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Abstract The production cross section of inclusive iso-
lated photons has been measured by the ALICE experiment
at the CERN LHC in pp collisions at a centre-of-momentum
energy of

√
s = 7 TeV. The measurement is performed with

the electromagnetic calorimeter EMCal and the central track-
ing detectors, covering a range of |η| < 0.27 in pseudora-
pidity and a transverse momentum range of 10 < pγ

T <

60 GeV/c. The result extends the pT coverage of previously
published results of the ATLAS and CMS experiments at the
same collision energy to smaller pT. The measurement is
compared to next-to-leading order perturbative QCD calcu-
lations and to the results from the ATLAS and CMS experi-
ments. All measurements and theory predictions are in agree-
ment with each other.

1 Introduction

In high-energy particle collisions, direct photons are those
photons which are directly produced in elementary processes,
and as such are not products from hadronic decays. In proton-
proton and nuclear collisions, direct photons are colourless
probes of QCD processes. Photons originating from hard
scatterings of partons from the incoming hadrons are called
prompt photons. They provide a handle for testing pertur-
bative QCD (pQCD) predictions, and they are probes of the
initial state of protons or nuclei. At the lowest order (LO)
in pQCD, prompt photons are produced via two processes:
(i) quark-gluon Compton scattering, qg → qγ , (ii) quark-
antiquark annihilation, qq̄ → gγ , and, with a much smaller
contribution, qq̄ → γ γ . In addition, prompt photons are
produced by higher-order processes, like fragmentation or
bremsstrahlung [1]. The collinear part of such processes has
been shown to contribute effectively also at LO.

A discussion of early prompt photon measurements can
be found in [2], and measurements are also available from
experiments at the SPS collider [3], the Tevatron [4,5] and
RHIC [6]. Recently, measurements have been performed at

� e-mail: alice-publications@cern.ch

the LHC by the ATLAS and CMS collaborations in pp colli-
sions at various energies [7–15].

These measurements allow one to study a wide range
of transverse momentum (pT) of prompt photon produc-
tion from 15 to 1000 GeV/c, the lowest limit being par-
tially defined by the use of a high-energy photon trigger. A
more fundamental limitation for direct photon measurements
is imposed by the general experimental conditions. In par-
ticular, photon conversions in detector material imply a wors-
ening of momentum resolution and signal reduction that is
especially important at low momentum. For converted pho-
tons, the original energy may even be recovered for very high
momentum, but a strong bias will be introduced at low trans-
verse momentum. The low material budget in the ALICE
experiment (X/X0 = 0.7 − 0.9 in front of the photon detec-
tor) makes photon measurements at low pT more reliable and
allows one to move the pγ

T reach to a lower value.
In some of the above-mentioned references, the term

“direct prompt photons” is introduced to denote photons from
the 2 → 2 processes and is contrasted in particular with frag-
mentation or bremsstrahlung photons emitted directly from
partons. We follow a nomenclature that was adopted in a
CERN Yellow Report [16] where direct photons referred to
all photons that do not originate from hadronic decays and
prompt photons to all photons that are directly emerging from
a hard process or produced by bremsstrahlung, in any order
of perturbative QCD. When needed, we speak explicitly of
“photons from 2 → 2 processes” in this paper.

Photons from 2 → 2 processes provide clear constraints
of the underlying parton kinematics, but making a clean sepa-
ration between the different types of prompt photons is dif-
ficult.

In a consistent theoretical description, the separate treat-
ment of certain diagrams is somewhat arbitrary and only jus-
tified quantitatively to reach a desired accuracy in a given cal-
culation. A physical definition of a subset of photons has to
be related to measurable criteria. This has led to the prescrip-
tion of so-called “isolated photons”. An isolation criterion is
applied on photon candidates, where one requires the sum
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of the transverse energies (or transverse momenta) of pro-
duced particles in a cone around the photon direction to be
smaller than a given threshold value – this can be done both in
the experiment and in theoretical calculations. Fragmentation
and bremsstrahlung photons are expected to be accompanied
by fragments of the parton that has been close in phase space,
while photons from 2 → 2 processes should be free of such
associated fragments. Thus, an isolation cut should signifi-
cantly suppress fragmentation and bremsstrahlung, while it
should affect the 2 → 2 processes only marginally [17]. A
strong additional motivation of an isolation cut is to reduce
the background of decay photons in the measured signal.
This can be achieved, because hadrons at reasonably high pT

would in general be produced in jet fragmentation and would
thus be accompanied in their vicinity by other jet fragments.

Measurements of prompt and in particular isolated pho-
tons provide constraints on the proton [17] and nuclear [18]
Parton Distribution Functions (PDFs). At the LHC, because
of the high centre-of-momentum energy (

√
s), such PDF

studies are potentially sensitive to very small values of the
longitudinal momentum fraction x of the initial-state parton.
For a 2 → 2 process with the two particles (3 and 4) in the
final state being emitted at similar rapidities y3 ≈ y4 ≈ y,
which is the dominant contribution to the inclusive single
particle cross section, the x values in the initial state can to a
good approximation be calculated as:

x1,2 ≈ 2pT√
s

exp(±y) ≡ xT exp(±y), (1)

where pT is the transverse momentum and y the rapidity
of the final state particles. The variable xT defined here is
often used to compare transverse momentum distributions
for different beam energies. For photons measured at mid-
rapidity (y ≈ 0), it is closely related to the Bjorken x-values:
xT ≈ x1 ≈ x2 ≡ x . At the LHC, the most important contri-
bution to photon production, the quark-gluon Compton dia-
gram, where the above relation can be applied, has the addi-
tional advantage to be directly sensitive to the gluon density,
which has the largest uncertainty among the PDFs. These
2 → 2 processes, which should be enriched in the measure-
ment via the isolation cut, should therefore probe the low-x
gluon content of one of the incoming hadrons. Any higher
order effects will weaken the kinematic constraints, and in
particular, fragmentation photons will be sensitive to much
larger values of x . Also, when measuring only one of the
final-state particles, the uncertainty on the rapidity of the
other particles will lead to a broadening of the distribution of
x values probed.

To get a better understanding of the ranges of kinematic
parameters of the partonic processes that are explored in
prompt photon measurements, we have performed a study
of photon production with the PYTHIA 8 generator (version

8.235 [19] with Monash 2013 Tune [20]), where we extract
the values of factorisation scale Q and parton momentum
fractions x1 and x2 directly as specified in the PYTHIA event
record. PYTHIA does not contain all effects of higher orders
in QCD systematically, but has some important enhance-
ments beyond pure LO via initial- and final-state radiation.
In this calculation, we have not implemented an isolation cut,
but we assume that for the purpose of this study, it is equiva-
lent to simulating only the LO processes for partonic photon
production. Figure 1 shows the results of this calculation.

The value of the scale Q (left panel) is approximately
proportional to pT. The momentum fractions x of the two
partons are shown in the right panel. Here, we include both
partons, because for a midrapidity measurement x1 and x2

should be approximately equivalent. For comparison, the LO
estimates from Eq. (1) are also shown in the figure. The over-
all dependence of the values of x on pT is very similar, and
they show the expected increase with pT.

These results suggest that, for most of the pT range for
a photon measurement at midrapidity, the LO estimate is a
reasonably good description of the overall behaviour of the
kinematics. However, there is a significant width to the dis-
tributions. For example, while a photon of pT = 10 GeV/c
should be dominantly sensitive to values of x ≈ 2 · 10−3,
there should be significant contributions up to x ≈ 10−2.
Similar behaviour is expected for other probes, e.g. hadrons,
but the latter will have a larger spread in their kinematic sen-
sitivity and will in general probe larger values of x due to
fragmentation, and they will thus be less selective in terms
of the kinematics. This behaviour motivates the measurement
of isolated photons at the lowest possible values of pT.

Direct photon measurements can provide additional infor-
mation in high-energy nuclear collisions. Prompt photon
measurements in nucleus-nucleus collisions can yield a ref-
erence for the medium-induced modification of strongly-
interacting probes. In particular, jets and high transverse
momentum hadrons are suppressed in such collisions [21–
23], while photons, similar to W and Z0 bosons, should be
unaffected by the strongly interacting medium, consistent
with the first measurements of prompt photons in AA colli-
sions [9,24]. Measurements in pp collisions provide a base-
line for the latter.

At lower pT, other sources of direct photons than prompt
photons exist, in particular in high-energy nuclear collisions,
where e.g. thermal photons are produced from the ther-
malised system. These are important probes of the quark-
gluon plasma. Their contribution has been measured by
experiments at the SPS [25], RHIC [26], and the LHC [27].

In this paper, results of the ALICE experiment on isolated
photon measurements in pp collisions at

√
s = 7 TeV are

presented. The paper is organised as follows: Sect. 2 presents
the detector setup and data sample analysed, the analysis
procedure and uncertainties are described in Sects. 3 and 4
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Fig. 1 The scale Q (left), and the fraction x (right) of longitudinal
momentum of the initial state partons of the hard process for pho-
ton production at midrapidity versus photon pT for pp collisions at√
s = 7 TeV, from a PYTHIA 8 [19] simulation. The x values of both

partons are used here. The solid red line shows the median of the distri-
bution in the parameters, while the red bands indicate the 68% and 90%
confidence level intervals. The right plot shows for comparison the LO
estimate for x according to Eq. (1) for the rapidity range studied here

and finally, results and conclusions are presented in Sects. 5
and 6, respectively.

2 Detector description and data selection

A comprehensive description of the ALICE experiment
and its performance is provided in Refs. [28,29]. Photon
reconstruction was performed using the Electromagnetic
Calorimeter (EMCal) [30] while charged particles are recon-
structed with the combination of the Inner Tracking System
(ITS) [31] and the Time Projection Chamber (TPC) [32],
which are part of the ALICE central tracking detectors.

The ITS consists of six layers of silicon detectors and
surrounds the interaction point, covering full azimuth. The
two innermost layers consist of the Silicon Pixel Detector
(SPD) and are positioned at radial distances of 3.9 cm and 7.6
cm. They are surrounded by the two layers of the Silicon Drift
Detector (SDD) at 15.0 cm and 23.9 cm, and by those of the
Silicon Strip Detector (SSD) at 38.0 cm and 43.0 cm. While
the two SPD layers cover |η| < 2 and |η| < 1.4, respectively,
the SDD and the SSD subtend |η| < 0.9 and |η| < 1.0,
respectively. The TPC is a large (≈ 85 m3) cylindrical drift
detector filled with a Ne/CO2 gas mixture. It covers |η| <

0.9 over the full azimuth angle, with a maximum of 159
reconstructed space points along the track path. The TPC
and ITS tracking points are matched when possible, forming
tracks with an associated momentum.

The EMCal is a lead-scintillator sampling electromagnetic
calorimeter used to measure photons, electrons and the neu-
tral part of jets via the electromagnetic showers that the differ-
ent particles produce in cells of the calorimeter. The scintil-
lating light is collected by optical fibres coupled to Avalanche

Photo Diodes (APD) that amplify the signal. The energy reso-
lution is σE/E = A⊕B/

√
E⊕C/E with A = (1.7±0.3)%,

B = (11.3±0.5)%,C = (4.8±0.8)% and energy E in units
of GeV [33]. The EMCal was installed at a radial distance of
4.28 m from the ALICE interaction point. During the period
in which the analysed dataset was collected, the EMCal con-
sisted of 10 supermodules with a total aperture of |η| < 0.7
in pseudorapidity and 80◦ < ϕ < 180◦ in azimuthal angle.
The supermodules are subdivided into 24 × 48 cells, each
cell with transverse size of 6 × 6 cm2 which corresponds to
�η × �ϕ = 0.0143 × 0.0143 rad, approximately twice the
Molière radius. Thus, most of the energy of a single photon is
deposited in a single cell plus some adjacent ones. The mini-
mum bias interaction trigger was based on the response of the
V0 detector, consisting of two arrays of 32 plastic scintilla-
tors, located at 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7
(V0C) [34].

The data used for the present analysis were collected dur-
ing the 2011 LHC data taking period with pp collisions at
the centre-of-momentum energy of

√
s = 7 TeV. The analy-

sed data were selected by the EMCal Level-0 (L0) trigger
requiring energy deposition larger than 5.5 GeV in a tile of
2 ×2 adjacent cells, in addition to the Minimum Bias trigger
condition (MB, a hit in either V0A, V0C or SPD). The L0
decision, issued at latest 1.2µs after the collision, is based on
the analog charge sum of the cell tiles evaluated with a slid-
ing window algorithm within each physical Trigger Region
Unit (TRU) spanning 4 × 24 cells.

The integrated luminosity taken with the EMCal trigger
(L ) has been determined using the expression:

L = Nevt R

σMB
, (2)
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where Nevt = 8.85 · 106 is the number of events selected
with the EMCal trigger and σMB = 53.7 ± 2.0 mb [35] the
measured minimum bias trigger cross section for the year
2011 sample.

Furthermore, R is the trigger rejection factor, which quan-
tifies the fraction of interaction triggers which are rejected
by the additional EMCal L0 trigger condition. It has been
corrected for in-bunch pile-up (average number of collisions
per bunch crossing) and amounts to R = 2941 ± 174. The
resulting sampled luminosity of the current measurement is
L = 473 ± 28 (stat) ±17 (syst) nb−1.

3 Isolated photon reconstruction and corrections

Direct photon identification used in this analysis is based on
three steps: (a) particle reconstruction in the calorimeter; (b)
photon identification via track-cluster matching cuts and the
study of the shower shape produced by the particle; and (c)
selection of isolated photons.

The detector response is modelled by Monte Carlo (MC)
simulations reproducing the same detector conditions as for
the data taking period. The corrections discussed in the
next subsections are obtained using PYTHIA 6 (version
6.421 [36], with Perugia 2011 tune [37] and CTEQ5L for
PDF [38] ) as particle generator simulations, generating pro-
cesses in bins of transverse momentum of the hard scattering
with two jets (jet-jet) or a direct photon and a jet (γ -jet,
mainly Compton and annihilation processes) as final state,
and GEANT3 [39] for particle transport in the detector mate-
rial. In the case of γ -jet event generation, the event is accepted
when the direct photon enters the EMCal acceptance. In the
case of jet-jet event generation, the event is accepted when
at least one jet produces a high-pT photon originating from
a hadron decay in the EMCal acceptance. To enhance the
number of such photons, which are the main background in
this analysis, two sub-samples have been used in the jet-jet
simulation, each with different event selection, where it is
ensured that a decay photon with pT > 3.5 or 7 GeV/c is
present in the EMCal acceptance.

3.1 Cluster reconstruction and selection

Particles deposit their energy in several calorimeter cells,
forming a cluster. Clusters are obtained by grouping all cells
with common sides whose energy is above 100 MeV, starting
from a seed cell with at least 300 MeV. Furthermore, a cluster
must contain at least two cells to ensure a minimum cluster
size and to remove single-cell electronic noise fluctuations.
In order to limit energy leakage at the supermodule borders,
a distance of at least one cell of the highest-energy cell in the
cluster to the supermodule border is required. These require-
ments lead to an acceptance of |η| < 0.67 in pseudorapidity

and 82◦ < ϕ < 178◦ in azimuth. During the 2011 data tak-
ing period, the LHC delivered events in bunches separated by
50 ns. Therefore, to ensure the selection of clusters from the
main bunch crossing, the timing of the highest-energy cell in
the clusters relative to the main bunch crossing has to satisfy
�t < 30 ns.

Finally, an energy non-linearity correction derived from
electron test beam data [40], of about 7% at 0.5 GeV and
negligible above 3 GeV, is applied to the reconstructed cluster
energy.

Nuclear interactions occurring in the APD, in particular
those involving neutrons, induce an abnormal signal [41].
Such a signal is most frequently observed as a single high-
energy cell with a few surrounding low-energy cells, and can
be removed by comparing the amplitudes in adjacent cells
to the cell with maximum amplitude Emax. To reject these
signals, one requires that the ratio F+ ≡ 1−E+/Emax, where
E+ is the sum of the amplitude of the four surrounding cells
that share a common edge with the maximum cell, satisfies
F+ < 97%.

Contamination of the cluster sample by charged particles
is suppressed by a charged particle veto (CPV). It is provided
by TPC tracks constrained to the vertex, selected so that the
distance of closest approach to the primary vertex is less
than 2.4 cm in the plane transverse to the beam, and less than
3.0 cm in the beam direction. The separation of the position of
the track extrapolated to the EMCal surface from the cluster
position must fulfil the conditions:

�ηresidual > 0.010 + (ptrack
T + 4.07)−2.5 and

�ϕresidual > 0.015 + (ptrack
T + 3.65)−2 rad, (3)

where �ϕresidual = |ϕtrack − ϕcluster|, �ηresidual = |ηtrack −
ηcluster| and the track transverse momentum (ptrack

T ) is in
GeV/c units as detailed in [42]. The track-to-cluster match-
ing efficiency amounts to about 92% for primary charged
hadrons and electrons at cluster energies of E � 1 GeV, up
to 96% for clusters of 10 GeV.

From now on, clusters that pass the previous selection cuts
are called “neutral clusters”.

3.2 Shower shape and photon identification

The neutral cluster can have a wider shape, if one or several
additional particles deposit their energy nearby in the detec-
tor. The most frequent case is a two-particle cluster that has
an elongated shape. If the distance between particles is larger
than two cells, one can observe cells with local maxima in the
energy distribution of the cluster, where a local maximum is
defined as a cell with a signal higher than the neighbouring
cells.

For an increasing number of local maxima (NLM), the
cluster will in general get wider. Direct photons generate
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clusters with NLM = 1, except if they suffer conversion in
the material in front of the EMCal. The two decay photons
from high-pT π0 and η mesons with energy above 6 and
24 GeV, respectively, likely merge into a single cluster as
observed in simulations. Merged clusters from π0 mesons
below 15 GeV and η mesons below 60 GeV most often have
NLM = 2. With increasing energy the two-photon open-
ing angle decreases, leading to merged clusters with mainly
NLM = 1 above 25 GeV for π0 mesons and above 100 GeV
for η mesons.

We reject clusters with NLM > 2 in this analysis, as
these clusters are the major contribution to the background
and contributions from more than 2 particles are not per-
fectly reproduced in Monte-Carlo simulations. Contribution
of clusters with NLM = 2 is especially large in case of wide
showers, and are crucial for the estimate of the contamination
of the direct photon sample, as explained in Sect. 3.4.

Merged and single photon clusters can be discriminated
based on the shower shape using the width parameter σ 2

long,
the square of the larger eigenvalue of the energy distribution
in the η − ϕ plane [29,42,43], that can be calculated as:

σ 2
long = (σ 2

ϕϕ + σ 2
ηη)/2 +

√
(σ 2

ϕϕ − σ 2
ηη)

2/4 + σ 4
ηϕ, (4)

where σ 2
xz = 〈

xz
〉 − 〈

x
〉〈
z
〉

and
〈
x
〉 = (1/wtot)

∑
wi xi are

weighted over all cells associated with the cluster in the ϕ or
η direction.

The weights wi depend logarithmically on the ratio of
the energy Ei of the i-th cell to the cluster energy, as
wi = max(0, 4.5 + ln(Ei/Ecluster)) and wtot = ∑

wi [44].
The neutral clusters σ 2

long distributions as a function of pT in
data and simulation are shown in Fig. 2. Most of the pure sin-
gle photons are reconstructed as clusters with σ 2

long ≈ 0.25,
other cases contribute to higher values as seen in simula-
tion in Fig. 2, right. Above the higher limit in σ 2

long (defined
by the solid line), a clear pT-dependent band populated by
merged π0-decay photons can be observed as shown in Fig. 2,
left. The value of σ 2

long for merged decay photons decreases
with increasing energy, which leads to an overlap with single
photon showers. In this analysis, “photon candidates” refer
to clusters with a narrow shape 0.1 < σ 2

long < σ 2
max with

σ 2
max = 0.4 in 10 < pγ

T < 14 GeV/c, σ 2
max = 0.35 in

14 < pγ
T < 16 GeV/c and σ 2

max = 0.3 for pγ
T > 16 GeV/c.

A comparison of the shower shape parameter σ 2
long dis-

tribution in data and Monte-Carlo simulations is shown in
Fig. 3. The single photon peak in data compared to simula-
tions has a stronger tail towards larger values of σ 2

long, i.e.

specifically in the region 0.3 ≤ σ 2
long ≤ 0.4.

The main reason for this was identified as a cross-talk
between cells belonging to the same EMCal readout card,
called T-Card, which serves 2×8 cells (in η×ϕ). The cross-
talk results in an increase of the amplitude in cells close

to the highest-energy cell of the cluster and in the same T-
Card, with a few percent of Emax, which in turn leads to a
modification of the cluster shape. This effect was modelled
in the simulation and a good agreement between data and
simulation was achieved, as seen in Fig. 3 for two neutral
cluster pT intervals.

3.3 Isolated photon selection

Direct photons emitted in 2 → 2 processes are mostly iso-
lated, i.e. have no hadronic activity in their vicinity except for
the underlying event of the collision, in contrast to other pho-
ton sources like photons from parton fragmentation or decays
of hadrons which have a high probability to be accompanied
by other fragments [17].

An isolation criterion is applied to direct photon candi-
dates to increase the purity of 2 → 2 processes. As a conse-
quence for a comparison with theory, one has to make sure to
implement an equivalent cut in the theoretical calculations.

The isolation criterion is based on the so-called “isolation
momentum” piso

T , i.e. the transverse momentum of all par-
ticles measured inside a cone around the photon candidate,
located at ηγ and ϕγ . The cone radius used is defined as:

R =
√

(η − ηγ )2 + (ϕ − ϕγ )2. (5)

We chose R = 0.4 as cone radius as it contains the domi-
nant fraction of the jet energy [45] and is sufficiently large
to contain both decay products of neutral meson decays. In
addition it is fully contained within the acceptance of the
electromagnetic calorimeter.

The isolation momentum is the sum of the transverse
momenta of all neutral clusters (pcluster

T ) in the calorime-
ter, excluding the candidate photon, and of the transverse
momenta of all charged tracks that fall into the cone:

piso
T =

∑
pcluster

T +
∑

ptrack
T . (6)

The candidate photon is declared isolated if piso
T < 2 GeV/c.

This value was chosen after studying the efficiency, back-
ground rejection and purity performances, and optimizing
these quantities. In order to have full coverage of the cone in
the calorimeter, the photon candidate is restricted to a fiducial
acceptance corresponding to |ηγ | < 0.27 in pseudorapidity
and 103◦ < ϕγ < 157◦ in azimuth.

Charged particles used in the calculation of the isolation
momentum are reconstructed in a hybrid approach using
ITS and TPC, which reduces local inefficiencies potentially
caused by non-functioning elements of the ITS. Two distinct
track classes are accepted in this method [29]: (i) tracks con-
taining at least three hits in the ITS, including at least one hit
in the SPD, with momentum determined without the primary
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lations, PYTHIA 6 jet-jet + γ -jet events, with GEANT3 default settings
in blue. The red histograms are also simulations based on GEANT3, but
tuned to reproduce the cross-talk observed in the EMCal electronics

vertex constraint, and (ii) tracks containing less than three
hits in the ITS or no hit in the SPD, with the primary vertex
included in the momentum determination. Class (ii) is used
only when layers of the SPD are inactive in the acceptance.
Class (i) contributes 90% and class (ii) 10% of all accepted
tracks, independently of pT. The same constraints to the ver-
tex as for TPC tracks discussed before are required. Accepted
tracks satisfy |ηtrack| < 0.9 and ptrack

T > 0.2 GeV/c.

3.4 Purity of the isolated photon sample

The isolated photon candidate sample still has a non-
negligible contribution from background clusters, mainly
from neutral meson decay photons. To estimate the back-
ground contamination, different classes of measured clusters

were used: (1) classes based on the shower shape σ 2
long, i.e.

narrow, photon-like andwide (most often elongated, i.e. non-
circular), and (2) classes defined by the isolation momentum
piso

T , i.e. isolated (iso) and non-isolated (iso). The differ-
ent classes are denoted by sub- and superscripts, e.g. iso-
lated, narrow clusters are given as X iso

n and non-isolated,

wide cluster are given as X iso
w . The σ 2

long parameter values for
narrow and wide clusters correspond to the signal and back-
ground clusters indicated in Sect. 3.2. The wide clusters use
0.55 < σ 2

long < 1.75 for pγ
T < 12 GeV/c, 0.5 < σ 2

long < 1.7

for 12 < pγ
T < 14 GeV/c, 0.45 < σ 2

long < 1.65 for

14 < pγ
T < 16 GeV/c and 0.4 < σ 2

long < 1.6 for pγ
T >

16 GeV/c.
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Fig. 4 Illustration of the parametric-space of the photon isolation
momentum and the shower width parameter (σ 2

long), used to estimate
the background yield in the signal region (A) from the observed yields
in the three control regions (B, C, D). The red regions indicate areas
dominated by background and the blue regions those that contain the
photon signal. The colour gradient between these regions illustrates the
presence of a signal contribution in the three background zones

The isolation criterion corresponds to piso
T < 2 GeV/c

whereas the anti-isolation corresponds to piso
T > 3 GeV/c.

The yield of isolated photon candidates in this nomenclature
is N iso

n . It consists of signal (S) and background (B) contri-
butions: N iso

n = Siso
n + Biso

n .
This class is labelled with the letter A in Fig. 4, which

illustrates the parameter space used in this procedure. The
three other classes that can be defined (labelled as B, C,
and D in the figure) should dominantly contain background
clusters. The notation A, B, C and D is analogous to the
one used by the ATLAS experiment for their contamination
estimate [12]. The contamination of the candidate sample
is then C = Biso

n /N iso
n , or respectively, the purity is then

P ≡ 1 − C . Assuming that the ratios of isolated over non
isolated background in the narrow cluster areas is the same
as in the wide cluster areas so that:

Biso
n /Biso

n

Biso
w /Biso

w

= 1, (7)

and assuming that the proportion of signal in the control
regions (B,C andD) is negligible compared to the proportion
of background, the purity is derived in a data-driven approach
(dd) as

Pdd = 1 − Biso
n /N iso

n

Biso
w /Biso

w

= 1 − N iso
n /N iso

n

N iso
w /N iso

w

. (8)

Unfortunately, both assumptions are valid only approx-
imately, especially Eq. (7). In simulations with two jets in
the final state that contribute only to background in all of

the four zones, an evaluation of Eq. (7) gives values of the
order of 0.8 at pγ

T = 10 GeV/c, increasing to about 1.7 for
pγ

T > 40 GeV/c, thus the ratio is in general different from
unity.

In part, this is due to the fact that single photons from
meson decays can have a higher value of piso

T than merged
decay photons at the same pT, because of the presence of the
second photon from the meson decay in the isolation cone.

Also, fluctuations in the cluster distributions, e.g. caused
by overlapping showers from close particles originating from
the same hard process, may lead to some energy contribution
either to be included in the cluster candidate and increase
its width, or not to be included and increase the isolation
momentum, causing an anti-correlation of the two parame-
ters.

Since these effects are purely due to particle kinematics
and detector response, we use the simulation to estimate the
bias this causes via:

(
Biso

n /Biso
n

Biso
w /Biso

w

)

data
=

(
Biso

n /Biso
n

Biso
w /Biso

w

)

MC
, (9)

where MC contains both jet-jet and γ -jet events scaled to
their respective cross sections. This implies replacing Eq. (7)
by the relation given by Eq. (9) leading to the expression of
the MC-corrected purity:

P = 1 −
(
N iso

n /N iso
n

N iso
w /N iso

w

)

data
×

(
Biso

n /N iso
n

N iso
w /N iso

w

)

MC

≡ 1 −
(
N iso

n /N iso
n

N iso
w /N iso

w

)

data
× αMC. (10)

The difference between the degree of the correlation
among isolation momentum and shower shape distribution
in data and in Monte-Carlo is another potential source of
bias, as it influences the validity of Eq. (9). To check this, the
dependence of the double ratio:

(
N iso/N iso

)data

(
N iso/N iso

)MC = f
(
σ 2

long

)
(11)

on the shower shape width σ 2
longis studied in a region where

the signal contribution is expected to be negligible. If the
correlation between the two variables is correctly reproduced
in the simulation, the double ratio is independent of σ 2

long, i.e.
it would be the same for wide and narrow clusters. The double
ratio was found to be above unity, indicating a larger isolation
probability in data than in simulations. This is mainly due
to an imperfect calibration of charged particle tracks which
leads to some discrepancy between data and simulations in
the estimate of the isolation energy from charged particle.
However, since the correction introduced in Eq. (10) relies
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on a narrow-over-wide ratio, the overall normalisation in the
double ratio of Eq. (11) does not enter the correction.

The double ratio was found to be consistent with a con-
stant, but a possible residual bias between data and MC has
been estimated via extrapolations by linear fits of the depen-
dence on σ 2

long instead of the assumption of a constant value.
This consists of replacing the MC correction in Eq. (10) by
a modified term:

αMC 
−→ αMC ×
(

p0 + σ 2
long,n.p1

p0 + σ 2
long,w.p1

)
, (12)

where σ 2
long,n and σ 2

long,w are the median values of the neu-

tral cluster σ 2
long distribution in the narrow and wide ranges,

respectively, and p0 and p1 are the parameters of the linear
fit of the double ratio f (σ 2

long).
These extrapolations have then been used in the esti-

mate of the mean value and uncertainties of the purity. In
this procedure, also a variation of the value of the isola-
tion momentum required for non-isolated clusters has been
included for the Monte Carlo correction, in order to check
the variations due to the discrepancy of isolation fractions in
data and in simulation (the overall normalisation). Finally,
the dependence of the results on the isolation momentum
calculation is tested using only tracks when computing the
isolation momentum (piso

T = ∑
ptrack

T ) and using an iso-
lation criterion of piso

T < 1.9 GeV/c and an anti-isolation
cut of piso

T > 2.9 GeV/c. These values have been chosen
after comparing the isolated photon spectrum at generator
level obtained using either neutral and charged particles or
charged particles only in γ -jet simulations. The final purity is
calculated as the mean value of all the results obtained from
the different estimates varying:

– the isolation momentum definition (including or ignoring
the contribution of

∑
pcluster

T ),
– the dependence of the isolation probability on the shower

shape σ 2
long (extrapolation of f (σ 2

long)),

– the MC anti-isolation criterion (normalisation of f (σ 2
long)).

Figure 5 shows the purity calculated using Eq. (10) and
averaged over the different approaches listed above using
also Eq. (12). The boxes indicate the systematic uncertainty
whose estimation is explained in the next section. There is a
large contamination at pγ

T = 10 GeV/c of 80% that decreases
and saturates at 40–50% for pγ

T > 18 GeV/c. The contami-
nation level defines the lower pγ

T that can be reached. Most of
the contamination is due to π0 clusters (merged decay pho-
tons). Below 18 GeV/c, this contamination is dominated by
single (i.e. unmerged) decay photons from π0 mesons, the
remaining contributors being mainly photons from η mesons
decay. Above 18 GeV/c, a fraction of the merged π0 decay
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Fig. 5 Isolated photon purity as a function of photon pT

clusters have a narrow shower that satisfy the condition for
the single photon signal, as illustrated in Fig. 2 (right). The
pγ

T dependence of the purity is caused by an interplay of
physics and detector effects. On one hand, the pT spectra
of prompt photons are harder than those of neutral pions,
mainly because the latter undergo fragmentation, as also
was found in pQCD calculations [16,33]. For this reason,
the γdir/π

0 yield ratio rises with pT, and the photon purity
increases as well. Also, the probability to tag a photon as
isolated varies with pT. At higher pT, isolation is less prob-
able for a fixed isolation momentum. On the other hand, due
to the decreasing opening angle at high pT the contamina-
tion from π0 mesons increases with pT. At pT = 20 GeV/c,
5% of the π0 decay photons are found in the narrow shower
shape region, and beyond 40 GeV/c this contribution rises to
more than 25%. The combined effect of these mechanisms
leads to the rise of the purity at low pT and a saturation for
pT > 18 GeV/c.

The results obtained for the purity are comparable with
those reported by CMS [7,8] in the overlapping pT range,
whereas the purity obtained by ATLAS [11,12] is signifi-
cantly higher than our measurement due to the very high
granularity of the first layers of its electromagnetic calorime-
ter, allowing a very good separation of single photon and π0

decay photon showers.

3.5 Efficiency

The photon reconstruction, identification and isolation effi-
ciency has been computed using PYTHIA 6 simulations of
γ -jet processes in which, for each event, a direct photon is
emitted in the EMCal acceptance but, only those falling in
the fiducial acceptance are considered in the efficiency cal-
culation.

The different analysis cuts contribute to the overall effi-
ciency and the contributions are presented in the left panel
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of Fig. 6. They are calculated as the ratio of spectra,
where the denominator is the number of generated pho-
tons dN gen

γ /dpgen
T , and the numerators are the reconstructed

spectra after different cuts, dN rec
cut /dprec

T : (i) the pure recon-
struction efficiency of photons is εrec ≈ 70%, (green
squares), which includes losses due to excluded regions in
the calorimeter and exclusion of clusters close to the bor-
der of EMCal supermodules, as well as bin migration due to
energy resolution, (ii) applying in addition the photon iden-
tification reduces the efficiency by about 10%, leading to
εrec ·εid ≈ 60%, (red crosses), which is mainly driven by the
shower shape selection cuts used for the photon sample, (iii)
combining it with the isolation criterion yields an efficiency
εrec · εid · εiso ≈ 50%, (blue diamonds).

In addition, the fraction κ iso of generated photons which
are isolated is represented by black filled circles in the figure.
The total efficiency corresponds to the ratio of the reconstruc-
tion, identification and isolation efficiency as given in (iii) to
the isolated generated photon fraction κ iso and is then directly
calculated as follows:

εiso
γ = dN rec

n, iso

dprec
T

/dN gen
γ, iso

dpgen
T

≡ εrecεidεiso

κ iso , (13)

where N rec
n, iso is the number of clusters which are recon-

structed and identified as isolated photons and which are
produced by a direct photon, and N gen

γ, iso is the number of
generated direct photons which pass the isolation cut in the
same way as at the detector level. The overall efficiency for
the reconstruction of isolated photons is of the order of 60%
on average as shown in Fig. 6 (right panel). To check the
robustness of the efficiency calculation, the effect of a vari-
ation of the shape of the momentum spectrum in the Monte
Carlo used has been studied and has been found to be negli-
gible.

3.6 Trigger efficiency and corrections

The EMCal-L0 trigger efficiency εtrig is the probability that
the trigger selects events when a photon is emitted in the
EMCal acceptance. This analysis starts well above the trigger
threshold (10 GeV compared to 5.5 GeV) where the trigger
efficiency is flat.

The trigger efficiency is however not 100%, because of
two effects reducing the geometric coverage of the trig-
ger compared to the EMCal acceptance: the sliding win-
dow technique can only be used within a single given TRU,
and in addition, some TRU cards were inactive. The effi-
ciency is calculated from minimum bias events as the ratio
of the number of events containing high energy clusters
(E > 10 GeV, see cluster definition in Sect. 3.1) and leaving
a signal in the trigger over the total number of events with
high energy clusters in the same sample. It was estimated
to be εtrig = 0.90 ± 0.06 (stat). The statistical uncertainty
quoted here is completely correlated to that of the luminos-
ity so that it will not be taken into account twice. More-
over, a bias in the trigger efficiency was found, which is
due to synchronisation issues. Sometimes, the EMCal-L0
trigger selected events in the next bunch crossing, 50 ns
after the nominal bunch crossing. The bias was estimated
by calculating the ratio C of the number of clusters in a time
window containing only the main bunch crossing over the
number of clusters in a time window including the main
and the next bunch crossing. The bias was found to be
between 3% and 8% for trigger cluster pT varying from 10
to 60 GeV/c, and the trigger efficiency is corrected for this
effect.
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Fig. 6 Different contributions (reconstruction, identification, isolation) to the total efficiency (left) and total isolated photon efficiency (right)
calculated using Eq. (13), all as a function of the reconstructed pT
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Table 1 Summary of uncorrelated relative systematic uncertainties in
percent for selected pγ

T bins of the isolated photon measurement. The
luminosity uncertainty of 9.5% is not included in this table

pγ
T 10–12 GeV/c (%) 40–60 GeV/c (%)

Charged particle veto 2.0 7.0

σ 2
long signal range 3.7 7.5

σ 2
long background range 2.5 2.5

MC signal amount 1.0 2.7

MC γ enhancement bias 2.0 2.0

No MC tuning 4.2 4.2

Number of local maxima 2.0 2.0

Isolation probability 20.0 8.5

Energy scale 3.3 3.3

Trigger stability 5.1 5.1

Material budget 2.1 2.1

Combined syst. unc. 22.1 16.0

Statistical unc. 19.9 40.3

4 Systematic uncertainties

Systematic uncertainties on the cross section measurement
are summarised in Table 1 for two extreme transverse
momentum bins used in the analysis and presented in
Fig. 7. The uncertainties are treated as independent and thus
summed in quadrature. Though we present systematic uncer-
tainties for intermediate quantities, like purity (Fig. 5) and
efficiency (Fig. 6), they do not enter into the calculation of
uncertainties of the final cross section. Instead, systematic
uncertainties of all sources are evaluated there directly.

The uncertainties due to the choice of the photon cluster
identification criteria in this analysis are evaluated via vari-
ations of cuts for the charged particle veto and the shower
shape σ 2

long for the photon selection.
The uncertainty due to the charged particle veto was esti-

mated by varying the parameters of the track pT-dependent
cuts for �ηresidual and �ϕresidual. The resulting uncertainty on
the cross section ranges from 2 to 7% from lower to larger pγ

T .
The increase with pγ

T is driven by the use of the charged par-
ticle veto in the cone activity measurement. For high values
of pγ

T , the in-cone activity is higher and the systematic uncer-
tainty from the CPV is higher.

The choice of the signal range of the σ 2
long of narrow

photon-like showers, is important for the efficiency calcula-
tion, but also influences the background estimate via a “leak-
age” of photon showers to the control regions. The uncer-
tainty due to the choice of the signal range is estimated
by varying the upper limit of the range and is found to lie
between 3.7 and 7.5%, increasing with pγ

T . Similarly, the
uncertainty due to the choice of the background region (wide
showers, i.e. large values of σ 2

long) is investigated by moving
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Fig. 7 Contributions to the systematic uncertainty of the isolated pho-
ton cross section and their quadratic sum as a function of photon pT

the corresponding σ 2
long interval to smaller and larger values.

The estimated uncertainty is found to be 2.5%.
The Monte Carlo correction of the data-driven purity may

also depend on the amount of signal in the simulation, mainly
due to the aforementioned leakage effect. This is checked by
changing the relative normalisation of the signal and back-
ground MC samples from the default value corresponding to
the theoretical cross sections to a relative signal contribution
that is 30% larger or smaller than this default.The resulting
uncertainty varies from 1% for the lowest pγ

T to 2.7% for
the highest pγ

T . The uncertainty related to the input particle
bias produced by the event selection enhancing photons in
simulation is 2%.

The description of the shower shape in simulations can
also affect both the efficiency measurement and the MC cor-
rection of the purity. The associated uncertainty is found to
be 4.2%, estimated from the difference between standard
simulations and those including modelling of the cross-talk
observed in the EMCal readout cards. In addition, the sen-
sitivity of the cross section to the number of local maxima
of selected clusters is checked by accepting clusters with
NLM > 2. The resulting uncertainty amounts to 2% in the
cross section measurement.

Related to the purity, the bias due to the correlation
between the two quantities used to estimate the con-
tamination (σ 2

long and piso
T ) is taken into account via a

number of cut and method variations, which test the two
main assumptions made in this estimate: (i) the back-
ground isolation fraction is constant with respect to the
shower shape σ 2

long and (ii) the isolation fraction is the
same in data and simulation. The different approaches
used for these systematic checks are described in Sect.
3.4. The systematic uncertainty assigned addressing these
correlation effects is labelled as “isolation probability”
and is obtained by the root mean square of the results
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obtained for the different checks mentioned above and
in Sect. 3.4. The resulting uncertainty is estimated to
vary from 20.% (pγ

T = 10 GeV/c) to 8.5% (pγ
T =

60 GeV/c).
The decrease of uncertainties with pγ

T is related to the
increase of the purity of the photon candidates.

The uncertainty on the energy scale of the EMCal was
estimated to be 0.8%, determined from the analysis of test
beam data [40] and a comparison of the π0 mass-peak posi-
tion and the energy-to-momentum ratio of electron tracks in
data and Monte Carlo [46]. This uncertainty amounts to 3.3%
in the cross section measurement.

The uncertainty on the trigger normalisation factor is 5.1%
and is estimated from the run-by-run variations of the number
of reconstructed clusters with transverse momentum above
pγ

T = 10 GeV/c per event, corrected for the active detector
area.

A material budget uncertainty accounting for the mate-
rial of the different detectors traversed by photons before
they reach the EMCal has been previously determined [47]
and amounts to 2.1% in the present measurement. The in-
bunch pile-up uncertainty (affecting the raw yield via the
isolation momentum) was found to be negligible, estimated
by adding a random transverse momentum in the isolation
cone estimated from the in-cone energy of a random trigger
in minimum bias events.

Figure 7 summarises the different sources of systematic
uncertainties. The dominant source of uncertainty is the iso-
lation probability, related mainly to the correlation of the two
variables used for the purity estimation (σ 2

long and piso
T ), the

discrepancy in isolation probability between data and MC
and the definition of piso

T . The pγ
T dependence of the total

systematic uncertainty is expected and is related to the low
purity at low pγ

T .

5 Results

The isolated direct photon production differential cross sec-
tion can be obtained from the following equation:

d2σγ

dpγ
T dη

= 1

LεtrigC
d2N iso

n

dpγ
T dη

P

εiso
γ

, (14)

where all the terms were described in the previous sections.
Figure 8 shows the isolated photon cross section as a func-

tion of pγ
T . Error bars indicate the statistical uncertainties

and boxes the systematic uncertainties. An additional nor-
malisation uncertainty of 9.5%, which includes effects from
the measurement of the total minimum bias cross section and
effects due to the rejection factor from the EMCal triggering,
is not displayed in the left panel of the figure.

The measurement is compared to next-to-leading order
(NLO) pQCD calculations using JETPHOX 1.3.1 [48,49].
The parton distribution function (PDF) used is CT14 [50],
and the fragmentation function is BFG II [51]. The central
values of the predictions were obtained by choosing factori-
sation, normalisation and fragmentation scales equal to the
photon transverse momentum (μ f = μR = μF = pγ

T ).
Scale uncertainties were determined with a 7-point scale vari-
ation where μR and μF were varied by a factor of 2 up and
down around pγ

T , keeping the μR/μF ratio between 1/2 and
2. As uncertainties related to the PDF, the 56 eigenvector sets
of CT14 were combined with the Hessian method [52,53].

The isolation criterion in the theory calculations corre-
sponds to the hadronic energy at the partonic level within
R < 0.4 around the photon. The same threshold of piso

T < 2
GeV/c as in data is used. The theoretical predictions are cor-
rected to take into account the underlying event as well as
the fragmentation in the isolation cone. This correction is
estimated using γ -jet PYTHIA simulations as the fraction
of generated photons which are isolated as shown in Fig 6
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Fig. 8 Isolated photon differential cross section measured in pp col-
lisions at

√
s = 7 TeV (left plot). Error bars are statistical and boxes

systematic uncertainties. The bands correspond to pQCD calculations

with JETPHOX. The normalisation uncertainty explained in the text
(9.5%) is not included in the left panel and is presented as an overall
box around unity in the right panel
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(right). The theoretical predictions are computed in the same
pγ

T bins as for data.
Within uncertainties, the isolated photon cross section in

data and theoretical predictions are in agreement for the full
transverse momentum range measured as demonstrated by
Fig. 8 (right).

Figure 9 compares the ratios of measured differential iso-
lated photon cross sections from three different LHC exper-
iments, namely ALICE, ATLAS [11] and CMS [7] to the-
oretical predictions. The comparison is done on ratios of
data to similar predictions since the isolation criteria differ
among these experiments such that a direct comparison of
the isolated photon cross sections is not fully adequate. The
ATLAS and CMS experiments use larger values for piso

T . In
JETPHOX predictions, increasing the isolation threshold
should reflect in a larger fragmentation contribution in the
total cross section without necessarily increasing the total
isolated photon cross section compared to smaller isolation
criteria. However, the data to theory ratios should be consis-
tent between the experiments as it is observed in Fig. 9.

The ALICE measurement extends the pγ
T range to lower

values than ATLAS, which has measured the isolated photon
cross section at mid-rapidity for pγ

T ≥ 15 GeV/c in the same
collision system. All experiments agree with pQCD predic-
tions within theoretical and experimental uncertainties.

For a comparison of cross sections measured at different√
s, it is more appropriate to use the variable xT as defined

in Eq. (1), which is also closely related to Bjorken x [55].
A compilation of all available data on isolated photon cross
section measurements in collider experiments has been per-
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Fig. 10 ALICE data compared to the world’s data of isolated photon
spectra measured in pp and pp collisions as a function of xT where
the invariant cross sections have been scaled by (

√
s)n with n = 4.5

compiled in Ref. [56]. For this comparison only the results covering
mid-rapidity are shown

formed in [56] and all xT spectra were compatible with a sin-
gle curve when scaled by (

√
s)n with n = 4.5. The ALICE

measurement is compared to those data including also latest
LHC measurements and the result is presented on Fig. 10.
The ALICE measurement, as anticipated, allows us to extend
the xT reach to lower values, and is in agreement with the
n = 4.5 scaling, suggesting that all data are sensitive to the
same production mechanisms. However, the value n = 4.5
deviates from the 1/(pT)n=4 dependence expected for the
leading-twist partonic production mechanisms. This may be
due to effects like the running coupling and the evolution of
PDFs, but could also indicate significant contributions from
fragmentation photons and higher twist diagrams [57].

6 Conclusions

The isolated photon differential cross section in pp colli-
sions at

√
s = 7 TeV is measured by the ALICE experiment

at mid-rapidity in the transverse momentum range from 10
to 60 GeV/c. Results are compared to ATLAS and CMS
results and to pQCD calculations. The mutual agreement of
the data sets with theory supports the theoretical calculations
and demonstrates the consistency of the different measure-
ments.

The current measurement extends the lower limit of pγ
T

to a smaller value compared to previous measurements by
other experiments. This capability of ALICE will be useful
for future studies of isolated photon cross sections and corre-
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lations of isolated photons to jets or hadrons in high-statistics
data samples, in particular also for studying medium-induced
modifications of hard probes. The measurement also opens
up the possibility to access lower Bjorken-x . While in pp
collisions this measurement, in spite of its lower pT reach,
may not provide strong constraints on the low-x PDFs, this
should be much more promising in nuclear collisions due to
the larger uncertainties of nuclear PDFs.
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