to the field of GUI testing [45][46].645

• PassAndroid: an application for storing and managing different types of646

tickets through QR codes. The app has a long release history on GitHub.647

It is released on F-Droid and is also available for free on the PlayStore,648

where it has more than a million downloads. We used release 2.5.0 because649

of some building issues of the latest release.650

22

Table 5: Characteristics of the selected apps (as of October 2019)

K9-Mail MiMangaNu Omni-Notes PassAndroid TravelMate

PlayStore downloads 5,000,000+ - 100,000+ 1,000,000+ 1,000+
PlayStore rating 3.8 - 4.4 4.0 4.0
Number of Releases 382 72 121 100 378
GitHub Contributors 212 20 10 20 211
GitHub Stars 4,900 490 205 1,900 1,100
Tested Release v5.708 v1.83 6.0.0 beta 7 2.5.0 5.6.2
Java LOCs 349,857 63,849 48,116 32,309 28,101
No. Activities/Fragments 60 15 13 17 35
No. Layout Files 89 14 52 19 93

Table 6: Locators used in the developed test suites

App ID Text Cont. Desc. Hint Total

K9-Mail 68 97 21 0 186
MiMangaNu 181 99 0 0 280
OmniNotes 98 71 34 4 207
PassAndroid 131 28 9 0 168
TravelMate 42 153 17 0 212

Total 520 448 81 4 1,053

• TravelMate: an application for managing travels and finding information651

about cities. It served as an example of an app with many dynamically652

retrieved pictures and with the use of map activities.653

General information about the size and popularity of the considered apps654

are reported in Table 5.655

For each application, we wrote 30 test cases with the selected layout-based656

testing tool, Espresso. The Tester has been provided with the list of Espresso657

commands available in TOGGLE so that only translatable interactions were658

part of the developed test suites. This design choice reduces the generalizability659

of the experiment to any possible Espresso test suite. More details about such660

generalizability limitations are available in the Threats to Validity section of the661

paper.662

The GitHub repository of PassAndroid already included some Espresso test663

cases. We considered those that did not contain onData ViewMatchers as part664

of the Tester’s suite. This choice made sense from a time-saving perspective and665

added, to a limited extent, to the construct and external validity of the experi-666

ment. The other scenarios that led to individual test cases were instead defined667

by the Tester, to represent all the main features of the selected applications.668

We report in Table 6 the number of locators used in each test suite. In almost669

half of the cases, the widgets had unique ids that could be used as locators. The670

second choice as a locator, in terms of frequency of occurrence, was the textual671

content of the widgets. Textual locators are however not as robust as id locators.672

They are typically more prone to change during the evolution of the app, and673

it is not possible to ensure their uniqueness on the screen. When the widgets674

do not have textual content or ids, it is possible to use Content description or675

23

Table 7: Operations performed in the developed test suites

App Click Long C. Type Swipe Others Check Total

K9-Mail 113 12 19 8 25 34 211
MiMangaNu 299 9 11 0 11 78 408
OmniNotes 110 17 35 9 13 36 220
PassAndroid 99 1 5 37 21 26 189
TravelMate 101 0 9 43 7 60 220

Total 722 39 79 97 77 234 1,248

Hints (i.e., the suggested text of a TextBox) as locators.676

The test cases were built to be independent of each other, i.e., they all start677

from the same state of the application. As the starting point, we have selected678

for each application its default Main Activity. It is possible to decouple the679

Success Rate of different test cases by selecting a common starting point and680

common preconditions. This action ensures that a test case failing does not681

influence other ones. We designed the test cases to traverse different screens of682

the apps. Each test case executes from 4 to 19 interactions, ranging from simple683

test cases that open the menu to verify the correct rendering of specific menu684

voices, to more complex usage scenarios involving many transitions between685

activities. This variability reflects that of test cases that can be found in open-686

source Android projects and in the industry, where test cases can range from687

single interactions to 20+ different steps. The test cases were hence created to688

be comparable in size to industrial test cases.689

It is worth noting that in one application, MiMangaNu, static sleep instruc-690

tions (of 2 seconds) were added in the developed Espresso test cases. This time691

is necessary because the application had to connect with a database to down-692

load the comic books in the specific fragment, and the operation had to be693

performed before clicking on the available back button, otherwise resulting in a694

broken test case. These added sleep instructions in the 2nd generation test case695

are also added to the created 3rd generation test cases after the corresponding696

translated interactions.697

In Table 7, we report, for each type of command provided by Espresso, the698

number of interactions of that type in the test suites that we created.699

For the sake of readability, we included all the possible operations related700

to keyboard input (i.e., Type, ClearText, PressKey) under the Type column;701

in the Others column, we gathered operations that are not operated directly702

on widgets, like the PressBack and the OpenOverflowMenu. The test suites703

featured different distributions of commands. However, for all of them, the704

majority of interaction consisted of clicks.705

As checks, only “IsDisplayed” assertions were inserted in the test cases.706

Some test cases did not feature any explicit check; in those cases, the implicit707

verification of the scenario was used, i.e., the test case is considered successful708

if it reaches its end without triggering any error state.709

24

5.2. Research Questions and Procedure710

The experimental evaluation aimed to answer the following research ques-711

tions:712

• RQ1 - Tool Performance: What is the processing time needed to713

translate layout-based test cases to Visual test cases with the proposed714

approach?715

To answer RQ1, for each test case, we computed the Translation Time met-716

ric, that we define as:717

Ttot = Ten + Tex + Tsc (1)

The total translation time is decomposed into three different components,718

each related to one of the steps needed for the translation: Ten is the time to719

perform the enhancement of the original 2nd generation test script; Tex is the720

time to execute the enhanced script with the selected 2nd generation test driver;721

Tsc is the time for the 3rd generation script creation – including both the log722

parsing and the generations of the screen captures for each interaction –.723

• RQ2 - Translation Precision: What is the proportion of interaction724

commands correctly translated by the tool?725

To answer RQ2, for each test case, we computed the Translation Precision726

metric, that we define as:727

P =
Itr
N

(2)

where Itr is the number of interactions that have been correctly translated728

by the tool, and N is the total number of interactions that the test script729

encompasses. The Itr metric was computed manually after an inspection of the730

translated test scripts. For each test case that was not translated correctly, we731

also identified the translation step (i.e., enhancement, execution or translation)732

that caused the translation error.733

Since the first three AUTs on which the tool was applied –i.e., OmniNotes,734

PassAndroid, and MiMangaNu – were used to drive the requirement definition735

and initial test of the tool, we measured the Translation Precision on the last736

two applications we selected, namely TravelMate and K9-Mail, to avoid bias in737

the results.738

• RQ3 - Visual Scripts Success Rate: What is the success rate of the739

visual test scripts generated through translation?740

To answer RQ3, for each test case, we computed the Success Rate (SR),741

metric, which we define for each test script as:742

SR = Es/Et, (3)

25

where Es is the number of executions ending with success, and Et is the743

total number of executions. This metric thereby represents the proportion of744

successful executions of each test.745

Additionally, using the number of successful executions of an individual test746

script, the tests were classified as:747

• Passing: when all the executions end with a success (i.e., SR = 1);748

• Flaky: when some executions, but not all, end with a failure (i.e., 0 <749

SR < 1);750

• Failing: when all executions end with a failure (i.e., SR = 0).751

We assume that when all executions of a test lead to failure, and hence752

the test case is labelled as Failing, the reason of the failure must be due to an753

intrinsic limitation of the 3rd generation testing tool, which is incapable with754

finding some widget or because of an erroneous interaction with the AVD. Note755

that test execution is considered failed if any of its interactions fail.756

We assume instead that flakiness is due to imprecision in the applied image757

recognition algorithm or in the recreated user interactions, which may lead to758

aleatory results in the executions of test cases. Another factor causing non-759

deterministic behaviour may be timing, where executions of the test script fail760

due to incorrect synchronization with the AUT’s execution. This could lead to761

image recognition failure since the widgets may not be properly loaded at the762

time of the image search.763

All the 30 test cases developed for each app were executed ten times. Their764

success rate was also averaged on the individual test suites to evaluate the ratio765

of passing, flaky, and failing executions.766

To assess the difference among the alternative target 3rd generation tools in767

terms of success rate, we performed a logistic regression. In presence of cate-768

gorical explanatory variables, they are converted to a set of indicator (mutually769

exclusive) variables that may assume values 0 or 1. Such indicator variables are770

defined for each level of the categorical variables; except for one of the levels771

that is considered the reference level (and is accounted for in the intercept).772

The logit regression equation we used is:773

logit(P) = log

(
P

1 − P

)
= β0 +

∑
t∈Tools/{tref}

βt · xt +
∑

a∈Apps/{aref}

βa · xa

where: P is the probability of success (i.e. pass) of each individual test, β0774

is the coefficients for the reference case, βt and βa are the coefficients for the775

specific tools and apps, and xt and xa are the indicator variables corresponding776

to the specific tools and apps respectively.777

We will test the statistical significance of the individual coefficients in order778

to decide whether to reject the null hypothesis of no difference among the tools.779

26

While the goal is to detect differences among the tools, we include on the re-780

gression equation also the different apps to avoid the result being confounded781

by differences among them.782

We report the average success rate of the different tests by tool and ap-783

plication, as well as the binomial confidence intervals using a point and range784

diagram. Analyses and visualizations have been carried out in a reproducible785

way using the R statistical package [47].786

• RQ4 - Visual Scripts Performance: What is the performance of work-787

ing visual scripts in terms of average execution time?788

To answer RQ4, we measured the average execution time (Tv) of all the789

passing test executions. To compensate for the varying complexity of different790

test cases, we normalized the measured execution time by the number of inter-791

actions contained in each test case. The measured execution time depends on792

the sleep instructions that have been introduced for the translation of the in-793

teractions, and on possible failures of the first image recognition algorithm used794

in the combined third-generation test cases. The added sleep instructions are795

reported in table 3. These sleep instructions were added to help improve test796

success-rate by mitigating the mentioned synchronization challenge. The added797

long click delay was slightly longer than the default Android delay to detect a798

long click (500ms) to cope with possible lags in the execution of the application.799

The timeout before triggering an image recognition failure has been conformed800

to 5 seconds from the default values of the selected 3rd generation testing tools801

(respectively, 30 seconds for EyeAutomate, and 3 seconds for SikuliX), to make802

the execution times of the variants of the generated test scripts comparable.803

Knowing the added sleep instructions, the total execution time (Tv) for a804

Visual test script can be decomposed according to the following formula:805

Tv = NTs + FTf +

N∑
i=1

Ti, (4)

whereN is the number of interactions of the test case, Ts the sleep introduced806

after each interaction, F is the number of failures of the first tool used in case807

the combined approach was used, Tf is the timeout time to intercept the failure808

of the first tool, and Ti is the time for performing the i−th operation. It is worth809

highlighting that static sleep times may be added in the original 2nd generation810

script, e.g. to wait for downloads or server connections. Those sleeps are not811

removed from the computation of the net time since they are inherent waits of812

the original 2nd generation test cases (i.e., they can be considered as attached813

to interactions performed on the GUI) and are not an overhead introduced by814

TOGGLE.815

Based on this decomposition, the average net time per interaction in a test816

case can be found with the following formula:817

Tn =
Tv − (NTs + FTf)

N
(5)

27

The net time Tn can be deemed a more accurate estimate of the time em-818

ployed by the studied algorithms for performing atomic Android commands on819

the emulated AVD.820

We analyze the test execution time – normalized by the number of interac-821

tions – with the non-parametric permutation test. We adopted a linear model822

containing indicator variables – the same used in the logistic regression – and823

tested the significance of the coefficients corresponding to tool and application824

on the execution time.825

• RQ5 - Robustness to Device Fragmentation Fragility: What is826

the advantage in terms of reduced fragility to device fragmentation when827

generating 3rd generation test scripts by translation?828

To answer RQ5, we performed a two-fold evaluation. First, we selected the829

best-performing visual test suite for the Nexus 5X, in terms of success rate –830

measured to answer RQ3 – for all of the five applications. Then, we executed831

the same visual test suite on a set of 9 other devices, with varying pixel density,832

screen size, resolution, and the default size of the rendered AVD (see table 9 for833

details). We measured the success rate of such a test suite on the devices. This834

first result is intended to provide a quantification of the device fragmentation835

fragility issue for visual testing of Android apps.836

Secondly, we performed a new translation of the test suites on each Android837

Virtual Device, separately. This step produced nine additional 3rd generation838

test suites for each application – each one provided with a specific set of device-839

specific screen captures – so that we could measure the average success rate of840

the test cases derived for the individual devices. This phase of the experiment841

also provides an evaluation of the device fragmentation fragility for Layout-based842

tests, since even Layout-based test cases originally developed for a device may843

not be executable on others. This issue may happen in case of adaptive Android844

layouts and widget disposition for different screen sizes or pixel densities.845

Finally, for each target device, we compared the amount of passing (or flaky)846

re-translated test cases and original test cases. This comparison allows us to847

estimate the reduction of fragmentation-induced fragility obtained with targeted848

automated translation.849

• RQ6 - Robustness to Graphic Fragility: What is the advantage in850

terms of the reduced fragility to pure graphic changes when generating851

3rd generation test scripts by translation?852

To answer RQ6, we applied minor modifications to the original applications.853

The modifications consisted in graphic changes without altering the behaviour854

of the widgets.855

For each application, we selected 15 distinct widgets to modify; we ap-856

plied different kind of graphic changes. To select the modifications to apply,857

we started by expanding the taxonomy of maintenance reasons for mobile test858

28

Table 8: Types of modifications applied to the widgets

Type of App
Category modification K9-Mail MiMangaNu OmniNotes PassAndroid TravelMate

Layout Addition 1 0 0 0 1
Removal 2 0 0 0 1
Position 1 1 0 0 2

Graphic Alpha 1 0 0 0 1
Elevation 1 0 0 0 1
Drawable 1 8 11 9 1
Color 1 2 2 4 2
Rotation 2 0 0 0 1
Size 2 0 0 0 1
Shadow 1 0 0 0 1

Text Alignment 1 0 0 0 1
Style 1 2 0 0 1
Size 1 0 0 0 2
Color 1 1 0 0 1
Gravity 1 0 0 0 1
String 1 3 2 8 1
Hint 0 0 2 2 0

scripts, that was defined in [34] by three of the authors. Within that taxon-859

omy, only three categories of modifications can have an impact on the execution860

of Visual test scripts: changes in the layout, changes in the text contained by861

the widgets, pure graphic changes in the widget. In table 8 we report the sub-862

categories of changes that we inferred by analyzing all the types of modifications863

that can be performed in the layout information of any widget, and the number864

of modifications applied to the five AUTs. Note that this may be higher than865

15 since, in some cases, multiple variations were applied on a single widget.866

The changes were not supposed to break any layout-based test suite, i.e.,867

they did not change widget structural properties or the text when it was used868

as a locator in layout-based tests – due to the absence of unique identifiers or869

content descriptions –.870

After injecting graphic changes in the apps, we performed a two-fold evalua-871

tion. First, we applied the best-performing translated test suite to the modified872

app, and we measured the proportion of failing and passing (or at least flaky)873

test cases.874

Second, we re-translated the layout-based test suite for the changed appli-875

cation, and we measured again the proportion of failing and passing (or at least876

flaky) test cases. By comparing the results obtained with the original and with877

the re-translated test suite, it is possible to evaluate the reduction of the fragility878

induced by pure graphic changes.879

5.3. Experimental setup880

All the test cases have been run on a desktop PC with an Intel i7-8550U881

at 1.80GHz clock, with 16GB RAM, and Windows 10 Operating System. The882

development of the test suites and the execution of Espresso test cases were883

performed in Android Studio 3.3. The apps have been firstly launched on an884

29

Table 9: Considered devices for the device fragmentation evaluation

Name Size Resolution Density AVD Size

Galaxy Nexus 4,65” 720x1280 xhdpi 347x617
Nexus 4 4,7” 768x1280 xhdpi 376x626
Nexus 5 4,95” 1080x1920 xxhdpi 363x645
Nexus 5X 5,2” 1080x1920 420dpi 365x649
Nexus 6 5,96” 1440x2560 560dpi 389x692
Nexus 6P 5,7” 1440x2560 560dpi 365x649
Nexus One 3,7” 480x800 hddpi 337x562
Nexus S 4,0” 480x800 hddpi 348x580
Pixel 5,0” 1080x1920 xxhdpi 352x626
Pixel XL 5,5” 1440x2560 560dpi 362x644

emulated Nexus 5X API 25 (Android 7.11) with enabled device frame and key-885

board inputs. Animations were disabled on the AVD.886

For multiple executions of generated test cases, single-threaded Java methods887

were developed; test scripts generated in the specific syntax that EyeAutomate888

and SikuliX have respectively been embedded in Java code and run through the889

use of the dedicated script runners provided by the respective APIs.890

All the executions of 3rd generation test scripts were performed on a solid891

black background, to minimize the interference of other visual elements. No892

other computationally-intensive program was run concurrently with the execu-893

tion of the test cases, to avoid influencing their execution time.894

We needed a set of virtual devices to evaluate the graphic fragility robust-895

ness. To that purpose, the default devices offered by the Android AVD Manager896

were selected. The properties of the devices (size in inches of the screen, Res-897

olution, pixel density, and size of the rendered AVD on the desktop computer)898

are reported in table 9. All the considered devices used x86 system images.899

5.4. Experimental Results900

The following subsections describe the results obtained through the designed901

experimental procedure, presented according to the Research Question they902

answer. The results provide an evaluation of the proposed approach, as well as903

a comparison between different 3rd generation testing tools.904

In compliance with open science principles, we make available a replication905

package in the form of a code capsule2.906

5.4.1. RQ1 - Tool Performance907

Table 10 reports the runtime (in seconds) for each step of the approach:908

enhancement of the test scripts (Ten), execution of the enhanced Espresso test909

scripts (Tex), creation of the visual test script (Tsc). The table reports the910

absolute time for the whole test suites, and the time normalized by the number911

of commands for each test suite.912

2Code capsule: https://dx.doi.org/10.24433/CO.2149992.v1

30

Table 10: Absolute and normalized execution times (in seconds) of the tool on the experimental
test suites

Ten Tex Tsc Tt

Application Total Norm. Total Norm. Total Norm. Total Norm.

K9-Mail 6.49 0.03 747.3 3.54 140.90 0.67 889.7 4.2
MiMangaNu 9.31 0.02 1220.0 2.99 212.48 0.52 1441.8 3,53
Omni-Notes 8.74 0.04 638.8 2.90 115.40 0.50 763.0 3.5
PassAndroid 5.76 0.03 553.4 2.93 100.83 0.53 660.01 3.49
TravelMate 13.1 0.06 892.9 4.10 211.10 0.96 1117.1 5.12

Total 43.4 0.03 4052.4 3.25 780.7 0.62 4871.6 3.9

Most of the time was needed for the execution of the enhanced Espresso913

test scripts against the emulated devices. These times are much higher than914

those that would be measured for normal executions of Espresso test cases,915

because of the insertion of sleep times between each pair of instructions, and916

the time needed by the creation of screen captures and the extraction of screen917

hierarchies. The average time per interaction ranged from 2.9 seconds for Omni-918

Notes to 4.11 seconds for TravelMate: this higher value was likely due to the919

nature of the interactions, that, as shown in table 7, involved the highest number920

of lengthy swipe operations.921

The normalized times for 3rd generation script creation were instead much922

lower than those for the execution of enhanced scripts, and the times for the923

enhancement were almost negligible if compared to the others (20 to 60 mil-924

liseconds).925

Overall, the translation of test suites took between 15 to 24 minutes to926

complete, which is shorter compared to manual translation.927

Answer to RQ1: The translation-based approach, as implemented in Tog-
gle, was able to to perform six translations of the five test suites – 30 test cases
each – in just over 81 minutes, with a normalized time of about 4 seconds per
2nd generation test interaction.

928

5.4.2. RQ2 - Translation Precision929

We measured the Translation Precision on the last two experimental subjects930

we selected, namely TravelMate and K9-Mail. The results of the measured931

command translation rates are reported in table 11.932

After translation, we noted that six test scripts required manual interven-933

tions to run successfully. These interventions simply consisted in re-capturing934

the screen captures for the affected scripts, which could be done with marginal935

time expenditure.936

Five of these manual interventions were required for the TravelMate appli-937

cation. The reason was because of a text view that was not correctly captured938

by the adopted screenshot management tool since the widget was covered in939

the hierarchy by another widget. Additionally, one test case for the TravelMate940

application required a manual intervention during the enhancement phase, since941

31

Table 11: Command translation rate results

Error K9-Mail TravelMate

Enhancement errors 0 0
Execution errors 2 1

Screen capture errors 0 5

Total errors 2 6

Number of interactions 211 220

Errors per interaction 0.9% 2.7%

the added 2nd generation instructions required for the translation were not com-942

patible with the type of dialog boxes that were used in the traversed screens.943

K9-Mail also required manual interventions in the enhanced versions of two944

test cases since the typeTextIntoFocusedView command was not properly logged945

by the tool. The reason for the error was that an Espresso interaction was946

performed in a way that was ignored in the translation (i.e., it was applied on947

a specific sub-layout of the hierarchy and not on the complete screen hierarchy948

as expected by the tool).949

In total, there were over 200 script interactions for each of thetest suites950

developed for TravelMate and K9-Mail. As such, the command translation951

success ratio was 97.3% and 99.1%, respectively, for the two applications.952

As reported in the procedure section, the first three experimental subjects953

(namely, MiMangaNu, OmniNotes, and PassAndroid) were used in the iterative954

development phases of the TOGGLE framework, to identify and correct possi-955

ble translation issues. Therefore, as expected, all interactions - out of the 817956

total interactions of which the three test suites are composed - were correctly957

translated by the tool.958

959

Answer to RQ2: 8 out of 431 interactions (the 1.8%) – impacting 7 test
cases – required manual intervention on the translated test script and/or the
enhanced Espresso test scripts.

960

5.4.3. RQ3 - Visual Scripts Success Rate961

Figure 9 reports the average translation success rates (with 95% Confidence962

Interval) for each test tool and application. In addition, the aggregated average963

per tool is reported. Note that translation success-rate is measured based on the964

translated scripts ability to completely execute against the experimental subject965

Android apps. To reference the translated 3rd generation test scripts success-966

rate, the diagram also includes the Espresso 2nd generation test scripts’ success-967

rate (i.e. only execution success-rate since no translation was required), that968

was measured to assess the potential flakiness of the 2nd generation test cases969

themselves. The Espresso test cases, not surprisingly, all passed with a 100%970

success rate since they were developed for the experiment based on fully-working971

use cases of the applications, in absence of any known defect. From Figure 9 we972

can see that the CSE tool (Combined script with Sikuli (Java) as primary test973

32

85

76

82

66

30

68%

80

77

82

65

30

67%

98

90

93

79

96

91%

97

92

88

79

96

90%

90

90

97

85

85

89%

100

94

87

98

96

95%

100

100

100

100

100

100%

EA

EAJ

S

SJ

CES

CSE

E

20% 40% 60% 80% 100%

travelmate
k9
passandroid
omninotes
mimanganu

travelmate
k9
passandroid
omninotes
mimanganu

travelmate
k9
passandroid
omninotes
mimanganu

travelmate
k9
passandroid
omninotes
mimanganu

travelmate
k9
passandroid
omninotes
mimanganu

travelmate
k9
passandroid
omninotes
mimanganu

travelmate
k9
passandroid
omninotes
mimanganu

Success Rate

Figure 9: Average translation success rate for each test tool and app plotted with 95% confi-
dence intervals. EA - EyeAutomate (Native), EAJ - EyeAutomate (Java), S - Sikuli (Native),
SJ - Sikuli (Java), CES - Combined (EyeAutomate (Java) with Sikuli (Java) as backup), CSE
- Combined (Sikuli (Java) with EyeAutomate (Java) as backup), E - Espresso.

driver and with EyeAutomate (Java) as backup) exhibits the highest average974

success rate (95%) and the EAJ (Combined script with EyeAutonate (Java) as975

primary test driver and with Sikuli (Java) as backup) the lowest (67%).976

Table 12 reports the results of the logistic regression. We observe that all977

3rd generation tools, except EAJ exhibit a significant difference (all p-values978

< 10−3) in terms of success rate from the reference tool, i.e. EAJ. Moreover we979

can observe a significant difference among the apps.980

The EyeAutomate tool, both when running with the specific plain text syn-981

tax through the Script Runner or in Java Code through the usage of its APIs,982

was the least successful, with average success rates of 68% and 67% respectively.983

Average success rates for the EyeAutomate test cases ranged from around 30%,984

for the TravelMate app, up to around 85%, for MiMangaNu.985

The average success rate for SikuliX test cases was higher than 90%. Break-986

ing down the results by App, we observe peaks near 98% for the MiMangaNu987

app. As we can deduce by looking at the confidence interval, no significant988

difference could be found between the average success rate of scripted versions989

of the test scripts and Java counterparts, for both SikuliX and EyeAutomate.990

33

Table 12: Logistic regression result for Success Rate (the reference level is consists in the tool
EA and the app MiMangaNu

β Estimate CI Std. Error p-value

β0 1.562 (1.368 , 1.756) 0.099 < 0.001
ToolEAJ -0.040 (-0.198 , 0.119) 0.081 0.624
ToolS 1.675 (1.461 , 1.888) 0.109 < 0.001
ToolSJ 1.568 (1.361 , 1.776) 0.106 < 0.001
ToolCES 1.456 (1.254 , 1.657) 0.103 < 0.001
ToolCSE 2.279 (2.020 , 2.538) 0.132 < 0.001
Appomninotes -0.588 (-0.810 , -0.365) 0.114 < 0.001
Apppassandroid -0.429 (-0.657 , -0.202) 0.116 < 0.001
Appk9 -1.208 (-1.419 , -0.998) 0.107 < 0.001
Apptravelmate -1.599 (-1.806 , -1.393) 0.106 < 0.001

Similar average success rates were obtained with the usage of combined output991

techniques.992

Overall the combination of SikuliX first and EyeAutomate second (CSE)993

was significantly better (comparing CIs) than CES, SJ, and S that showed no994

statistically significant difference among themselves, and in turn significantly995

better results than EA and EAJ. A sort of exception is PassAndroid, for which996

the best tool was CES. This outlying result was mainly due to more robust997

test execution behaviour of the EyeAutomate tool when swipe operations are998

involved, better detailed later.999

The breakdown of the proportion of Passing, Flaky and Failing Tests, mea-1000

sured for the six sets of 3rd generation scripts and divided by app are reported1001

in fig. 10. We can observe that for all the five applications, a high percentage1002

of EyeAutomate test cases (both with the test scripts and through the Java1003

APIs) failed in all executions. This percentage reaches 70% for TravelMate. On1004

the other hand, test cases written with SikuliX showed no failing test cases for1005

MiMangaNu and a maximum 17% of failing test cases for K9-Mail.1006

The usage of combined 3rd generation test cases led to even better results,1007

thanks to the usage of a backup visual tool when a recognition with the first1008

tool failed. While the combination with EyeAutomate as the primary tool had1009

a residual amount of failing test cases, the combination with SikuliX as primary1010

tool proved to have the lowest number of failing test cases overall: just a single1011

one for PassAndroid and TravelMate.1012

In addition to reporting the success rate distributions, we also analyzed –1013

based on the different results – the individual test cases, to understand the1014

reasons that led some tools and test cases to fail.1015

For instance, the EyeAutomate visual recognition library was unable to find1016

visual components like the Navigation Drawer icon (consisting of only three1017

white lines on a blue background, see figure 11), and the More Options icon1018

(consisting of three small dots, see figure 12)3. Some flakiness in SikuliX test1019

3Discussions with the tool’s developers revealed that the reason for these failures was likely
because the tool’s image recognition algorithm requires a certain amount of information (e.g.,

34

13%
17%

70%

17%
10%

73%

17%

83%

13%

87%

10%
3%

87% 100% 100%

23%
3%

73%

23%

77%

3%
17%

80%

3%
10%

87%

10%

90%

17%

83% 100%

17%
7%

77%

17%
7%

77%

3%
10%

87%

3%
30%

67%

3%

97%

3%
23%

73%
100%

33%

10%

57%

31%

3%

66%

20%
10%

70%

17%
3%

79%

10%
10%

79%

6%

94% 100%

70%

30%

69%

7%
24%

3%
10%

87%

3%
7%

90%

13%
10%

77%

3%
7%

90% 100%

m
im

anganu
om

ninotes
passandroid

k9
travelm

ate

EA EAJ S SJ CES CSE E

−50%

0%

50%

100%

−50%

0%

50%

100%

−50%

0%

50%

100%

−50%

0%

50%

100%

−50%

0%

50%

100%

Tool

P
ro

po
rt

io
n TestCat

a

a

a

Pass

Flaky

Fail

Figure 10: Proportion of passing, flaky and failing translated test cases

Figure 11: Navigation Drawer button (screen capture taken from the OmniNotes app)

Figure 12: More Options button (screen capture taken from the MiMangaNu app)

35

Table 13: Average number of backups for combined methods

App CES CSE

K9-Mail 0.81 0.20
MiMangaNu 0.64 0.01
Omni-Notes 0.27 0.10
PassAndroid 0.17 0.14
TravelMate 0.47 0.12

Overall 1 0.43 0.08

cases was connected to the need for swipe operations, which were less precisely1020

reproduced4.1021

The described failures showcase the varying capabilities of different image1022

recognition algorithms and also a secondary benefit of translation. Hence, trans-1023

lation can not just be used to transfer one generation of GUI tests to another,1024

but also allows translation to different technologies, or combinations of tech-1025

nologies, to best fit a certain context or purpose.1026

Hence, the combination of the tools improves the overall success rate for all1027

apps. The CES combination had a residual number of failing test cases even1028

when all executions were passing with CSE. Those remaining failing test cases1029

may be justified with situations in which EyeAutomate executes an operation1030

on a wrong locator (i.e., a false positive of the image recognition engine), hence1031

deviating the test case from its correct execution. In contrast, when an EyeAu-1032

tomate test gets stuck for not recognizing a widget, using the image recognition1033

algorithm of SikuliX as a backup allows “runtime repair” of the test case without1034

moving to the wrong states of the GUI.1035

Table 13 reports the average number of times the ”backup” tool was used1036

in the test cases. The overall values confirm that the SikuliX tool proved more1037

robust, being used more often as a backup of a failing EyeAutomate locator1038

than the vice-versa.1039

Answer to RQ3: None of the 3rd generation scripts achieved the same suc-
cess rate as Espresso test cases for all the three test suites considered for our
evaluation. The experiment proved, however, that very high success rates
(with peaks of 100%) can be obtained with visual test scripts created through
translation. The combination of multiple image recognition algorithms, with
one used as a backup for the other, proved to be a valid enhancement for the
success rate of translated tests.

1040

36

3.48

1.97

3.23

1.87

2.21

1.87

1.15

EA

EAJ

S

SJ

CES

CSE

E

0 2 4 6 8

mimanganu

omninotes

passandroid

k9

travelmate

mimanganu

omninotes

passandroid

k9

travelmate

mimanganu

omninotes

passandroid

k9

travelmate

mimanganu

omninotes

passandroid

k9

travelmate

mimanganu

omninotes

passandroid

k9

travelmate

mimanganu

omninotes

passandroid

k9

travelmate

mimanganu

omninotes

passandroid

k9

travelmate

Test case execution time [s] per Interaction

A
pp

Figure 13: Distribution of execution time, normalized by number of interactions, by tool and
app

37

Table 14: Linear model of time per interaction vs. Tool and App and test result (the intercept
corresponds to the reference level EA:MiMangaNu).

Coefficient Estimate p-value

(Intercept) 3.472 < 0.001
Tool-EAJ -1.511 < 0.001
Tool-S -0.345 < 0.001
Tool-SJ -1.701 < 0.001
Tool-CES -1.352 < 0.001
Tool-CSE -1.699 < 0.001
Tool-E -2.421 < 0.001
App-omninotes -0.196 < 0.001
App-passandroid -0.114 < 0.001
App-k9 0.109 < 0.001
App-travelmate 0.702 < 0.001

5.4.4. RQ4 - Visual Scripts Performance1041

Figure 13 presents the test case execution time for each tool and app, nor-1042

malized by the number of interactions performed. Only the passing test case1043

executions were taken into consideration for the computation. Checks (either1044

of individual widgets or the full screen) were counted as interactions since the1045

time required by the image recognition algorithm to find a match is equivalent1046

regardless if the purpose is to identify a position for interaction or simply to1047

find if a widget is present. Once more, Espresso has been added as a benchmark1048

to see how the other tools compare. The number of interactions performed in1049

Espresso test cases was the same as in the translated 3rd generation ones, except1050

the final full check of the app screen (i.e. the assertion) that was not present in1051

developed Espresso test cases.1052

Table 14 reports the coefficients for the linear regression of the time per1053

interaction vs. the indicator variables corresponding to the different tools and1054

apps. The non-parametric permutation test on the linear model coefficients1055

shows a significant difference between measured average time per interaction1056

depending on tool (all p < 10−16) and a significant effect of the application (all1057

p < 10−16). In other words, the results say that:1058

1. changing the target tool of the translated scripts is sufficient to provide1059

a significant change in the measured time per interaction, due to varying1060

image recognition algorithms adopted;1061

2. changing the AUT leads to a significant change in the measured time per1062

interaction, a reasonable result since different AUTs may need different1063

sets of actions and varying delays.1064

an image of large enough size or advanced enough pattern) to accept the image as a match.
The three lines or dots did not fulfil these criteria and were therefore ignored.

4An analysis of the SikuliX code suggested that additional overhead is added by the
SikuliX methods to mimic a smoother, human-like interaction with the AUT. This overhead
may cause a slower movement of the Android widgets, that are moved back to the original
position if the swipe movement is too slow.

38

Table 15: Average time and average net time per interaction, per tool (seconds)

Tool Time per int. Net time per int.

EA 3.48 2.48
S 3.23 2.23
EJ 1.97 0.97
SJ 1.87 0.87
CES 2.21 0.97
CSE 1.87 0.82

The magnitude of average time variation induced by change of the tool is one1065

order of magnitude larger than switching to a different AUT.1066

Espresso guaranteed a lower average execution time per interaction. The1067

main reason for this is the tool’s use of properties that has inherently higher1068

performance due to less required calculations than the image recognition ap-1069

proach. Additionally, Espresso, being integrated into the Android framework,1070

can filter the intents for Activity switching and automatically wait for the exact1071

time for an Activity or widget to appear on the screen, thus minimizing waiting1072

times. The higher execution time of 3rd generation tools is a finding that has1073

been reported by many works in the literature [48][10], and the results reported1074

in this paper are in line with manuscripts comparing the performance between1075

the two technologies. Similarly, the comparison between the execution time of1076

different 3rd generation tools is a supporting contribution of this study.1077

The difference in average time per interaction caused by the different apps1078

can be explained by the fact that the patterns of interactions with the five ap-1079

plications are different, e.g., PassAndroid and TravelMate required more longer1080

swipe operations than the other AUTs.1081

The fastest tools after Espresso were the Java version of SikuliX, and Eye-1082

Automate’s Java API. Hence, an interesting observation is that, both tools had1083

lower performance when tests were written in the tool’s specific syntax than in1084

their respective Java APIs. This may be explained by the fact that the test1085

cases were run inside a Java environment, instantiating script runners provided1086

by the respective libraries. An alternative explanation is that the script tools’1087

implementations caused additional overhead that is not present in when the1088

bare-bone image recognition libraries are used.1089

As expected, the combined test versions had a bit worse performance than1090

any of the tools individually. The reason is TOGGLE’s approach of creating1091

tests that always try with one tool first, and only if it fails, after a set time (of 51092

seconds), uses the second tool. Both combined solutions had, however, a better1093

performance than the scripts developed in the tool-specific syntaxes.1094

Table 15 shows a comparison between the average interaction time for all1095

the tools, and the relative net interaction times (obtained by removing sleep1096

and backup times that had been inserted in the test cases).1097

We measured a relevant difference also between the net interaction time re-1098

quired by the scripted versions of the tests compared to the test suites leveraging1099

the Java APIs of the two adopted testing tools. The difference is of more than1100

one second per interaction for both SikuliX and EyeAutomate. No substantial1101

39

difference in terms of net interaction time, on the other hand, was found between1102

the test suites written in Java, with CSE (Combined Sikuli-Eyeautomate) being1103

the fastest and CES and EJ (Combined EyeAutomate-Sikuli and the Java API1104

of EyeAutomate) the slowest.1105

Answer to RQ4: The 2nd generation approach, as expected, has significantly
lower execution time compared to any of the single or combined 3rd generati-
on solutions. We also measured a significant difference between the average
time per interaction measured with the six considered 3rd generation testing
tools, with the Java version of Sikuli being the fastest.

1106

5.4.5. RQ5 - Robustness to Device Fragmentation1107

To evaluate the fragmentation fragility reduction, we utilized the combined1108

Sikuli-Eyeautomate (CSE) test suites, obtained from the previous experiments,1109

since they had the best overall behaviour in terms of success rate for all AUTs,1110

on the Nexus 5X.1111

The dumbbell plot in fig. 14 shows the success rates of the visual tests1112

originally captured and converted on the Nexus 5X and executed in nine other1113

different devices (bullet), versus the success rate of the suite – automatically –1114

re-captured on the very same devices (triangle).1115

We observe that the test cases translated on the Nexus 5X (bullets in fig. 14)1116

were almost completely portable to the Nexus 6P and Pixel XL devices, likely1117

because of the similar size of the pictorial rendering of the device on-screen.1118

On the other hand, most likely due to rendering differences of varying pixel1119

density, the test suite was not fully portable to the Nexus 5, even though it1120

shared the screen size with the Nexus 5X. The portability was also limited on1121

Nexus 6 and Pixel, which was caused by minor changes in the rendering of the1122

buttons. For devices with smaller screens (Galaxy Nexus, Nexus 4, Nexus One,1123

Nexus S), the tests could rarely be ported due to the very different sizes of the1124

rendered widgets. On average, on all devices, only 31.6% of visual test cases1125

were portable (less than 10% for five devices out of nine).1126

These results clearly demonstrate that the negative impact of Device Frag-1127

mentation on Visual tests is quite high for Android applications when the screen1128

size and the pixel density of the target device are different from those of the1129

device on which the test suite has been captured.1130

On the other hand, looking at the success rate of the re-captured test suites1131

(triangles in fig. 14) , the vast majority of the test cases that were translated1132

to specific devices, starting from a common layout-based counterpart, were suc-1133

cessful (at most flaky). Two devices (the Nexus S and Nexus One) exhibited1134

the lowest percentage of working translated test cases. This was caused by the1135

fact that several Espresso test cases (3 for OmniNotes, 2 for PassAndroid, one1136

for MiMangaNu, eight for K9-mail) were not executable on those devices. Due1137

to their smaller screen size, different layouts were rendered, with widgets that1138

were not displayed to the users. Whilst this was a hindering result for the ex-1139

periment, it also showed a benefit of translation, since the3rd generation tests1140

40

mimanganu
omninotes

passandroid
k9

travelmate

2% 97%

mimanganu
omninotes

passandroid
k9

travelmate

6% 98%

mimanganu
omninotes

passandroid
k9

travelmate

3% 93%

mimanganu
omninotes

passandroid
k9

travelmate

26% 99%

mimanganu
omninotes

passandroid
k9

travelmate

96% 98%

mimanganu
omninotes

passandroid
k9

travelmate

1% 77%

mimanganu
omninotes

passandroid
k9

travelmate

3% 78%

mimanganu
omninotes

passandroid
k9

travelmate

58% 98%

mimanganu
omninotes

passandroid
k9

travelmate

92% 97%

galaxy_nexus

nexus_4

nexus_5

nexus_6

nexus_6p

nexus_one

nexus_s

pixel

pixel_xl

0% 20% 40% 60% 80% 100%
Success rate

A
pp

suite original retranslated

Figure 14: Change in visual test success rate between suite originally captured on different
device and re-captured on same device.

41

would fail due to layout issues. In fact, some of these faults could be classified1141

as being detrimental to app usability, i.e. tests of a non-functional attribute of1142

the AUTs.1143

Also, the options button was not shown because a physical button – then1144

removed from Android devices – was used to that purpose. In these cases, the1145

layout-based test cases themselves were fragile to device diversity. Thus they1146

could not be used to create valid image recognition-based counterparts. For all1147

other devices, 90.0% or more of the translated test cases were passing or flaky.1148

The described results suggest that it is possible to adapt existing layout-1149

based test suites to varying devices with minimal effort, to be spent in modifying1150

the residual visual locators or oracles that cause false negatives in the translated1151

3rd generation test cases.1152

Answer to RQ5: Only 31.6% of the visual test cases, on average, were
portable to other devices. The use of a translation-based approach that cre-
ates test cases on different devices starting from a common set of layout-based
tests achieved a better result with 93.3% portability of a sample of 150 test
cases, developed for five applications, over nine devices with varying charac-
teristics.

1153

5.4.6. RQ6 - Robustness to Graphic Fragility1154

mimanganu

omninotes

passandroid

k9

travelmate

10% 100%

7% 97%

7% 97%

13% 87%

7% 93%

20% 40% 60% 80% 100%
Success rate

A
pp

suite original retranslated

Figure 15: Percentage of passing (or flaky) test cases for the original test suites, and for the
test suites re-translated after graphic modifications were applied to the apps

The dumbbell plot in figure 15 report the results of the evaluation that we1155

performed to measure the robustness to Graphic Fragility of the translation-1156

based approach. We injected graphic modifications to 15 separated widgets1157

for each of the five software objects. In this case, we utilized the CSE output1158

combination of the TOGGLE tool as the test suite for our experiment.1159

42

In the plot, we report the percentage of passing or at least flaky test cases for1160

each app, for the test suite translated before modifications were injected (bullet),1161

and for the one re-translated after the modifications were applied to the app1162

(triangle). The discussed results can be considered as a proxy to evaluate the1163

benefits of the application of a translation-based approach to cope with graphic1164

maintenance of existing AUTs.1165

It can be seen that the graphic changes invalidated the vast majority of the1166

original 3rd generation test cases for all the considered apps. The number of1167

original test cases that still passed on the modified AUTs ranged from 2 to 41168

(for K9-Mail).1169

On the other hand, when the test cases were re-translated, the number of1170

passing ones ranged from 26 (for K9-Mail) to 30 (for MiMangaNu).1171

Some test cases did not pass even after the translation: for instance, the1172

changes in OmniNotes involved a modification in a small TextView that likely1173

was not recognized after the modification by both the 3rd generation drivers.1174

For K9-Mail, three test cases were not re-translatable because of the Espresso1175

tool itself not working properly on rotated views.1176

However, the effort of repairing those test cases (for instance, by selecting1177

a bigger portion of the screen instead of just the bounding box of the specific1178

widget, or by recreating an interaction with a rotated widget) can be deemed1179

minimal if compared to the manual re-capture of all the changed widgets, and1180

the manual fixing of all the test cases using them.1181

Answer to RQ6: The automated re-translation of test cases provided a
reduction of around 90% of the occurrence of graphic change fragility. While
just 13 visual test cases out of 150 could still be used on the changed GUIs,
the re-translation with TOGGLE was able to repair 128 test cases, for a total
of 142 working test cases out of 150.

1182

6. Discussion1183

The experiments we conducted have highlighted the feasibility and the bene-1184

fits of a translation-based approach from 2nd generation to 3rd generation in the1185

mobile testing domain.1186

The migration of a layout-based test suite to a visual one lowers the need1187

for costly manual operations – for both creation and maintenance – in any1188

application domain. These costs are particularly high for mobile applications,1189

where changes in the GUIs are frequent and where fragmentation issues (related1190

to both graphical modifications and device change) have a significant impact.1191

We implemented the proposed approach in a tool named TOGGLE. Al-1192

though the tool covers a subset of interactions available in Espresso, it is capa-1193

ble of translating the most commonly used ones – w.r.t. test suites developed1194

with such tool – and this translation proved to be fast and correct for nearly all1195

interactions.1196

A thorough assessment of any tool requires the evaluation of the usefulness1197

of its output. Therefore we evaluated two usage scenarios: (i) re-translation1198

43

of the same test suite in case of fragility induced by device fragmentation; (ii)1199

re-translation of the same test suite in case of graphical fragility. We observed1200

the portability of test suites to different devices was enhanced by this approach;1201

this would likely lead to reduced maintenance costs when the graphical features1202

of the AUT are changed.1203

As such, the results provide a proof of concept and indicate that the users1204

of such a translation-based approach can get the benefits of visual testing, with1205

a significant reduction of the cost for capturing the right oracles and locators.1206

It is important to notice that the current approach assumes that the AUT1207

is not faulty, i.e., that the 3rd generation test cases are obtained on a version1208

of the application that has no regressions. If defects are encountered at the1209

time of translation, wrong captures may be obtained for both visual locators1210

and oracles, leading to erroneous sequences of interactions in the resulting visual1211

test scripts, that would require manual effort from the testers to be repaired. We1212

observe that such drawbacks are similar to those affecting model-based testing,1213

i.e. the automated inference of models of the GUI from the AUT. This latter1214

technique is significantly cheaper than the manual creation of models, however,1215

it may produce faults in the generated models, hence requiring validation and1216

additional information that has to be provided manually [49][50].1217

6.1. Practical implications1218

It is important to emphasize the consequences of our findings in the context1219

of practical development:1220

• Suitability for automation: the translation process is entirely automated;1221

manual intervention in case of wrong translations, that in our experience1222

affected less than 2% of test cases. We also need to stress that ours is a1223

proof-of-concept tool, not and industrial-grade instrument.1224

• Translation efficiency : the tools is able to translate 2nd generation test1225

cases into 3rd generation ones at a pace of one every four seconds.1226

• Test dependability : the resulting 3rd generation test cases were less depend-1227

able than the 2nd generation counterparts. The combination of different1228

image recognition algorithms improved that, but still the proportion of1229

passing tests ranged between 73% to 100%. As a disclaimer, we observe1230

that these are limitations inherent in 3rd generation tools and are not spe-1231

cific to our approach. Therefore future improvements in this category of1232

tools would trigger improvement in our approach too.1233

• Test execution: the execution of the translated 3rd generation test cases1234

took roughly 60% more time than the 2nd generation ones. As for de-1235

pendability, here the approach is limited by inherent characteristics of the1236

3rd generation tools.1237

• Device fragmentation reduction: our approach was able to raise repro-1238

ducibility of tests across different devices from 32% to 93%. This is not a1239

definitive solution, though it represents a powerful mitigation.1240

44

• Graphical change fragility : the re-translated test cases showed and en-1241

hanced average reproducibility of 95% versus the original 9%. In practice1242

our approach dramatically improved the resilience of 3rd generation tests1243

then purely graphical changes are applied to applications.1244

6.2. Current limitations and open issues1245

As exposed in the tool’s implementation details, the TOGGLE tool currently1246

only works for widgets that can be interacted with through calls to the onView1247

family of methods. For this reason, the tool is unable to execute commands1248

directly on elements of dynamically populated structures, like RecyclerViews1249

and GridViews, with custom layout descriptors for the individual elements.1250

However, if those elements have textual content, it can still be used as a layout-1251

based locator to be translated into a visual one (with possible movements in the1252

user interface with swipe operations if the element is outside the current screen1253

of the app).1254

Among all the possible ViewActions that apply to Android Widgets, the tool1255

still does not feature an automated translation for the ScrollTo interaction. The1256

difficulties in translating this operation are mainly related to the calibration of1257

the slow scrolling that is needed to find elements inside a scrollable Adapter1258

based on its appearance. If the scrolling happens too fast, it may go past1259

the sought widget, and if it is too slow, it will negatively affect the scripts’1260

performance. We are currently seeking ways to implement this exploration1261

of scrollable elements of the GUI to avoid adding excessive overhead to the1262

generated visual test scripts as well as guaranteeing sufficient dependability.1263

Also, the PressIMEActionKey interaction is still not implemented because1264

of the inability to take screenshots of the Virtual Keyboard with the instrumen-1265

tation that we are currently using. We are aiming to provide coverage of this1266

functionality by implementing clicks on a specific part of the emulated device1267

known to host the IMEActionButton in the Android default virtual keyboard1268

(right-bottom corner).1269

Furthermore, the tool currently has no support for finding visual elements1270

that have the same appearance as others, i.e., a generated Visual test is likely1271

to report a false negative result if multiple widgets in the interface share the1272

same visual appearance. This situation is quite common for Android apps, e.g.,1273

for menus of Radio Buttons, and therefore is classified as a major challenge1274

for the approach. We are aiming at implementing the management of elements1275

with the same appearance by maintaining a screen capture of the whole GUI1276

for any interaction, and by finding coordinates of the widgets to be interacted1277

with inside the whole screen. A similar approach has been proven beneficial in1278

the literature [51].1279

In any case, the current limitations of the tool can result in the need for1280

minor manual adjustments on the generated test suites. This effort in fixing1281

oracles and locators is lower than that needed for the full manual re-capture of1282

a visual test suite.1283

45

7. Related Work1284

The proposed approach adds to studies available in the literature, that con-1285

ceptualize the possible benefits of a combined approach of 2nd and 3rd genera-1286

tion testing tools [2]. The results of those empirical evaluations show that the1287

2nd generation approach interacts and asserts the GUI model, leading to more1288

false-negatives than 3rd generation approach for acceptance test; on the other1289

hand, the 3rd generation approach, which mimics a real user’s interaction with1290

the GUI, reports more false positives than the 2nd generation approach for sys-1291

tem testing. The different behaviour and the different type of information that1292

is verified against the actual state of the application suggest that the techniques1293

should be adopted in combination for better test performance. 2nd and 3rd ge-1294

neration testing tools have also been compared in terms of learnability, quality,1295

and robustness of the developed test suites, as perceived by practitioners [44].1296

The present work is also related to existing literature that aims at combining1297

layout-based and visual testing, that evaluates the benefits and drawbacks of1298

both techniques, or that proposes novel methodologies to generate more robust1299

and portable visual locators.1300

7.1. Translation-based approaches1301

A translation-based approach similar to that used by TOGGLE has been1302

already proposed by Leotta et al. in the field of Web-Application testing,1303

where DOM-based 2nd generation test cases (developed with Selenium Web-1304

Driver) were translated to 3rd generation test cases (written with Sikuli) [7][52].1305

The reported evaluation of the tool highlighted the enhanced maintainability1306

and ease of re-creation of 3rd generation test cases, compared to the original1307

2nd generation ones from which they were obtained.1308

The said approach is based on the translation of DOM-based test cases,1309

that can be generalized to any web application, even web-based or hybrid mobile1310

applications. The approach we propose is instead specifically tailored to Android1311

apps since it is based on layout-based test cases which use native properties of1312

Android apps as locators (e.g., unique ids or content descriptions).1313

Our approach also covers a higher number of interactions with the SUT1314

than PESTO, which instead only covers click, type and check instructions. This1315

property is due to the higher number of instructions featured by the platform-1316

specific tools considered as the source for the translation. The TOGGLE tool1317

needed to be designed to manage commands that cannot be translated directly1318

to atomic 3rd generation instructions, e.g., scroll and swipe operations.1319

Compared with PESTO, our approach does not consider the possibility of1320

interacting with multiple elements with the same on-screen appearance, even1321

though this limitation can be solved by future developments of the project.1322

On the other hand, while the test cases generated with PESTO required1323

some (even though minimal) manual adaptation of the generated test code, our1324

tool does not require any manual adaptation of the generated visual test scripts.1325

The difference between the architectures required by PESTO and our tool1326

underlines how – albeit being similar in concept – the translation of 2nd to1327

46

3rd generation test cases entails different criticalities if applied to web-based or1328

mobile test cases, and can be used as a technique to mitigate different issues1329

that are domain-specific.1330

7.2. Repair-based approaches1331

Many studies in the literature have focused on a repair-based approach,1332

aiming at correcting locators or instructions in test cases that fail when the1333

AUT changes. Imtiaz et al. highlight the main trends in the field of studying1334

test scripts repairing automation, applied on the web domain [53]. On the other1335

hand, few tools were specific to the GUI testing of mobile applications. Li et al.1336

introduce ATOM, a tool for automated maintenance of test scripts for mobile1337

applications [54]. To perform this task, ATOM uses two different models: an1338

Event Sequence Model (ESM) and a Delta ESM (DESM), that respectively1339

represent a possible event sequence and the possible changes done on the GUI1340

transitioning from a version of the application to the next one.1341

CHATEM [3] extends ATOM to implement change-based testing. In prac-1342

tice, taking two different versions of the same application (e.g., two consecutive1343

releases), the tool can extract the changes between the two GUIs and to generate1344

maintenance actions for each change, combining them to create repair actions1345

for the broken test scripts.1346

The described tools, compared with TOGGLE, are specifically tailored to1347

solve the issue of (graphic) change-related fragility and need the extraction of a1348

model of the user interface to enable the repair of broken test suites.1349

7.3. Computer vision-based approaches1350

Several studies have designed approaches based on computer vision to adapt1351

test suites designed for a given SUT on different devices. Thereby, those studies1352

aimed at reducing the costs for tackling the issue of fragmentation of visual1353

test cases. Yu et al. described LIRAT [55], an image-driven tool that aims at1354

recording and replay test scripts for the same application on different devices1355

and platforms. The tool is based on image understanding techniques (namely,1356

the SIFT feature extraction algorithm and KNN) to locate similar images on1357

different renditions of the same GUI. Differently from the translation-based1358

approach we propose, the tool does not take existing layout-based test cases1359

as input, but instead relies on a single-step Script Recording phase performed1360

by the tester/developer at the beginning of the process. Tuovenen et al. have1361

described MAuto [56], a tool for the creation of cross-device visual test cases1362

for Android apps. MAuto uses AKAZE features and is primarily tailored to1363

reproduce user interaction with mobile games.1364

Behrang and Orso described AppTestMigrator [57], a tool that attempts to1365

automatically transform a sequence of events and oracles designed for a specific1366

app to other similar applications. AppTestMigrator leverages commonalities1367

between user interfaces to automatically migrate existing tests written for an1368

app to another similar app.1369

47

Cardenas et al. developed a tool named V2S [58] which generates replayable1370

test scripts from video recordings of Android applications. The tool is primarily1371

based on computer vision techniques.1372

8. Threats to Validity1373

Threats to Construct Validity: We have considered the success rate as1374

a proxy for the evaluation of the precision of test cases, i.e., we expect that tests1375

for working features must pass.1376

The results about the performance of the generated 3rd generation test scripts1377

are influenced by the static sleep instructions added during the translation of1378

2nd generation scripts, which by converse need no explicit sleep instructions.1379

The reports about the net time for interaction that are reported can just be1380

used as an estimate of the lowest possible time for performing an interaction1381

with the proposed Visual tools since a time interval for the rendering of the1382

user interface, after the execution of commands, is not avoidable. In future1383

enhancements of the tool, the sleep instructions should be made dynamic, uti-1384

lizing GUI-state information to determine changes in the rendered screen before1385

searching for visual locators. Dynamic sleep instructions are perceived to help1386

the performance by mitigating unnecessary waiting time between consecutive1387

interactions.1388

Threats to Conclusion Validity: To verify the presence of a statistically1389

significant difference among different target tools, we applied standard statistical1390

tests. The results are clear cut and consistent with the visual representations1391

that report standard (95%) confidence intervals or complete distributions.1392

Researcher bias is another possible threat to the validity of this study since1393

it involved a comparison in terms of different metrics of different 3rd generation1394

testing tools. However, the authors have no reason to favour any particular1395

approach, neither inclined to demonstrate any specific result.1396

Threats to External Validity: We recognize that the documented exper-1397

imental design includes some bias as only interactions supported by the trans-1398

lator were used, i.e., only the Espresso commands belonging to the OnView1399

family. The results of this evaluation are hence theoretically not generalizable1400

to any Espresso test suite. However, TOGGLE’s array of supported interactions1401

include the most common ones used in Espresso, determined by an analysis of1402

a set of 22,000 Espresso test files extracted from GitHub. Specifically, on the1403

examined set, 97.33% of commands belonged to the OnView set, with just the1404

remaining 2.67% belonging to the OnData set, not supported by the tool we1405

developed. This finding indicates that our results would be applicable to the1406

vast majority of test cases developed from open-source developers.1407

We also performed a statistical analysis, to ensure that the set of properties1408

and actions we used is representative of what is widely used in available GitHub1409

repositories. Hence, we applied the Chi-Square tests to verify the Null Hypothe-1410

ses H0va: The View Actions in the developed test suites and the View Actions1411

used in test cases mined from open-source repositories do not belong to the same1412

48

distribution, and H0vi: The View Identifiers in the developed test cases and the1413

View Actions used in test suites mined from open-source repositories do not be-1414

long to the same distribution. We could reject both null hypotheses (p < 10−16),1415

hence we can assume that the View Actions and Interactions we used belonged1416

to the same distribution of those in tests mined from open-source repositories.1417

The approach we developed is based on the assumption that the state of1418

the application is always reflected by the pictorial GUI shown to the user. This1419

means that 2nd generation test cases containing assertion on a lower level of1420

abstraction (i.e., internal properties of the widgets or values of the variables1421

declared in the code of Activities) cannot be entirely translated to equivalent1422

3rd generation test cases, that cannot verify state changes that are not reflected1423

by the appearance of the widgets of the graphical hierarchy. As well, Espresso1424

test cases may contain direct interaction with methods declared in Activities1425

without passing through widget interaction. These instructions do not have a1426

visual testing counterpart. However, using these instructions in Espresso would1427

result in developing unit tests of the SUT instead of pure GUI layout-based1428

test cases, thereby having test artefacts that are by construct not eligible to be1429

reproduced by visual test script drivers.1430

As of now, the findings of the experimental section apply to the considered1431

2nd and 3rd generation testing tools only, limiting the external validity of this1432

work. However, it is possible to extend the syntaxes supported by TOGGLE by1433

taking into consideration other testing tools, especially existing GUI Automa-1434

tion Frameworks for Android (e.g., Appium, or UIAutomator). Additionally, it1435

is not assured whether the precision, performance, and fragility reduction val-1436

ues would be the same if measured with different typologies of applications with1437

a very different graphical appearance compared to those that were considered1438

(e.g., very graphically intensive projects such as games or video players). As1439

well, the measured execution times proved to be strongly dependent on the type1440

of interactions executed on the AUT, hence lowering the external validity of the1441

results.1442

9. Conclusion and Future Work1443

In this work, we proposed the proof of concept of a novel approach for the1444

creation of visual test cases in the mobile domain. The approach has been1445

implementated in a tool called TOGGLE. The tool can translate layout-based1446

2nd generation test cases, written in Espresso, to visual 3rd generation test cases1447

using the SikuliX and EyeAutomate syntax. Similar approaches have previ-1448

ously been evaluated in the field of web applications and DOM-based testing.1449

However, to the best of our knowledge, this represents the first work in the1450

literature about the translation-based generation of GUI test cases for mobile1451

applications.1452

To investigate the feasibility of the approach and its capability in overcom-1453

ing known limitations of visual testing for mobile apps, we have experimented1454

with five test suites that we developed for as many popular Android open-source1455

49

applications. The tool was able to generate working test cases with high pre-1456

cision and high success rate. It demonstrated that it is possible to reduce the1457

testers’ maintenance and development efforts by reusing existing layout-based1458

test suites to create and maintain visual ones.1459

In addition to fixing some current limitations of the tool at its current state1460

of development, the natural prosecution of this work will be an evaluation of1461

the approach in a real industrial environment, to quantify its benefits in the1462

creation and maintenance of real-world test suites.1463

As other future steps, we also identify the evaluation of an inverse translator,1464

able to define layout-based test suites from existing visual ones. The backward1465

translation would provide the added benefits of a possible creation of 2nd ge-1466

neration test scripts through reuse of existing 3rd generation counterparts, and1467

the mitigation of layout-based fragilities (i.e., changed 2nd generation locators1468

invalidating layout-based test cases) by re-translation from 3rd generation tests1469

that are still valid. This feature would allow a significant reduction of the1470

maintenance cost of layout-based test suites, for which the impact of fragilities1471

is known to be relevant [37].1472

Also, we plan to provide companion translators, compatible with test scripts1473

written with other layout-based testing tools, and to extend the approach to1474

hybrid/web-based Android apps.1475

References1476

[1] I. Banerjee, B. Nguyen, V. Garousi, A. Memon, Graphical user interface1477

(gui) testing: Systematic mapping and repository, Information and Soft-1478

ware Technology 55 (10) (2013) 1679–1694.1479

[2] E. Alégroth, Z. Gao, R. Oliveira, A. Memon, Conceptualization and evalu-1480

ation of component-based testing unified with visual gui testing: an empir-1481

ical study, in: Software Testing, Verification and Validation (ICST), 20151482

IEEE 8th International Conference on, IEEE, 2015, pp. 1–10.1483

[3] N. Chang, L. Wang, Y. Pei, S. K. Mondal, X. Li, Change-based test script1484

maintenance for android apps, in: 2018 IEEE International Conference on1485

Software Quality, Reliability and Security (QRS), IEEE, 2018, pp. 215–225.1486

[4] L. Wei, Y. Liu, S.-C. Cheung, Taming android fragmentation: Character-1487

izing and detecting compatibility issues for android apps, in: Proceedings1488

of the 31st IEEE/ACM International Conference on Automated Software1489

Engineering, 2016, pp. 226–237.1490

[5] M. Kamran, J. Rashid, M. W. Nisar, Android fragmentation classification,1491

causes, problems and solutions, International Journal of Computer Science1492

and Information Security 14 (9) (2016) 992.1493

[6] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, D. Lo, Under-1494

standing the test automation culture of app developers, in: 2015 IEEE 8th1495

50

International Conference on Software Testing, Verification and Validation1496

(ICST), 2015, pp. 1–10.1497

[7] M. Leotta, A. Stocco, F. Ricca, P. Tonella, Pesto: Automated migration1498

of dom-based web tests towards the visual approach, Software Testing,1499

Verification And Reliability 28 (4) (2018) e1665.1500

[8] R. Coppola, L. Ardito, M. Torchiano, M. Morisio, Mobile testing: New1501

challenges and perceived difficulties from developers of the italian industry,1502

IT PROFESSIONAL (To appear) 6.1503

[9] L. Ardito, R. Coppola, M. Torchiano, E. Alégroth, Towards automated1504

translation between generations of gui-based tests for mobile devices, in:1505

Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, ACM,1506

2018, pp. 46–53.1507

[10] E. Alégroth, Visual GUI Testing: Automating High-level Software Testing1508

in Industrial Practice, Chalmers University of Technology, 2015.1509

[11] M. Linares-Vásquez, K. Moran, D. Poshyvanyk, Continuous, evolutionary1510

and large-scale: A new perspective for automated mobile app testing, in:1511

Software Maintenance and Evolution (ICSME), 2017 IEEE International1512

Conference on, IEEE, 2017, pp. 399–410.1513

[12] B. Sadeh, K. Ørbekk, M. M. Eide, N. C. Gjerde, T. A. Tønnesland,1514

S. Gopalakrishnan, Towards unit testing of user interface code for android1515

mobile applications, in: International Conference on Software Engineering1516

and Computer Systems, Springer, 2011, pp. 163–175.1517

[13] H. Zadgaonkar, Robotium Automated Testing for Android, Packt Publish-1518

ing Ltd, 2013.1519

[14] S. Negara, N. Esfahani, R. P. Buse, Practical android test recording with1520

espresso test recorder, in: Proceedings of the 41st International Conference1521

on Software Engineering: Software Engineering in Practice, IEEE Press,1522

2019, pp. 193–202.1523

[15] L. Gomez, I. Neamtiu, T. Azim, T. Millstein, Reran: Timing-and touch-1524

sensitive record and replay for android, in: Proceedings of the 2013 Inter-1525

national Conference on Software Engineering, IEEE Press, 2013, pp. 72–81.1526

[16] Y. Hu, T. Azim, I. Neamtiu, Versatile yet lightweight record-1527

and-replay for android, SIGPLAN Not. 50 (10) (2015) 349–366.1528

doi:10.1145/2858965.2814320.1529

URL https://doi.org/10.1145/2858965.28143201530

[17] M. Halpern, Y. Zhu, R. Peri, V. J. Reddi, Mosaic: cross-platform user-1531

interaction record and replay for the fragmented android ecosystem, in:1532

Performance Analysis of Systems and Software (ISPASS), 2015 IEEE In-1533

ternational Symposium on, IEEE, 2015, pp. 215–224.1534

51

[18] M. Fazzini, E. N. d. A. Freitas, S. R. Choudhary, A. Orso, Barista: A tech-1535

nique for recording, encoding, and running platform independent android1536

tests, in: Software Testing, Verification and Validation (ICST), 2017 IEEE1537

International Conference on, IEEE, 2017, pp. 149–160.1538

[19] K. Moran, R. Bonett, C. Bernal-Cárdenas, B. Otten, D. Park, D. Poshy-1539

vanyk, On-device bug reporting for android applications, in: Mobile Soft-1540

ware Engineering and Systems (MOBILESoft), 2017 IEEE/ACM 4th In-1541

ternational Conference on, IEEE, 2017, pp. 215–216.1542

[20] K. Mao, M. Harman, Y. Jia, Sapienz: Multi-objective automated testing for1543

android applications, in: Proceedings of the 25th International Symposium1544

on Software Testing and Analysis, ACM, 2016, pp. 94–105.1545

[21] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome,1546

D. Poshyvanyk, Crashscope: A practical tool for automated testing of an-1547

droid applications, in: Software Engineering Companion (ICSE-C), 20171548

IEEE/ACM 39th International Conference on, IEEE, 2017, pp. 15–18.1549

[22] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, Z. Su,1550

Guided, stochastic model-based gui testing of android apps, in: Proceedings1551

of the 2017 11th Joint Meeting on Foundations of Software Engineering,1552

ACM, 2017, pp. 245–256.1553

[23] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, A. M. Memon,1554

Mobiguitar: Automated model-based testing of mobile apps, IEEE software1555

32 (5) (2015) 53–59.1556

[24] T. Yeh, T.-H. Chang, R. C. Miller, Sikuli: using gui screenshots for search1557

and automation, in: Proceedings of the 22nd annual ACM symposium on1558

User interface software and technology, ACM, 2009, pp. 183–192.1559

[25] E. Alegroth, M. Nass, H. H. Olsson, Jautomate: A tool for system-and1560

acceptance-test automation, in: 2013 IEEE Sixth International Conference1561

on Software Testing, Verification and Validation, IEEE, 2013, pp. 439–446.1562

[26] E. Alégroth, A. Karlsson, A. Radway, Continuous integration and visual1563

gui testing: Benefits and drawbacks in industrial practice, in: Software1564

Testing, Verification and Validation (ICST), 2018 IEEE 11th International1565

Conference on, IEEE, 2018, pp. 172–181.1566

[27] E. Alégroth, R. Feldt, P. Kolström, Maintenance of automated test suites1567

in industry: An empirical study on visual gui testing, Information and1568

Software Technology 73 (2016) 66–80.1569

[28] E. Alégroth, R. Feldt, On the long-term use of visual gui testing in indus-1570

trial practice: a case study, Empirical Software Engineering 22 (6) (2017)1571

2937–2971.1572

52

[29] F. Dobslaw, R. Feldt, D. Michaelsson, P. Haar, F. G. Neto, R. Torkar, Es-1573

timating return on investment for gui test automation tools, arXiv preprint1574

arXiv:1907.03475 (2019).1575

[30] Y.-D. Lin, J. F. Rojas, E. T.-H. Chu, Y.-C. Lai, On the accuracy, effi-1576

ciency, and reusability of automated test oracles for android devices, IEEE1577

Transactions on Software Engineering 40 (10) (2014) 957–970.1578

[31] M. Linares-Vásquez, C. Bernal-Cárdenas, K. Moran, D. Poshyvanyk, How1579

do developers test android applications?, in: Software Maintenance and1580

Evolution (ICSME), 2017 IEEE International Conference on, IEEE, 2017,1581

pp. 613–622.1582

[32] V. Garousi, M. Felderer, Developing, verifying, and maintaining high-1583

quality automated test scripts, IEEE Software 33 (3) (2016) 68–75.1584

[33] A. M. Memon, Automatically repairing event sequence-based gui test suites1585

for regression testing, ACM Transactions on Software Engineering and1586

Methodology (TOSEM) 18 (2) (2008) 4.1587

[34] R. Coppola, M. Morisio, M. Torchiano, L. Ardito, Scripted gui testing1588

of android open-source apps: evolution of test code and fragility causes,1589

Empirical Software Engineering (2019) 1–44.1590

[35] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, E. Stroulia, Understand-1591

ing android fragmentation with topic analysis of vendor-specific bugs, in:1592

Reverse Engineering (WCRE), 2012 19th Working Conference on, IEEE,1593

2012, pp. 83–92.1594

[36] J.-H. Park, Y. B. Park, H. K. Ham, Fragmentation problem in android,1595

in: 2013 International Conference on Information Science and Applications1596

(ICISA), IEEE, 2013, pp. 1–2.1597

[37] R. Coppola, M. Morisio, M. Torchiano, Mobile gui testing fragility: A1598

study on open-source android applications, IEEE Transactions on Reliabil-1599

ity (2018).1600

[38] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam, W. Yang,1601

T. Xie, Automated test input generation for android: towards getting there1602

in an industrial case, in: Software Engineering: Software Engineering in1603

Practice Track (ICSE-SEIP), 2017 IEEE/ACM 39th International Confer-1604

ence on, IEEE, 2017, pp. 253–262.1605

[39] Y. Liu, C. Xu, S.-C. Cheung, Characterizing and detecting performance1606

bugs for smartphone applications, in: Proceedings of the 36th international1607

conference on software engineering, 2014, pp. 1013–1024.1608

[40] C. Wilke, C. Piechnick, S. Richly, G. Püschel, S. Götz, U. Aßmann, Com-1609

paring mobile applications’ energy consumption, in: Proceedings of the1610

28th Annual ACM Symposium on Applied Computing, 2013, pp. 1177–1611

1179.1612

53

[41] A. Hovsepyan, R. Scandariato, W. Joosen, J. Walden, Software vulnera-1613

bility prediction using text analysis techniques, in: Proceedings of the 4th1614

international workshop on Security measurements and metrics, 2012, pp.1615

7–10.1616

[42] N. Mathur, S. A. Karre, Y. R. Reddy, Usability evaluation framework for1617

mobile apps using code analysis, in: Proceedings of the 22nd International1618

Conference on Evaluation and Assessment in Software Engineering 2018,1619

ACM, 2018, pp. 187–192.1620

[43] R. Feng, G. Meng, X. Xie, T. Su, Y. Liu, S.-W. Lin, Learning perfor-1621

mance optimization from code changes for android apps, in: 2019 IEEE1622

International Conference on Software Testing, Verification and Validation1623

Workshops (ICSTW), IEEE, 2019, pp. 285–290.1624

[44] L. Ardito, R. Coppola, M. Morisio, M. Torchiano, Espresso vs. eyeauto-1625

mate: An experiment for the comparison of two generations of android1626

gui testing, in: Proceedings of the Evaluation and Assessment on Software1627

Engineering, ACM, 2019, pp. 13–22.1628

[45] K. Srisopha, R. Alfayez, Software quality through the eyes of the end-1629

user and static analysis tools: a study on android oss applications, in:1630

Proceedings of the 1st International Workshop on Software Qualities and1631

Their Dependencies, ACM, 2018, pp. 1–4.1632

[46] J. Ferreira, A. C. Paiva, Android testing crawler, in: International Con-1633

ference on the Quality of Information and Communications Technology,1634

Springer, 2019, pp. 313–326.1635

[47] R Core Team, R: A Language and Environment for Statistical Computing,1636

R Foundation for Statistical Computing, Vienna, Austria (2018).1637

URL https://www.R-project.org/1638

[48] E. Borjesson, R. Feldt, Automated system testing using visual gui testing1639

tools: A comparative study in industry, in: 2012 IEEE Fifth International1640

Conference on Software Testing, Verification and Validation, IEEE, 2012,1641

pp. 350–359.1642

[49] C. Sacramento, A. C. Paiva, Web application model generation through1643

reverse engineering and ui pattern inferring, in: 2014 9th International1644

Conference on the Quality of Information and Communications Technology,1645

IEEE, 2014, pp. 105–115.1646

[50] W. Yang, M. R. Prasad, T. Xie, A grey-box approach for automated gui-1647

model generation of mobile applications, in: International Conference on1648

Fundamental Approaches to Software Engineering, Springer, 2013, pp. 250–1649

265.1650

54

[51] M. Leotta, A. Stocco, F. Ricca, P. Tonella, Using multi-locators to increase1651

the robustness of web test cases, in: 2015 IEEE 8th International Confer-1652

ence on Software Testing, Verification and Validation (ICST), IEEE, 2015,1653

pp. 1–10.1654

[52] A. Stocco, M. Leotta, F. Ricca, P. Tonella, Pesto: A tool for migrating1655

dom-based to visual web tests, in: 2014 IEEE 14th International Working1656

Conference on Source Code Analysis and Manipulation, IEEE, 2014, pp.1657

65–70.1658

[53] J. Imtiaz, S. Sherin, M. U. Khan, M. Z. Iqbal, A systematic literature1659

review of test breakage prevention and repair techniques, Information and1660

Software Technology 113 (2019) 1–19.1661

[54] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, X. Li, Atom:1662

Automatic maintenance of gui test scripts for evolving mobile applications,1663

in: 2017 IEEE International Conference on Software Testing, Verification1664

and Validation (ICST), IEEE, 2017, pp. 161–171.1665

[55] S. Yu, C. Fang, Y. Feng, W. Zhao, Z. Chen, Lirat: Layout and image recog-1666

nition driving automated mobile testing of cross-platform, in: 2019 34th1667

IEEE/ACM International Conference on Automated Software Engineering1668

(ASE), IEEE, 2019, pp. 1066–1069.1669

[56] J. Tuovenen, M. Oussalah, P. Kostakos, Mauto: Automatic mobile game1670

testing tool using image-matching based approach, The Computer Games1671

Journal 8 (3-4) (2019) 215–239.1672

[57] F. Behrang, A. Orso, Test migration between mobile apps with similar1673

functionality, in: 2019 34th IEEE/ACM International Conference on Au-1674

tomated Software Engineering (ASE), IEEE, 2019, pp. 54–65.1675

[58] C. Bernal-Cárdenas, N. Cooper, K. Moran, O. Chaparro, A. Marcus,1676

D. Poshyvanyk, Translating video recordings of mobile app usages into1677

replayable scenarios, in: Proc. of 42nd Int. Conf. on Software Engineering,1678

2020, p. 13. doi:10.1145/ 3377811.3380328.1679

55

Appendix A. Translation to 3rd-generation specific syntax1680

Table A.16: TOGGLE - 3rd generation test script creator: Translation from Tool-agnostic
instructions to Tool-specific commands

Logged interaction EyeAutomate commands Sikuli commands

clearText i. Click img i. click(img)
ii. Type [BACKSPACE] (arg1 times) ii. type(Key.BACKSPACE) (arg1 times)

click i. Click img i. click(img)

closesoftkeyboard i. Type [CTRL PRESS] i. keyDown(Key.CTRL)
ii. Sleep 10 ii. sleep(0.01)
iii. Type [BACKSPACE] iii. type(Key.BACKSPACE)
iv. Sleep 10 iv. sleep(0.01)
v. Type [CTRL RELEASE] v. keyUp(Key.CTRL)

doubleclick i. MouseDoubleClick img i. hover(img)
i. Click img ii. mouseDown(Button.LEFT)
ii. Type arg1 iii. sleep(0.001)

iv. mouseUp(Button.LEFT)
v. sleep(0.001)
vi. mouseDown(Button.LEFT)
vii. sleep(0.001)
viii. mouseUp(Button.LEFT)

longclick i. Move img i. hover(img)
ii. MouseLeftPress ii. mouseDown(Button.LEFT)
iii. Sleep 500 iii. sleep(0.5)
iv. MouseLeftRelease iv. mouseUp(Button.LEFT)

typetext i. Click img i. click(img)
ii. Type arg1 ii. type(arg2)

openactionbarmenu i. Type [CTRL PRESS] i. keyDown(Key.CTRL)
ii. Sleep 10 ii. sleep(0.01)
iii. Type m iii. type(m)
iv. Sleep 10 iv. sleep(0.01)
v. Type [CTRL RELEASE] v. keyUp(Key.CTRL)

pressback i. Type [CTRL PRESS] i. keyDown(Key.CTRL)
ii. Sleep 10 ii. sleep(0.01)
iii. Type [BACKSPACE] iii. type(Key.BACKSPACE)
iv. Sleep 10 iv. sleep(0.01)
v. Type [CTRL RELEASE] v. keyUp(Key.CTRL)

presskey i. Type arg1 i. type(arg1)

pressmenukey i. Type [CTRL PRESS] i. keyDown(Key.CTRL)
ii. Sleep 10 ii. sleep(0.01)
iii. Type h iii. type(h)
iv. Sleep 10 iv. sleep(0.01)
v. Type [CTRL RELEASE] v. keyUp(Key.CTRL)

replacetext i. Click img i. click(img)
ii. Type [BACKSPACE] (arg1 times) ii. type(Key.BACKSPACE) (arg1 times)
iii. Type arg2 iii. type(arg2)

swipedown5 i. Move img i. r = find(img)
ii. Sleep 10 ii. start = r.getCenter()
iii. MouseLeftPress iii. stepY = 250
iv. MoveRelative ”0” ”250” iv. run = start
v. MouseLeftRelease v. mouseMove(start); wait(0.2)

vi. mouseDown(Button.LEFT); wait (0.2)
vii. run = run.below(stepY)
viii. mouseMove(run)
ix. mouseUp()
xi. wait(0.2)

56

5For better conciseness, we only report as an example the Swipe Down instruction. The
tool also translates swipes with Left, Right and Up directions, with adaptations in the relative
movements performed by the mouse.

57

