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A Wearable Brain-Computer Interface Instrument for Augmented
Reality-based Inspection in Industry 4.0

Leopoldo Angrisani1, Pasquale Arpaia1, Antonio Esposito2 and Nicola Moccaldi1

Abstract—This paper proposes a wearable monitoring system
for inspection in the framework of Industry 4.0. The instrument
integrates Augmented Reality (AR) glasses with a non-invasive
single-channel Brain Computer Interface (BCI), which replaces
the classical input interface of AR platforms. Steady-state visually
evoked potentials (SSVEP) are measured by a single-channel
EEG and simple power spectral density analysis. The visual
stimuli for SSVEP elicitation are provided by AR glasses while
displaying the inspection information. The real-time metrological
performance of the BCI is assessed by the Receiver Operating
Characteristic curve on experimental data from twenty subjects.
The characterization was carried out by considering stimulation
times from 10.0 s down to 2.0 s. The thresholds for the
classification were found to be dependent on the subject and the
obtained average accuracy goes from 98.9% at 10.0 s to 81.1% at
2.0 s. An inspection case study of the integrated AR-BCI device
show encouraging accuracy of about 80% of lab values.

I. INTRODUCTION

Augmented Reality (AR) is a technology for overlapping
computer-generated perceptual information with actual world,
in order to enhance human perception of the surrounding
environment [1], [2], [3]. In the last two decades, AR has
gained great interest in the technical-scientific community and
much effort has been done to overcome its limitations. D.
Chatzopoulos et al. [4] provided a survey of mobile augmented
reality regarding the applications, its main components, and
the challenges to be faced nowadays. Mobile devices of con-
cern are tablets, smartphones, and smart glasses (AR glasses).
Typical user interfaces for these devices are touch screens,
vocal commands, or gestures.

In an industrial context, the Boston Consulting Group
identified Augmented Reality as one of the nine pillars of
the ongoing industrial revolution, Industry 4.0 [5], [6]. AR
can help several work aspects, from training on-the-job to
product design, and maintenance [7], [8], [9]. According to
a recent survey on more than 30 journal papers [9], the main
maintenance operations where AR is used are training, inspec-
tions, diagnostics, assembly-disassembly, and repair. These
operations usually require the user hands to be free from
the AR device controller. Despite hands-held devices, such as
tablets, smart glasses can guarantee hands-free operations with
their high wearability, provided that their user input interface
does not require hands.

The combination of AR with a Brain-Computer Interface
(BCI) can provide the solution to a hands-free user input, thus

*This work was supported by Universita’ di Napoli Federico II and
Politecnico di Torino.

1Department of Electrical Engineering and Information Technology (DI-
ETI), Universita’ degli Studi di Napoli Federico II.

2Department of Electronics and Telecommunications (DET), Politecnico di
Torino.

providing a novel way of gathering information from the sur-
rounding environment. BCI is a device capable of interpreting
human intentions by reading user neuronal activity. Histori-
cally, most BCI researches focused on helping people with
motor disabilities by providing an alternative communication
channel [10], [11]. This is changing in the last decade, and BCI
employment is now addressed to several application fields.
Many paradigms have been developed for BCI systems, such
as motor-imagery [12], [13], cognitive monitoring [14], P300
[15], or SSVEP [16], [17], [18]. Focusing on non-invasive
electroencephalography (EEG), the brain activity is monitored
as electrical signals measured on specific areas of the BCI
user’s scalp [19]. Each paradigm requires the extraction of
specific features from a set of brain signals, such as a voltage
peak or the frequency of an oscillation. Some studies have
shown that SSVEPs are highly reliable in terms of accuracy
and reproducibility [16], [20], [21]. Furthermore, user training
is not mandatory for SSVEP-based BCI [22], [23]. In an
SSVEP-based BCI, brain potentials are evoked with external
stimuli, which can be flickering LEDs or flickering icons on a
display. These brain signals do not depend on cognitive paths,
thus being a useful communication channel also for people
with cerebral diseases. Concerning the above discussion on
hands-free AR, smart glasses LCD displays can be employed
successfully for stimulus presentation.

In [24], research solutions are surveyed by highlighting
that most state-of-the-art systems made use of two VEP-
based paradigms, SSVEP or P300. It is also reported that
video see-through technology is mostly considered, and that
the main application field is robotics. However, there are
still many limitations to the exploitation outside laboratories,
such as motion artifacts [25], [26] and the trade-off between
speed and performance of the BCI [27], especially when dry
electrodes are employed. For this reason, recent works are
still at the stage of feasibility studies [28], [29]. Although
a comparison is not easy owing to differences in setups
and applications, some examples of BCI-based systems for
communication and control are reported here. In [30] a single-
channel BCI employing high-frequency stimuli is proposed
to build a speller. The user is stimulated for 10 s and the
accuracy is 99.2%. Only 5 subjects were involved in the
experiments, so that the usability of the system for different
people cannot be estimated [31]. Another speller, exploiting a
single-channel data acquisition with dry electrodes and deep
neural networks for signal processing, was proposed in [32].
The accuracy was 97.4% with a stimulation time of 2 s, but
only 8 subjects were considered in the experiments. A solution
with AR glasses integrated with a BCI to control a quadcopter
is reported in [28]. However, 14 dry electrodes and 2 reference
electrodes were employed. The achieved accuracy was 85%,
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by considering 5 subjects executing a flight task.
In this paper, a monitoring system integrating AR glasses

with BCI is proposed for applications in industrial inspection
and maintenance. Main scientific aim is to increase simul-
taneously speed and accuracy of current SSVEP-based BCI
single-channel instrumentation, in order to build a hands-
free low-cost monitoring system, which is also wearable and
non-invasive. Performance assessment was conducted on 20
subjects, in order to address the usability to a suitable group
of people.

In particular, Section II details the architecture of the pro-
posed AR-BCI system. Section III reports the physical design
and the prototyping of the system, by proving its suitability for
inspection aimed at maintenance in the framework of Industry
4.0 by a case study. Here, Bluetooth connectivity is exploited
to communicate with a wireless sensor network [33], [34].
Finally, in Section IV, the metrological analysis of system
performance mainly aimed at proving the decrease of real-
time latency by simultaneously keeping accuracy as high as
possible.

II. PROPOSAL

A measurement instrument for wearable brain-computer
interface is proposed for hands-free monitoring systems with
augmented reality platform. The proposed AR-BCI system
is employable in industrial inspection, where the user can
communicate with wireless smart transducer networks and
require the information for inspection without using hand, by
merely starring at an icon.

In a traditional AR-based monitoring platform (Fig. 1a),
data from a wireless sensor network are requested, received,
and processed for industrial inspection. The user asks for data
and their process results on the display by typical interfaces
as touch-pads, vocal commands, or gestures.

In Industry 4.0, a novel human-machine interaction is
needed with low cost, wearable, and hands-free features. In
particular, at this aim, AR glasses have the advantage to
be wearable. Most AR glasses allows to see both real and
virtual scenes at once during the inspection, because their
display is semi-transparent and semi-reflexive (optical see-
through devices [4]).

A. Architecture
In the proposed monitoring system, the user input is re-

placed with a brain-computer interface, based on steady-
state visually evoked potentials (SSVEP). SSVEP-based BCIs
require visual stimulation, consisting here of flickering icons
on the AR glasses display. On the AR glass display, flickering
icons highlight the choices for the user during the industrial
inspection task. Flickering aims to elicit an SSVEP in the
occipital lobe of the user’s brain. This neuronal activity is mea-
sured with an electroencephalography (EEG), and the acquired
digital signal is transferred to the AR glasses microprocessor
for elaboration. The result of this elaboration is a command
associated to the user’s intention (Fig. 1b). The AR glasses are
employed for visual stimulation and for processing the brain
signal acquired by an EEG-instrument. The user controls the
system just starring at an icon insistently (e.g., for 2 s).

B. BCI instrument for AR input

In the architecture of Fig. 1b, the AR input interface is
a non-invasive single-channel brain-computer interface. Only
two dry electrodes are employed for differential acquisition
of brain signals in order to build a highly wearable system.
The electrodes are placed on the scalp, according to the 10-
20 system [35] at the points "Fpz" and "Oz" highlighted
in black in Fig. 2. This arises from the consideration that
"Oz" is located in the occipital region of the brain associated
to the visual activity, while "Fpz" is in a region without
visual activity, i.e. the frontal region. Therefore, the differential
acquisition aims to isolate the visual activity by subtracting the
ongoing brain activity. A third passive electrode of ground is
usually placed on the forehead, the ear, or even on a wrist or a
leg [19]. This placement of only two active and dry electrodes
makes the proposed AR-BCI instrument highly wearable in
everyday-life applications.

The adopted BCI paradigm requires flickering icons on
the AR glasses display for visual stimulation. The SSVEP
oscillation, elicited when starring at a specific icon, is easily
detected in the frequency domain. Thus, each icon blinks at
a peculiar frequency. The user can input an option by just
choosing the icon to stare at, and the choice is detected by as-
sessing the corresponding frequency of the SSVEP oscillation.
An amplitude modulation was not considered owing to inter-
subject and intra-subject variability of SSVEP signals. A phase
modulation would result in a more complex implementation of
the stimuli. Therefore, these techniques would require further
investigations, out of the scope of this work.

A simple power spectral density analysis is considered
for brain signal processing. The aim is to guarantee low
computational cost for implementation on a wearable device.
Two main processing steps are carried out: feature extraction
and classification. For feature extraction, a digital pass-band
window-based FIR filter is first applied to the acquired signal.
Then, zero-padding is applied prior to execute an FFT (Fast
Fourier Transform). The power spectral density (PSD) analysis
is carried out on the discrete amplitude spectrum of the brain
signal. For each stimulus frequency f1, the power in the
corresponding bin k1 is calculated as the sum of the squared
amplitudes associated to k1 and some nearest bins:

P (f1) =
1

2k + 1

[
k1+k∑

n=k1−k

A2(n) + c

2k1+k∑
n=2k1−k

A2(n)

]
, (1)

where k is the number of bins considered on the right and
on the left of the bin k1, and A(n) the amplitude associated
to the n-th bin. The amplitudes are obtained by dividing the
FFT output by the number of samples. The second term in
the squared parenthesis is related to the second harmonic of
f1, and c is a weighting factor for this harmonic. Higher-order
harmonics are not considered owing to their poor SNR.

In the classification, for each stimulus frequency, the signal
feature P is calculated and compared with a corresponding
threshold th. If none of them is greater than the threshold,
then the algorithm does not recognize any SSVEP. Conversely,
the frequency f is detected as SSVEP oscillation. If more than
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Figure 1: Architecture of an AR-based monitoring system, communicating with a wireless sensor network during industrial
inspection: with input interface (a) traditional, and (b) brain computer-based.

one frequency is detected, the final result is associated to the
greater value P (f)− th(f) .

The thresholds th were determined experimentally on hu-
man subjects by means of the method of the Receiver Operat-
ing Characteristic (ROC) [36]. For each subject, the thresholds
corresponding to the stimulus frequencies, and the weighting
factor c were identified by optimizing the classification accu-
racy. The accuracy in classifying N trials is defined as

A =
tp+ tn

p+ n
, (2)

with p number of positives, n number of negatives (N =
p + n), tp number of true positives, and tn number of true
negatives. The resulting system requires minimal training of
the algorithm (about 10 minutes) for the thresholds to be
adapted to the specific final user.

III. PROTOTYPE

By referring to the architecture of Fig. 1b, the AR-BCI
prototype exploits the AR platform Epson Moverio BT-200,
with the related glasses as Output interface, and the Olimex
EEG-SMT with dry electrodes as EEG transducer. An Android
application runs on the Micro-computer Epson Moverio BT-
200AR for processing brain signals in real time. The result is
a low-cost wearable system, capable of communicating with
external devices through Bluetooth. Information of interest for

Figure 2: Placement of EEG electrodes in the International
standard framework 10-20 [35] (in black): "Fpz" and "Oz", in
the scalp frontal and occipital region, respectively.

the user can be requested without using hands to a wireless
sensor network. The SSVEP-based BCI exploits two icons, on
opposite corners of the AR glasses screen, as stimulation to
evoke potentials in the visual cortex. They substitute icons to
be pressed on a classical touch-screen. These icons, instead,
flicker in the alpha band [16], namely at nominal frequencies
of 10.0 and 12.0 Hz, respectively. They were designed by
means of the Android "open graphic library" (openGL [37]).

The electrical brain activity is then acquired by means
of the EEG transducer through a differential channel with
two active electrodes and a grounding passive electrode. The
active electrodes include a circuitry based on an operational
amplifier for impedance matching. Wearability in daily use
was improved by dry electrodes (i.e., without conductive gel).
In this prototyping phase, a good electrical connection was
ensured by a tight armband for the passive electrode on the
left wrist, and a tight headband for the active electrodes on
the user’s scalp. Furthermore, silver pins were soldered to the
active electrode placed at the occipital region of the scalp, in
order to overcome the hair and contact the scalp directly [38].

The passive electrode provides a feedback for instrumen-
tation amplifiers at the device input, while the two active
electrodes are connected to the differential input of the in-
strumentation amplifier at the channel 1 (CH1). The overall
gain from the signal pick-up to the analog-to-digital converter
(ADC) of the transducer was set to be 6427 V/V. The input
brain signal is also filtered analogically, and the overall pass-
band is [0.16-59.00] Hz. A 10-bit resolution ADC provides the
conversion, and the sampling frequency was set to 256.0 Sa/s.
The digital signal is then transferred to the micro-computer of
the AR platform for processing.

For the feature extraction, a window-based FIR filter was
designed with MATLAB. The pass-band was set to [6-28] Hz,
the filter order equal to 100, and the windowing is carried
out with a Hamming. Thus, the harmonic content of interest,
between 10.0 and 24.0 Hz (second harmonics of 12.0 Hz),
is not corrupted. Simultaneously, the harmonic content in
the stop band is attenuated at least by 50 dB, so that an
eventual spectral leakage does not influence the frequencies
of interest. Furthermore, the Hamming windowing aims to
reduce the leakage at the frequencies of interest, while slightly
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loosing in spectral resolution. The pass-band was chosen
also considering the need to reduce eye-blinking and muscle
artifacts [39]. Indeed, linear filtering could be used to reduce
noise introduced by artifacts, because other methods such as a
regression method, need for a higher number of electrodes.
Zero-padding follows: the number of zeros to append was
chosen so that the total number of samples is the nearest power
of 2. In addition, the zero-padded time windows were chosen
to be a multiple of the period of 10.0 Hz and 12.0 Hz. Thus,
there is always a bin in the discrete spectrum corresponding
to 0.100 or 0.083 s (10.0 or 12.0 Hz). The number of bins
for the calculation of P (f), eq. (1), is such that the frequency
neighborhood equals 0.4 Hz, with the further constraint that
at least one bin on the left and one on the right of the
frequency of interest must be considered. Moreover, the actual
flickering frequency can slightly differ from the nominal value
(Fig. 3). Therefore, the bin corresponding to the frequency
of interest is preventively found in the neighborhood of the
nominal frequency looking for the maximum amplitude. This
neighborhood is, again, equal to 0.4 Hz.
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Figure 3: Spectrum of an SSVEP signal acquired for 10.0 s,
after filtering and zero-padding to 16 s (the peak is about at
10 Hz).

A. Case Study

The possibility of employing successfully the proposed
instrument in a hands-free inspection task for Industry 4.0 was
proven experimentally. Main scenario consists of a technician
inspecting visually a complex industrial plant by looking at
its composing parts, like electrical machines, cables, power
drives, and so on. The plant is equipped by a distributed
measurement system with several wireless smart transducers
for real-time monitoring and advanced diagnostics.

For this case study, a prototype was developed with the
Bluetooth protocol for communication between the AR glasses
and the monitoring system. The modified Android application
searches automatically for the Bluetooth smart transducers
associated with the AR glasses. Once found, the closest
transducers with highest Bluetooth signal are made accessible
and displayed on the AR glass display (Fig. 4). The user is
prompted to select the transducer and then to connect. Once
connected, the transducer answers by sending the measured

Application start

Bluetooth 
scanning

delay

NO

Device choice

Data choice

YES

Displaying result

delay
Transducer
found?

Figure 4: Android application diagram for inspection task
in Industry 4.0 framework: smart transducers and related
measurements are selected by starring at flickering icons.

quantities, and finally the user can choose the result of the
specific quantity to be displayed. The commands are sent to
the transducer without the use of hands, just starring at the
corresponding icon.

Fig. 5 shows an user wearing a prototype of the AR-BCI
system during an emulated inspection task of temperature
and humidity. To input a selection in a menu (Fig. 6), the

Electrodes

Output interface

Signal acquisition 

board

Micro-computer

Figure 5: A user wearing the AR-BCI system during an
inspection task.

user stares at a flickering icon and, after few seconds, the
corresponding command is sent. Specifically, the user input
is obtained by the stimulus of the flickering white square
corresponding to the gazed icon. In AR glasses, actual back-
ground image is blurred to put focus on the selection. In
this straightforward proof-of-principle application, the possible
commands correspond to the result of the SSVEP classifica-
tion: "Temperature" and "Humidity". If the brain signal is not
recognized, the user is prompted to repeat the choice.
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Thus, the AR-BCI system allows to access measurement
data relevant to the specific area under inspection without
engaging the user hands. The user has hands free to hold
documentation or reference gears while requesting data from
transducers.

IV. EXPERIMENTAL RESULTS

In this section, the results of the experimental campaign
for optimizing the real-time metrological performance of the
BCI instrument are reported. In particular, the main aim was to
characterize the measurement system in order to maximize the
SSVEP classification accuracy, by simultaneously minimizing
time, i.e. latency. The trade-off between accuracy and latency
is essential in a typical application of inspection under the
framework of Industry 4.0.

In the following, (i) the experimental setup, (ii) the thresh-
olds determination, (iii) the configuration optimization, and
(iv) the prototype validation are detailed.

A. Experimental setup

Twenty subjects, 13 males and 7 females between 22
and 47 years old, took part to the experiments. Experiments
were conducted in laboratory with artificial illumination. The
window was closed to avoid any sunlight presence, while the
background luminous emittance resulting from neon lights was
measured to be (97 ± 2) lx. Each subject under test was
asked to seat on a comfortable chair with armrest and limit the
unnecessary movements, such as moving the head or the arm.
This was necessary in the first phase to avoid motion artifacts
in order to check for the correct electrodes positioning. Then,
he/she wore the AR glasses, a tight armband and a tight
headband. The signal acquisition board of the EEG transducer
was then connected to a laptop, where a MATLAB application
was running. The laptop was disconnected from the AC power
before connecting this transducer. At the beginning of each
test, the EEG signal amplitude was checked through BrainBay
[40], an open-source software for displaying on line EEG data
(Fig. 7). A specific sequence was adopted for connecting the
electrodes.

• The passive electrode was connected to the input Drive
Right Leg (DRL) and applied on the subject left wrist

Measure selection

Temperature

Humidity

Figure 6: Example of an inspection task: measure selection
menu, with flickering white squares for options (as usual in AR
glasses, background image is blurred to focus on the selection).

+500

-500

0

A
m

p
li

tu
d

e 
[m

V
]

0 1 2 3 4

Time [s]

Figure 7: Example of a single-channel electroencephalogram
acquired with BrainBay: two artifacts from eyes blinking are
present (valleys).

with the armband. The acquired signal was null at this
moment, owing to the absence of signal at CH1.

• The active electrode without silver pins was connected to
the negative terminal of the channel 1 (CH1) and applied
at the point "Fpz" (frontal lobe of the scalp) with the help
of the headband.

• After a transient of few seconds, the acquired signal
had to be zero again, because CH1 is still an open
circuit at this moment, and the internal circuitry reaches
a stationary condition with a null output.

• Last, the active electrode with silver pins was connected
to the positive terminal CH1 and applied at "Oz" (occip-
ital region of the scalp) with the help of the headband.
After few seconds, the stationary condition should be
characterized by oscillations with a peak-to-peak ampli-
tude below 100 µV, while some artifacts can be present
corresponding to the subject’s eyes blinking.

For a correct application of the electrodes, hair has to be
avoided on the wrist and in the frontal region of the scalp.
Furthermore, for the silver pins, hair is to be overcome in the
occipital region of the scalp. A stable contact of the electrodes
with the skin is ensured by tight bands, provided that an excess
could introduce artifacts due to the heart beat.” A typical
signal measured after wearing the EEG-SMT transducer is
represented in Fig. 7. Then, the signal was analyzed in the
frequency domain in absence of visual stimulation. Fig. 8
shows a typical spectrum in this condition.

B. Threshold determination

The test campaign was aimed initially to identify the thresh-
olds th10 and th12 associated to stimulation at 10.0 Hz and
12.0 Hz, respectively. These thresholds are associated to the
power spectral density of the brain signals. The combination
factor c of first and second harmonic in eq. (1) was identified
too. Due to the different neurophysiological characteristics of
each subject, an inter-subject variation was expected. Thus, the
identification phase corresponds to the training necessary for
the algorithm to be customized to the user before the use. This
lasts less than 10 minutes, namely the time needed to carry out
the trials described in the following experimental procedure.
Thanks to this phase, the SSVEP classification is adapted to
the specific user with minimal training of the algorithm.

1) Experimental procedure: For each subject, 24 trials
with two flickering icons were first conducted. In each trial,
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Figure 8: Typical noise floor when the EEG-SMT setup is
completed and the user is not stimulated (without digital
filtering).

the brain signal acquisition lasted 10.0 s, with few seconds
between consecutive trials. The subject under test could ar-
bitrarily chose the icon to stare at. The only constraint was
that the subject had to choose 12 times 10.0 Hz and 12
times 12.0 Hz. Then, the subject had to declare the choice.
The MATLAB post-processing did not allow to synchronize
stimulation and acquisition. Therefore, as the subject under
test started a stimulation, he/she had to say "go" for the tester
to start the 10.0 s acquisition.

2) Data analysis: The brain signals acquired during the
experimental campaign were elaborated calculating the signal
feature P (f) of eq. (1) for 10.0 Hz and 12.0 Hz after the pre-
processing described previously. For each stimulus frequency,
a binary classifier was trained exploiting the "Receiver Oper-
ating Characteristic" (ROC) curve and the label associated to
each signal [36]. The classifier "is the frequency f?" returns
"true" when P (f) > th(f), and "false" otherwise. Fig. 9
reports an example of ROC curve for the 10.0 Hz binary classi-
fier, considering the 24 trials of a single subject. The different
time windows are obtained in post-processing considering
fewer samples of each signal acquired for 10.0 s. The optimal
threshold is identified as the point of the curve with 12 true
positives (the maximum) and the minimum number of false
positives. This aims to guarantee that each classifiers correctly
classifies all the true positives. Meanwhile, the possible false
positives should be "blocked" in the comparison with the result
of the other classifier. In the example of Fig. 9, the point (0,1)
belongs to the ROC curve plotted for 5 s. It corresponds to no
false positives, and all true positives. Hence, the considered
10.0 Hz binary classifier is a perfect classifier when the time
window is 5 s. Instead, for smaller time windows, the classifier
is not perfect.

The identification phase exploits the ROC curve method
for seven time window values: 10.0 s, 8.0 s, 6.0 s, 5.0 s,
4.0 s, 3.0 s, 2.0 s. For each of them, the optimal th10 and
th12 are meant to maximize the classification accuracy. The
identification phase is summarized on the left of Fig. 10,
along with the validation steps described in the following
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Figure 9: ROC curves for the binary classifier "frequency 10.0
Hz?", for the 24 trials of the subject "CraSim" (c=2, with four
time windows).
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Figure 10: Flow diagram of the identification and validation.

(on the right). The results of the algorithm also depend on
the combination factor c between first and second harmonic.
Hence, the exposed procedure was repeated for c = [0 1 2 3
4 5 6]. The optimal value of c can depend on the considered
time window. For each value of the time window, c is found
considering the accuracy closest to the 100%. The robustness
of the result was also evaluated considering if the same value
of accuracy is obtained for consecutive values of c, and the
final c is chosen as the mean one.

3) Identification results: The results of the identification
test campaign are reported in Tab. I. The identified values
of c span from 0 to 6 depending on the subject and more
weakly on time windows. The thresholds vary from 0.1 µV2

up to 10.0 µV2 and strongly depend on the considered time
window and the subject. The overall average accuracy on all
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subjects was also assessed as a function of latency. In the
table, the minimum time window for 100.0% accuracy, varying
from above 10.0 s down to 2.0 s, is highlighted. The subjects
"EspAnt", "MocNic" and "DeAGio" had already experience
with SSVEP-based BCI, while all the other candidates had no
experience with BCIs. The performance reached by "EspAnt"
could be explained with an SSVEP generation attitude due
to his previous experience. However, similar performance
are reached also by subjects without experience, notably
"DeLAnn". In principle, subjects with long and/or wavy hair
affecting electrodes application should be in disadvantage.
However, the experimental results did not show any evidence
of that. The better four in terms of accuracy versus latency,
for example, have both long and short hair cut. A wrongly
classified signal corresponds to an accuracy diminishing of
about 4.2%. This value corresponds to the resolution dictated
by the number of trails conducted for each subject, namely one
trial over the total 24. Hence, the values reported in Tab. I are
given with this resolution.

During the identification campaign, two subjects were con-
sidered as outliers because their brain signals had amplitudes
lower than the average. The mean amplitude was estimated
considering the twenty subjects reported in the table. The
reason was led back to their accentuated myopia (at least
minus 3 dioptres). Few subjects had normal or corrected to
normal vision. Due to the AR glasses, subject could correct
an eventual deficit visus only with contact lenses. In the other
cases, they suffered from myopia, but with less than minus 3
dioptres.

Even with a single channel and a simple signal processing,
accuracy of 98.9% was achieved with a latency of 10.0 s,
dropping to 81.1% at 2.0 s. The usual trend is an accuracy
diminishing when fewer samples are considered for the sig-
nal. However, some exceptions are present for the subjects
"MocNic" at 8.0 s, "ErrErn" at 2.0 s, "PesMar" at 4.0 s, and
"CicMel" at 5.0 s and 2.0 s. This could be explained with
a varying attention of the user during the stimulation time,
so that a longer time window is not necessarily better than
a short one. Nonetheless, this could be solved with a more
sophisticated algorithm.

C. Configuration optimization

A further experimental test campaign was carried out for
validating the achieved threshold results by using the inte-
grated AR-BCI system. After the qualitative checks on Brain-
Bay, the results of the identification phase had to be validated
with further trials, by connecting the EEG transducer directly
to the AR glasses. The validation test campaign consisted in
the use of the final AR-BCI system for the communication
with external devices through Bluetooth. Starring at an icon,
the subject could arbitrarily choose the command to actuate
during the communication, with the constraint that he/she had
to choose 12 times the command associated to the 10.0 Hz
flickering icon, and 12 times the command associated to 12.0
Hz. For each user, the stimulation time was set to the minimum
latency that resulted in 100% accuracy during identification
(first 24 trials) and to 10.0 s (last 24 trials). If the minimum

latency resulted greater than 5 s, the first trials were conducted
setting a 5 s stimulation. This value was considered as an
acceptable latency for using the AR-BCI system in industrial
applications. During validation, the signals are processed as
described in the preceding sections, but the algorithm was
implemented in Android. The identified parameters associated
to the respective time windows, namely th12, th10, and c,
were set in the algorithm as well as the stimulation time. The
accuracy obtained during validation was assessed thanks to a
feedback from the user about the successful or unsuccessful
command choice. Hence, this setup slightly differed from the
identification experimental setup because the laptop was not
employed, the EEG transducer supply came directly from the
AR glasses battery, and the user had to conduct an emulated
industrial task. Brain signals were also recorded for further
post-processing.

D. Prototype validation
The validation results are reported in Tab. II. The mean

accuracies drop by about 20% both for the minimum latency
and for 10.0 s. However, a significant inter-subject variability
is experimented, and for some subjects, the accuracy is drasti-
cally lower than during identification. The validation setup has
few differences with respect to the identification. Even though
the subjects had to use the Android application of Subsection
III-A, the flickering icon were presented on a black screen as
in preceding tests. However, the subjects complained about a
greater difficulty in being focused on a visual stimulus with
respect to the preceding phase. This was led back to two main
factors, (i) the need for focus on an icon while conducting an
inspection task, and (ii) the need to stare at the icon before
the flickering started, thus having to maintain the focus for
more time. In particular, in the current Android application,
the available selections appear 4 s before the flickering start,
and the user usually starts starring at the icon as far as it
appears. This last hypothesis is corroborated with the fact
that some subjects reached an accuracy at 10 s lower than
the one at the minimum latency. Indeed, the need to emulate
an industrial task changed the experimental conditions, due
to a different emotional state for the user. While in the first
experiments the user could be relaxed when starring at an
icon, the industrial task to carry on in the second phase
required higher attention, thus influencing the brain signals
to be measured. In principle, a longer stimulation should lead
to a more clear SSVEP signal, but this is true only if the
subject maintains the focus on the icon. Another hypothesis is
that the identified thresholds guarantee a correct classification
during validation only for some subjects. Nonetheless, the
robustness of the thresholds could not be evaluated a priori.
The confirmation of that requires a more complex signal
analysis, with particular reference to the data acquired during
validation. In addition, the check of correct application of
electrodes would be important when using the integrated
wearable system. These improvements are addressed to a next
work. At the present state, the validation results are influenced
by a problem in the system setup reproducibility. Finally,
the contribution of this work is highlighted in Tab. III by
comparison with works in the SSVEP-BCI field.
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Subject 10.0 s 8.0 s 6.0 s 5.0 s 4.0 s 3.0 s 2.0 s
DeLAnn 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
EspAnt 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
CioAnt 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 95.8%
PasLor 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 95.8%
CraFed 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 87.5%
DasCre 100.0% 100.0% 100.0% 100.0% 100.0% 95.8% 91.7%
CapFra 100.0% 100.0% 100.0% 100.0% 100.0% 95.8% 91.7%
FalGia 100.0% 100.0% 100.0% 100.0% 100.0% 95.8% 87.5%
MocNic 100.0% 95.8% 100.0% 100.0% 100.0% 91.7% 87.5%
ErrErn 100.0% 100.0% 100.0% 100.0% 91.6% 91.7% 95.8%
CraSim 100.0% 100.0% 100.0% 100.0% 95.8% 79.2% 54.2%
TeoAle 100.0% 100.0% 100.0% 95.8% 95.8% 83.3% 75.0%
PetPas 100.0% 100.0% 100.0% 95.8% 95.8% 70.8% 50.0%
PesMar 100.0% 100.0% 95.8% 95.8% 100.0% 95.8% 95.8%
DeAGio 100.0% 95.8% 95.8% 91.7% 83.3% 83.3% 83.3%
CanAle 100.0% 95.8% 95.8% 91.7% 87.5% 83.3% 66.7%
FroMir 95.8% 95.8% 95.8% 95.8% 91.7% 75.0% 70.8%
VasBen 95.8% 95.8% 87.5% 83.3% 83.3% 75.0% 75.0%
SpeMar 95.8% 95.8% 91.7% 91.7% 87.5% 62.5% 45.8%
CicMel 91.7% 87.5% 87.5% 79.2% 87.5% 75.0% 83.3%
MEAN 98.9% 98.1% 97.5% 96.0% 94.8% 87.9% 81.1%

Table I: Classification accuracy of SSVEP signals for each subject and mean accuracy at varying time window (100% accuracy
for a minimum time window underlined). All the reported values have an accuracy equal to 4.2%.

Subject Accuracy
at 10 s

Accuracy
at min

Minimum
latency (s)

DeLAnn 83.3% 87.5% 2.0
EspAnt 100.0% 95.8% 2.0
CioAnt 83.3% 95.8% 3.0
PasLor 95.8% 70.8% 3.0
CraFed 83.3% 83.3% 3.0
DasCre 91.7% 95.8% 4.0
CapFra 83.3% 91.7% 4.0
FalGia 70.8% 75.0% 4.0
MocNic 95.8% 70.8% 4.0
ErrErn 62.5% 95.8% 5.0
CraSim 75.0% 70.8% 5.0
TeoAle 91.7% 79.2% -
PetPas 95.8% 66.7% -
PesMar 83.3% 87.5% -
DeAGio 87.5% 70.8% -
CanAle 58.3% 70.8% -
FroMir 79.2% 75.0% -
VasBen 66.7% 50.0% -
SpeMar 66.7% 91.7% -
CicMel 79.2% 70.8% -
MEAN 81.6% 75.4%

Table II: Classification accuracy of SSVEP signals when using
the AR-BCI system for an inspection task (time window: 10.0
s, minimum latency, or 5 s; and "-": subjects with a minimum
latency greater than 5 s.

V. CONCLUSIONS

A system, integrating augmented reality glasses with a
non-invasive single-channel brain-computer interface based on
SSVEP, is proposed for application in Industry 4.0. This work
focuses on the BCI instrument for measuring the AR input
directly by the user EEG. The user can carry out inspection
tasks, receiving data from external wireless smart transducer
networks, with hands free for other concomitant tasks. An
experimental metrological characterization was carried out to
assess and optimize the real-time metrological performance of
the system. Further validation experiments were conducted in
an emulated inspection task of a case study of Industry 4.0.

The experimental results demonstrate that the minimum

stimulation and acquisition time for the SSVEP signals in a
single-channel BCI can be as low as 2.0 s with accuracy up
to 90.0% - 100.0% for some subjects. The average accuracy
was found to be 81.1% at 2.0 s, and grows up to 98.9%
at 10.0 s. The proposed system was tested only on healthy
subjects. However, future tests will be devoted to subjects with
brain disease or anomalies, in order to explore limitations in
usefulness and competency. A lightweight processing relying
on data from a single channel would be needed to keep the
capability of an on-line analysis. Further future research will
deal with the optimization of visual stimuli parameters to
reduce eye fatigue and increase the user focus. In future work,
the use of neuro-feedback can improve the accuracy, reduce the
latency, and support a quick focus. As an example, detecting
an increase in power in the first fractions of second in one
of the PSD bins can be used to reduce the brightness of the
remaining icons.
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