
18 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Metrological performance of a single-channel brain-computer interface based on motor imagery / Angrisani, L.; Arpaia,
P.; Donnarumma, F.; Esposito, A.; Moccaldi, N.; Parvis, M.. - ELETTRONICO. - 2019-:(2019), pp. 1-5. (Intervento
presentato al  convegno 2019 IEEE International Instrumentation and Measurement Technology Conference, I2MTC
2019 tenutosi a Auckland, New Zeland nel 2019) [10.1109/I2MTC.2019.8827168].

Original

Metrological performance of a single-channel brain-computer interface based on motor imagery

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/I2MTC.2019.8827168

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2848086 since: 2020-10-10T15:29:34Z

IEEE



Metrological performance of a single-channel
Brain-Computer Interface based on Motor Imagery

Leopoldo Angrisani1, Pasquale Arpaia1, Francesco Donnarumma2,
Antonio Esposito3, Nicola Moccaldi1, and Marco Parvis3

Abstract—In this paper, the accuracy in classifying Motor
Imagery (MI) tasks for a Brain-Computer Interface (BCI) is
analyzed. Electroencephalographic (EEG) signals were taken into
account, notably by employing one channel per time. Four classes
were to distinguish, i.e. imagining the movement of left hand,
right hand, feet, or tongue. The dataset ”2a” of BCI Competition
IV (2008) was considered. Brain signals were processed by
applying a short-time Fourier transform, a common spatial
pattern filter for feature extraction, and a support vector machine
for classification. With this work, the aim is to give a contribution
to the development of wearable MI-based BCIs by relying on
single channel EEG.

Index Terms—brain-computer interfaces, motor imagery, fea-
ture extraction, classification accuracy.

I. INTRODUCTION

Brain-computer interfaces (BCI) have been studied exten-
sively since their first proposal in 1973 [1]. The interest in
these technologies has exploded in the last 20 years, and BCIs
have become a rapidly growing research area [2]. A BCI
measures the brain activity trying to understand the user’s
intention through a specific feature of the acquired signal.
The extracted feature is classified, and then translated into
a command for a computer or other devices. This way of
communication with the external world does not depend on
the brains normal output pathways, namely peripheral nerves
and muscles [3]. For this reason, it has been mainly studied
for people with motor disabilities and rehabilitation purposes
[4]–[6]. However, recent trends foresee their employment in
fields like gaming [7] or robotics [8].

Many paradigms have been proposed for BCIs. Many rely
on visually-evoked potentials (VEP), which usually require
little training and have good performance [9]–[12]. However,
these paradigms also require external stimulation. Instead, a
BCI based on Motor Imagery (MI) does not depend upon
external stimulation, but they suffer of inter-subject variability,
require long training, and performance are not as good as
in the case of VEPs [13], [14]. Non-invasive measurements
techniques are here taken into account. Among these, the
mostly used is electroencephalography (EEG), which measures
the electrical activity of neurons with electrodes placed on the
user’s scalp [15]. The focus is on single-channel EEG for a
highly wearable and portable device.
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Several studies focused on EEG channel selection for
classifying motor imagery signals [14], [16]–[18], showing
that the minimum channels number can span from 5 up to
20 or more. The number of channels could also depend on
the subject. Most works on Motor Imagery considered two
imagery tasks, usually imagining left hand movement versus
right hand movement [19], [20]. The two classes are then
mapped on more commands aiming to control an external
device, such as a wheelchair or a robot. Sometimes, hybrid
approaches are employed to increase the number of possible
commands [21], [22]. Fewer studies considered a BCI with
four motor imagery tasks. For instance, in [23], a control
interface is proposed for driving a car in a virtual environment
considering four MI tasks: imagining left hand movement,
right hand movement, both hands, or both feet.

The first work on a single-channel BCI and four motor
imagery tasks was conducted by Sheng Ge et al. in 2014
[24]. As better discussed later, they propose to extract in-
formation from a single-channel EEG using a short-time
Fourier transform, and then apply a common spatial pattern
to filter signals and extract features for classification. They
report a mean classification accuracy equal to 65% when
employing the dataset IIIa from the 2005 BCI competition.
The maximum accuracy they obtained was about 88%, and
the input signals they could analyze where recorded for 4 s.
This performance is to compare with other MI-based BCIs,
employing multiple EEG channels or even hybrid approaches,
where the classification accuracies span from 62% to 87% and,
usually, the time windows are 1.00 s to 7.00 s wide.

The literature reports no other study combining single-
channel and four tasks MI-based BCI after 2014, not even from
the group of Mr. Ge [25]. In this paper, the aim is to improve
the results of [24] starting from replicating the algorithm of
Sheng Ge et al. with some modifications, while considering
the dataset ”2a” of BCI Competition IV (2008) [26]. A single
channel among the available 22 EEG channels is selected,
and the classification has to discriminate between four classes
of signals recorded for 3 s. This work gives a contribution
in the direction of building a highly wearable, low-cost, and
easy-to-use BCI capable of interpreting four different motor
imagery tasks. In the following, Section II recalls the signal
processing reported in [24] and proposes some improvements,
while Section III discusses the results obtained processing data
extracted from the aforementioned dataset.



II. PROPOSED METHOD

A. Data description

The dataset ”2a” of 2008 BCI Competition IV is here
considered. The data consist of signals from 9 subjects. The
four different motor imagery tasks are the imagination of
movement of the left hand (class 1), right hand (class 2),
both feet (class 3), and tongue (class 4). For each subject,
two sessions were recorded, training (T) and evaluation (E).
Each session is comprised of 6 runs separated by short breaks.
One run consists of 48 trials (12 runs per class), yielding
a total of 288 trials per session. The 6 runs are preceded
by 3 runs in which signals related to eye movements were
recorded. These runs are not considered in this work. In each
run of concern, data from 22 EEG channels and 3 EOG
(electrooculography) channels are present. Only one EEG
channel per time is considered and the 3 s related to the motor
imagery task are extracted. Relying on the results of [24],
only the channels C3, Cz, and C4 were taken into account.
The channels name is consistent with the international 10-20
system [27]. More details on the experimental setup and the
dataset itself are reported in [26]. In the following, the signal
processing implemented in Matlab is reported. As already
mentioned in the introduction, based the work is based on the
processing proposed by Sheng Ge et al. aiming to improve it.

B. Feature extraction

The signals extracted from the dataset were considered
together with their class label and some other information
given with the dataset, such as the sampling frequency of
the EEGs. The labels were used during the first phase for
training a classifier, and in the second phase to assess its
classification accuracy. Fig. 1 reports the average signals
obtained considering the trials of a single run separated per
class (12 signals for each class). It is clear that the classes are
not easy to discriminate in the time domain.
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Fig. 1. Average brain signals corresponding to four motor imagery tasks.

According to [24], the signal is transformed in the frequency
domain. In particular, by employing the short-time Fourier
Transform (STFT), one can obtain the short-term, time-
localized frequency content of each signal, thus aiming to

extract more information from a single EEG channel. Next,
a Common Spatial Pattern (CSP) filter is adopted to obtain
the principal components of the transformed data. Finally,
features are extracted for classification. A Support Vector
Machine (SVM) is exploited first. The three steps preceding
classification are better described in the following.

1) Short-time Fourier Transform: exploiting the ”spectro-
gram” function of Matlab, the short-time Fourier Transform
was computed for each signal. A Hamming windowing was
employed considering 100 samples for each time-instant. This
window was zero-padded to 128 samples before calculating the
frequency content. Consecutive windows had a 50% overlap.
Considering the module of the spectrum, a real matrix Xj was
associated to each brain signal. Thanks to the labels associated
to the brain signals, the matrices can be separated per class.
An example of spectrogram is reported in 2, where the mean
of the matrices Xj,4 associated to the class 4 (”tongue”) was
calculated.
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Fig. 2. Average spectrogram obtained considering the class ”tongue”.

2) Common Spatial Pattern: a CSP filter is usually em-
ployed to separate two different classes. With a binary CSP
one can transform two classes of data into a common space,
such that the two classes of transformed data have the same
principal components, and their corresponding eigenvalues add
up to a unit matrix. The transformation (or projection) matrices
are found from training data. In the case of four classes, four
projection matrices are found for four binary CSP. Each binary
CSP separates one class from the rest (one versus the rest,
OVR). The OVR algorithm follows the derivation of [24]. For
each real matrix Xj , the covariance is calculated as

Rj = XjX
T
j , (1)

where XT
j is the transposed matrix of Xj . Four covariance

matrices, C1, C2, C3, and C4, are obtained as the mean
of the covariance matrices separated per class. A composite
covariance matrices is then

C = C1 + C2 + C3 + C4. (2)

Diagonalization is applied to obtain U0 and Λ such that

C = U0ΛU−10 , (3)



where U−10 = UT
0 because the covariance matrix is symmetric

and real. A whitening transformation is also applied, and the
chosen whitening matrix is

P = Λ−1/2UT
0 (4)

It is easy to demonstrate that this whitening matrix satisfies
the condition PTP = C−1. The matrix P is thus obtained
considering all classes. Instead, for each class i = 1, 2, 3, 4
the matrices Si are derived as

Si = PCiP
T (5)

It can be demonstrated that Si shares common principal
components with

S′i = PC ′iP
T = P

∑
k 6=i

Ck

PT , (6)

which is a matrix associated to the complementary of Ci

(OVR). Hence, Si and S′i can be diagonalized with the same
eigenvectors matrix Ui, and the sum of the respective diagonal
matrices will be the unit matrix. The final projection matrices
are found as

Wi = UT
i P (7)

3) Features calculation: each spectrogram matrix Xj is
projected into four new matrices associated to four classes,

Zj,i = WiXj , (8)

and features are extracted prior to classification with an SVM.
The matrix Wi (in the present case its dimension is 65× 65),
can be ”cut” considering the first m rows and the last m rows.
This is done aiming to consider the principal components. An
example of projected spectrogram is depicted in Fig. 3, where
m = 4 was set.
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Fig. 3. Spectrogram associated to the average between the signals of class
”tongue” after projection with the CSP filter (m = 4).

As suggested in [24], features that can be considered are

fi = log
σ2
i∑4

i=1 σ
2
i

i = 1, 2, 3, 4 (9)

where σ2
i is the variance of Zi among time points. Hence,

for each trial, there are 4 · 2m signal features useful for
classification.

C. Classification

The signal features classification is here conducted with a
Support Vector Machine (SVM) [28]. The idea of SVM is
to find a hyperplane that best separates the data points of
different classes while maximizing the margin, even though
errors are allowed during separation. The input to be classified
is mapped to a high-dimensional feature space with a ”kernel
function”. Aiming to classify signals belonging to four classes,
the Matlab function fitcecoc is employed. It fits multi-class
models, and hence it fulfills the need of the present case
study. A 8m × ntr feature matrix is passed to the function
together with the 1 × ntr array of labels. ntr is the number
of considered trails. Usually, a ”gaussian kernel” is suggested
for the analysis of non-stationary signals like EEG signals.
However, simulations showed that a ”linear kernel” leads to
greater accuracies in the considered case.

The classifier was cross-validated with a 10-fold procedure.
This means that 10 iterations were conducted, and, in each
iteration, the 90% of the dataset was considered for training,
while the remaining 10% was considered for validation. The
procedure is done applying the Matlab function crossval to
the previously found SVM model. The classification accuracy
was calculated with the function kfoldLoss, applied to the
cross-validated SVM. This Matlab function gives back the
percentage of classification loss (misclassification). Hence, to
evaluate the accuracy accuracy of learned feature weights on
test data, one can consider

accuracy = 1 − loss. (10)

III. RESULTS

The signal processing algorithm described in the previous
section was implemented in Matlab. The extraction of signals
from the datasets, the application of a common spatial pattern,
and the features calculations were conducted with functions
implemented ad hoc. Though data from 9 subjects are available
in the BCI Competition IV dataset ”2a”, only 3 subjects
are considered, i.e. ”A01T”, ”A02T”, and ”A05T”. For each
subject, the all 6 runs were considered, thus implying that 288
trails (6 ·48) were available for the cross-validation procedure.
Finally, the analysis was conducted on three EEG channels,
C3, CZ, and C4. These are associated to the sensorimotor
cerebral cortex. It is to remark that, aiming to study a single-
channel BCI, one channel per time is considered.

In the following, the classification accuracies for each
subject are plot as a function of the factor m defining the
CSP filter dimension, and for the three different EEG channels.
Fig. 4 shows the classification accuracies for the subject A01,
notably considering the dataset portion ”A01T”. It can be seen
that the accuracy grows up with m. This trend is also present
for subjects A02 and A05 (Fig. 5 and 6).
It is to remark that there is and inter-subject variability. For
instance, the accuracies achieved with the data ”A01T” shown
in Fig. 4 go up to the 90% and more, while the accuracies for
”A02T” in Fig. 5 do not reach the 80%.
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Fig. 4. Classification accuracy with the data ”A01T” and three different EEG
channels. A 10-fold cross validation procedure is here considered
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Fig. 5. Classification accuracy with the data ”A02T” and three different EEG
channels. A 10-fold cross validation procedure is here considered

Meanwhile, the results achieved for ”A05T”, shown in Fig. 6
are similar to the results of the subject A01. It is to remark
that the values of accuracy are to refer to the 25%, that is
the accuracy of a random classifier in the case of 4 classes.
However, the minimum accuracy on the ”y-axis” of the figures
was set at 50% because this can be considered as a minimum
acceptable value.
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Fig. 6. Classification accuracy with the data ”A05T” and three different EEG
channels. A 10-fold cross validation procedure is here considered

Finally, the cross-validation procedure was repeated con-
sidering a 50-fold procedure, i.e. the 50% of data are used
for training, and the validation is conducted on the remaining
50%. This is done to balance the amount of training data with
the amount of validation one. The results are compatible with
the results from the 10-fold cross-validation procedure. This
aimed to show a robustness of the adopted cross-validation
procedure.
Comparing the achieved results with the ones of [24], it is
underlined that the values of accuracy seem compatible with
those results as long as the m ≤ 10. In addition, values
of m up to 32 were also explored, which is the maximum
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Fig. 7. Classification accuracy with the data ”A01T” and three different EEG
channels. A 50-fold cross validation procedure is here considered
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Fig. 8. Classification accuracy with the data ”A02T” and three different EEG
channels. A 50-fold cross validation procedure is here considered

possible (the Wi before cutting has dimension 65 × 65).
The classification results better when considering more filter
components, in contrast with the results of [24], where the
optimum was identified as m = 7. These results could indicate
a reproducibility problem. Indeed, the data considered in this
work were acquired with a different experimental setup if
compared to the data of BCI Competition III considered by
Sheng Ge et al. Future steps will thus be the analysis of data
from BCI Competition III with the algorithm improvement
discussed in this paper, thus providing a better comparison
with the results of [24], and then the aim is to employ the
SVM model characterized as described in this work, for the
analysis of data from different subjects.

IV. CONCLUSIONS

This paper contributes to the study of motor imagery based
brain computer interfaces (BCIs), by relying in particular on
a single channel electroencephalography. Such a BCI system
would guarantee high wearability, low cost, and easy use.
However, the main limitation of a single channel device is
the reduced amount of information, resulting in a difficulty to
recognize the user’s intention. The scope of the present study
was to evaluate the accuracy of classification when 4 tasks
have to be discriminated, namely imagining the movement of
left hand, right hand, feet, or tongue.

A previous work by the group of Sheng Ge et al. was
considered. It was conducted in 2014 and the dataset from
the BCI Competition III was taken into account. Instead, the
dataset ”2a” of BCI Competition IV was here considered and
some modifications were made to the signal processing, espe-
cially in the classification part. For the analysis of classification
performance, the percentage of misclassified observations in
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Fig. 9. Classification accuracy with the data ”A05T” and three different EEG
channels. A 50-fold cross validation procedure is here considered

a 10-fold cross-validation procedure is considered. This clas-
sification loss was translated into classification accuracy. It
was shown that this accuracy is compatible with the results
from the group of Mr. Ge, and that it can be improved if the
parameter m of the CSP filter is increased. Following steps
will be to apply the trained and cross-validated model to data
from other BCI sessions. This aims to give a contribution to
a very interesting BCI branch that has not been considered
enough after 2014.
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