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Point cloud denoising using joint geometry/color
graph wavelets

Muhammad Abeer Irfan and Enrico Magli
Dept. of Electronics and Telecommunications – Politecnico di Torino, Italy

Abstract—A point cloud is a 3D geometric signal representation
associated with other attributes such as color, normal, trans-
parency. Point clouds usually suffer from noise due to imperfect
acquisition systems. Based on the notion that geometry and color
are correlated, we present a novel non-iterative framework for
point cloud denoising using Spectral Graph Wavelet transform
(SGW) that takes advantage of this correlation and performs
denoising in the graph frequency domain. The proposed approach
is based on the design of a joint geometry and color graph that
compacts the energy of smooth graph signals in low-frequency
bands. We then apply soft-thresholding to remove the noise from
the spectral graph wavelet coefficients. Experimental results show
that the proposed technique significantly outperforms state-of-
the-art methods.

Index Terms—Graph signal processing, point cloud denoising,
Spectral Graph Wavelets

I. INTRODUCTION

A point cloud is an effective way to represent volumetric
data in 3D space [1], [2], [3]. Point clouds are unordered
collections of points in 3D space, where each point is com-
prised of 3D coordinates plus attributes such as color, normals,
transparency. Point clouds have now been extensively used in
many fields such as culture and heritage reconstruction, 3D
broadcasting, navigation of unmanned vehicles [4]. The ac-
quired point clouds from the active sensors such as Microsoft
Kinect c� or generated by stereo matching algorithms [5] often
suffer from geometry noise and therefore point cloud denoising
should be performed to improve their quality.

Significant amount of work has been done for point cloud
denoising [6], [7], [8], [9]. The local tangent space based
graph is considered for robust denoising of piece-wise smooth
manifolds (RPSM) [10]. Data-driven approaches [5], [11] have
shown good results for point cloud denoising, but may not
be applicable where no dataset of noise-free point clouds is
available. In recent literature, an iterative-based regularization
technique (IBR) constructs geometry-only based graph and
uses it for point cloud denoising using convex optimization
[6]. The same graph has also been exploited for manifold
denoising based on Spectral Graph Wavelet (MSGW) [12].
The drawback of these techniques is that the estimation of
the correct position of the points is based on noisy geometry;
this may lead to erroneous estimation of the local surface, and
consequently to generate artefacts in the resulting denoised
point cloud (see Fig. 1).

In this paper, we address the point cloud geometry denoising
problem by introducing a novel framework which jointly uses
geometry and color attribute of points. The rationale is that

on a smooth surface the color is also typically smooth; this
notion has been recognized in various point cloud applications
[13], [14], [15]. The proposed algorithm uses Spectral Graph
Wavelet (SGW) [16], providing a trade-off between vertex and
spectral-domain localization. This allows us to take advantage
of global smoothness i.e., lower frequency bands contain most
of the energy, while avoiding to over-smooth discontinuities
which corresponds to large magnitude coefficients in the high
frequency bands.

In particular, the proposed method constructs a graph based
on both geometry and color attribute of each point, and then
applies the SGW to the corresponding graph signal. SGW
based technique is effective for point cloud denoising, since
in the graph signal defined on constructed graph, most of
the energy is concentrated in lower frequencies. Furthermore,
the joint geometry/color graph provides improved spectral
separation between signal and noise, which make the noise
removal easier. Most recent point cloud denoising algorithms
are iterative and may also be sensitive to the parameters
selection [17], [18], [6], [7]. On the other hand, our proposed
technique is non-iterative and has low computational cost,
which scales linearly with the data size; it is also robust
to parameter selection. Experimental results show that our
algorithm effectively exploits the correlation between geom-
etry and color to relocate each point towards its original
position, avoiding the artefacts generated by other techniques.
We show that the proposed algorithm outperforms state-of-the-
art methods using both qualitative and quantitative evaluation
metrics.
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Fig. 1: Asterix model: (a) Ground-truth, (b) denoised with
IBR [6]. The noisy points are moved towards their nearest
neighbors rather than their original positions, generating holes
in the denoised point cloud.



II. PROPOSED APPROACH

A. Graph nomenclature
An undirected weighted graph G = {V, E} consists of a

finite set of m vertices V and a set of edges E defined as
(i, j, wi,j), where i, j 2 V and each edge has a non-negative
weight wi,j 2 R+ that reflects the affinity between node i and
j. The corresponding adjacency matrix W(i, j) = wi,j is a
real symmetric m ⇥m matrix. Let D be the diagonal degree
matrix with entries D(i, i) =

P
j wi,j . Given W and D, the

combinatorial graph Laplacian matrix is defined as L = D -
W. The graph signal g(G) for a given graph G is defined on
the vertices of a graph, as g : V ! RD for some dimension
D.

B. Spectral graph wavelet preliminaries
In this section, we establish a mathematical notation and

definition of SGW [16]. For a function g defined on G,
its Graph Fourier Transform (GFT) ĝ is defined as ĝ(l) =
h�l, gi =

Pm�1
i=1 g(i)�l(i), where �l represents the eigenvec-

tors of the graph Laplacian L and eigenvalues are denoted as �l
for l = 0 , . . . . ,m�1. SGW [16] defines a scaling operator in
the Graph Fourier domain based on �l. In particular, SGW are
constructed using a kernel f , the wavelet operator Tf = f(L)
acts on a given function g by modulating each Fourier mode
as:

dTf g(l) = f(�l)ĝ(l) (1)

The inverse transform is defined as:

(Tf g)(n) =
m�1X

l=0

f(�l)ĝ(l)�l(n) (2)

The wavelet operator at scale s is defined as T s
f = f(sL),

the SGW is then computed by localizing the operators T s
f by

applying them to the impulse � on a single vertex:  s,n =
T s
f �n. The wavelet coefficients of a given graph signal g are

computed by taking the inner product with these wavelets as
 g(s, n) = h s,n , gi. The  g(s, n) can be achieved directly
from the wavelet operators T s

f using the orthonormality of �
as:

 g(s, n) = (T s
f g)(n) =

m�1X

l=0

f(s�l)ĝ(l)�l(n) (3)

The naive approach for computing SGW from Eq. 3 requires
explicit calculation of the entire �, which scales poorly for
large graphs. Another approach is to diagonalize L for direct
computation of SGW transform, which is feasible only for
graphs with less than a thousand vertices [16]. Dealing with
real-world and synthetic point clouds with large number of
points, the SGW can be calculated with a fast algorithm
using low order polynomials, which approximate the scaled
generating kernels. At each scale, the wavelet coefficients can
be computed by applying a polynomial of L to the input
data. This results in lower computational cost when the graph

is sparse. The scaling and wavelet coefficients of an input
[m⇥D] graph signal are efficiently computed using Chebyshev
polynomial approximation [19], [16] and then mapped to
[m ⇤ (I � 1)⇥D], where I represents the number of wavelet
decomposition levels.

C. Joint geometry and color k-NN graph
A point cloud is represented as P = {p1, p2, p3, ....., pN}

with pi 2 R6 containing 3D geometry and RGB color
information for point pi. The six-dimensional feature of each
point is pi = [Xi, Ci], where Xi = [xi yi zi] 2 R3 is the
geometric coordinate vector and Ci = [Ri Gi Bi] 2 R3 are
the color attributes. A common approach is to construct a k
nearest neighbor (k-NN) graph based on Euclidean distance
to makes geometric structure explicit [20]. Our denoising
algorithm generates k-NN graph based on both coordinates
proximity and similarity in color of points pi.

Construction of k-NN color-only graph is not a good choice
as geometrically distant points may have similar color but
different semantic content, which may lead to construction
of a wrong graph, while geometry-only k-NN graph generates
artefacts as anticipated in Sec. I. The joint geometry and color
graph is helpful as it exploits more information about the point
cloud. In order to construct such graph for a given point cloud
P , the weight of the edge between node i and j has to be
computed. A common option is the threshold Gaussian kernel
[21]:

wi,j =

8
>><

>>:

exp
⇣
�kXi�Xjk2

2✓2
X

� kCi�Cjk2

2✓2
C

⌘
if pj 2 �k(i)

or pi 2 �k(j)

0 otherwise
(4)

Here, ✓X and ✓C determine the relative contribution of
geometry and color in the construction of joint geometry and
color graph. �k(i) is the set of k nearest neighbors to point
pi, and �k(j) is the set of k nearest neighbors to point pj .
The resulting k-NN graph is denoted as G.

D. Geometry denoising
The objective of the proposed algorithm is to denoise the

geometry by exploiting the constructed joint geometry/color k-
NN graph G. The given noisy geometry attribute of each point
pi can be expressed as Xi = xi + n, xi being the unknown
true position of a point pi and n is the geometry noise, with
Xi, xi, n 2 R3. The objective is to estimate xi for each point
in a point cloud. This can be performed using the proposed
denoising technique based on SGW. After the construction of
an undirected graph G using Eq. 4 and defining the graph
Laplacian L from W, we take the SGW transform using low
order polynomials to establish tight vertex localization of SGW
coefficients. For each SGW bands i.e.,  Xi(s(i)) for 1  i 
I , SGW coefficients are computed for the corresponding noisy
signal Xi and preserve all the scaling and wavelet coefficients
that corresponds to a low frequency wavelet band s. Denoising
of  Xi(s(i), n) is then performed by soft-thresholding [22]



based on the property that energy of the signal is concentrated
in the low frequency spectral wavelet bands as anticipated in
Sec. I and shown in Fig. 2. In the last, an inverse spectral
wavelet transform of the denoised SGW coefficients  ⇤

Xi
(s(i))

is taken to obtain the denoised point cloud Q.
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Fig. 2: (a) Noisy Asterix model with µ = 0,� = 0.2 (b)
Normalized energy of  Xi(s(i), n), where 1  i  I and
n = 1. . . .N.

III. EXPERIMENTAL RESULTS

A. Evaluation metrics

The metrics used for the performance evaluation of the
proposed algorithm are the same as in [23]. Assume that P
and Q represent the geometry of the original and denoised
point cloud respectively, where P = {pi}N1

i=1 Q={qi}N2
i=1, such

that pi, qi 2 R3.
1) Mean-square-error (MSE): It is computed as an average

of the squared Euclidean distance between each point
in P and its corresponding nearest point in Q, and also
between each point in Q and its corresponding nearest
point in P:

MSE =
1

2N1

X

pi2P
min
qi2Q

kpi � qik22 +
1

2N2

X

qi2Q
min
pi2P

kqi � pik22

(5)
2) Mean city-block distance (MCD): MCD uses l1 norm

instead of l2 norm.

MCD =
1

2N1

X

pi2P
min
qi2Q

kpi�qik+
1

2N2

X

qi2Q
min
pi2P

kqi�pik (6)

B. Experimental setup

We set I = 6 wavelet decomposition levels, and preserve
the wavelet coefficients of s(1) scale and then add with the
wavelet coefficients which are above the threshold ⌧ for the
corresponding noise level in the s(i) for 2  i  I . In order to
denoise the point cloud locally by approximating the spectral
wavelet coefficients, the Chebyshev polynomial approximation
order is set to k/2 for a k-NN graph. All the parameters used
in this paper are given in Table I.

TABLE I: Parameter values used for the proposed, MSGW
[12], IBR [6] and RPSM [10].

Parameter Proposed MSGW [12] IBR [6] RPSM [10]

k 30 60 20 10
✓X 0.8 – – –
✓C 0.2 – – –

� – – 0.50 (� = 0.2, 0.3)
0.70 (� = 0.4) –

⌧
0.2 (� = 0.2)
0.3 (� = 0.3)
0.4 (� = 0.4)

0.2 (� = 0.2)
0.3 (� = 0.3)
0.4 (� = 0.4)

– –
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Fig. 3: Arco Valentino model. (a) Noisy input, denoised
results by (b) Proposed algorithm, (c) MSGW [12] applied
to outlier-free input, and (d) IBR performed after the outlier
removal step [6].
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Fig. 4: Palazzo Carignano model. (a) Noisy input, denoised
results by (b) Proposed algorithm, (c) MSGW [12] applied
to outlier-free input, and (d) IBR performed after the outlier
removal step [6].



(a) (b) (c) (d) (e)

Fig. 5: Point cloud models with color: (a) ground-truth, (b) noisy input (µ = 0 and � = 0.3), denoised results by (c) proposed
algorithm, (d) MSGW [12], and (e) IBR [6].

C. Denoising of real-world point clouds

We show a visual comparison for the point cloud denoised
by the proposed algorithm with a graph constructed from only
geometry and regularization as in [6] , as well as the algorithm
described in [12]. The experiment is performed on real-world
natural point clouds, for which we do not have a noiseless
reference, hence the results are only qualitative. Fig. 3-a and
Fig. 4-a show the point clouds with real noise; it can be seen
that the points with same color are typically spread in a small
neighborhood during the acquisition process, which may blur
the details. Fig. 3-b and Fig. 4-b report the resulting denoised
point cloud using proposed algorithm. Here the noisy points
are moved close to their original position by exploiting the
correlation of their geometry and color, hence preserving the
details which were hidden in the noisy point cloud. Fig. 3-c
and Fig. 4-c show the denoised point cloud using [12]; it can
be seen that the algorithm is less effective at denoising the
geometry even after applying the outlier removal step prior to
perform denoising. Fig. 3-d and Fig. 4-d show the denoised
output using IBR [6] applied to the outlier-free input; it can be
seen in same region that, using no color information, the noisy
points are not moved to their correct location, enlarging gaps
and generally providing a noisier result near object boundaries.

This algorithm is iterative and for real-world point cloud it is
very computationally expensive; moreover the outlier removal
step is required for both MSGW and IBR which makes these
algorithm more computational complex.

D. Denoising of synthetic point clouds
The proposed denoising approach has also been applied to

noise-free point clouds from the Greyc dataset [24], corrupted
with zero-mean Gaussian synthetic geometry noise applied to
the points with � = 0.2, 0.3 and 0.4. In Fig. 5, the results
are shown in two rows for 4arms monstre and Asterix models
respectively. The first row of figures for each point cloud in
Fig. 5 is the natural representation of the point cloud, where
the artifacts (i.e. creation of holes) in the denoised point cloud
using MSGW and IBR with respect to proposed algorithm can
be clearly seen. Moreover, the second and fourth rows provide
an alternative view; they are the zoomed-in versions of the
same point clouds displayed with the same size as in the first
and third row. This type of visualization is more sparse and
allows to better discriminate the noise removal and fine details
at the boundaries. Fig. 5-a shows the noise-free point cloud
models. Fig. 5-b shows the noisy point clouds with � = 0.3.
The denoised point clouds obtained by the proposed algorithm
are shown in Fig. 5-c; it can be seen that the geometry noise



TABLE II: MSE and MCD comparison of various algorithms for Greyc dataset.

Gaussian Noise Methods 4arms
monstre Asterix Cable

car Dragon Duck Green
Dinasour

Green
monster Horse Jaguar Long

Diansour Mario Mario
car

Pokeman
ball Rabbit Red

horse Statue Average

MSE

� = 0.2

Proposed 0.35 0.27 0.20 0.20 0.73 0.36 0.17 0.41 0.13 0.16 0.13 0.13 0.38 0.37 0.21 0.36 0.29
MSGW[12] 0.36 0.27 0.23 0.23 0.85 0.37 0.18 0.43 0.14 0.17 0.14 0.14 0.36 0.37 0.23 0.37 0.30
IBR [6] 0.38 0.30 0.29 0.31 0.63 0.41 0.23 0.45 0.20 0.24 0.19 0.19 0.41 0.40 0.30 0.37 0.33

� = 0.3

Proposed 0.36 0.27 0.22 0.21 0.76 0.37 0.18 0.42 0.14 0.17 0.14 0.15 0.40 0.38 0.22 0.36 0.30
MSGW[12] 0.38 0.28 0.24 0.24 0.92 0.39 0.18 0.44 0.15 0.18 0.15 0.15 0.40 0.40 0.25 0.38 0.32
IBR [6] 0.39 0.30 0.30 0.32 0.71 0.42 0.24 0.46 0.20 0.25 0.20 0.19 0.44 0.42 0.32 0.38 0.35

� = 0.4

Proposed 0.37 0.27 0.26 0.28 1.15 0.40 0.19 0.44 0.15 0.19 0.16 0.16 0.41 0.41 0.28 0.38 0.34
MSGW[12] 0.38 0.28 0.30 0.32 1.35 0.43 0.21 0.45 0.16 0.21 0.17 0.17 0.41 0.41 0.32 0.39 0.37
IBR [6] 0.39 0.31 0.31 0.33 1.16 0.43 0.24 0.45 0.21 0.26 0.21 0.20 0.46 0.42 0.33 0.38 0.38

MCD

� = 0.2

Proposed 0.51 0.39 0.30 0.30 1.07 0.52 0.25 0.60 0.19 0.24 0.19 0.19 0.56 0.53 0.31 0.52 0.42
MSGW[12] 0.53 0.39 0.33 0.33 1.24 0.53 0.26 0.61 0.20 0.25 0.21 0.20 0.52 0.54 0.34 0.53 0.44
IBR [6] 0.55 0.43 0.42 0.44 0.94 0.59 0.33 0.65 0.29 0.35 0.28 0.28 0.61 0.59 0.44 0.54 0.48

� = 0.3

Proposed 0.52 0.39 0.32 0.31 1.13 0.54 0.27 0.61 0.21 0.25 0.21 0.21 0.59 0.55 0.32 0.53 0.44
MSGW[12] 0.54 0.40 0.35 0.35 1.36 0.56 0.27 0.63 0.21 0.26 0.22 0.22 0.58 0.58 0.36 0.55 0.47
IBR [6] 0.56 0.44 0.43 0.46 1.06 0.61 0.34 0.66 0.30 0.36 0.29 0.28 0.65 0.61 0.46 0.55 0.50

� = 0.4

Proposed 0.54 0.40 0.38 0.40 1.68 0.58 0.28 0.63 0.23 0.28 0.23 0.23 0.60 0.59 0.40 0.53 0.50
MSGW[12] 0.54 0.41 0.43 0.45 1.96 0.61 0.31 0.64 0.24 0.30 0.24 0.25 0.61 0.59 0.47 0.56 0.54
IBR [6] 0.57 0.45 0.44 0.47 1.71 0.62 0.35 0.68 0.31 0.37 0.30 0.29 0.67 0.61 0.48 0.55 0.55

TABLE III: MSE and MCD comparison between proposed algorithm and RPSM [10] on sub-sampled Greyc dataset for different
noise levels.

Gaussian Noise Methods 4arms
monstre Asterix Cable

car Dragon Duck Green
Dinasour

Green
monster Horse Jaguar Long

Diansour Mario Mario
car

Pokeman
ball Rabbit Red

horse Statue Average

MSE

� = 0.2
Proposed 0.51 0.34 0.73 0.52 0.80 0.58 0.49 0.65 0.38 0.47 0.45 0.44 0.41 0.65 0.63 0.52 0.54
RPSM [10] 0.90 0.74 1.25 1.02 1.33 0.99 0.87 1.19 0.78 0.74 1.02 0.86 0.73 0.94 1.18 1.03 0.97

� = 0.3
Proposed 0.54 0.36 0.77 0.53 0.84 0.61 0.51 0.68 0.39 0.49 0.46 0.47 0.44 0.68 0.66 0.54 0.56
RPSM [10] 0.95 0.76 1.34 1.07 1.35 1.04 0.93 1.24 0.83 0.80 1.07 0.92 0.79 1.00 1.26 1.06 1.03

� = 0.4
Proposed 0.56 0.37 0.80 0.56 0.87 0.64 0.52 0.71 0.41 0.50 0.48 0.48 0.46 0.69 0.68 0.56 0.58
RPSM [10] 0.98 0.79 1.41 1.13 1.39 1.12 0.98 1.28 0.89 0.86 1.13 0.98 0.90 1.05 1.31 1.11 1.08

MCD

� = 0.2
Proposed 0.75 0.50 1.08 0.76 1.19 0.85 0.72 0.96 0.56 0.70 0.66 0.65 0.60 0.95 0.93 0.76 0.79
RPSM [10] 1.44 1.04 1.93 1.57 1.91 1.60 1.32 1.79 1.18 1.24 1.49 1.25 1.52 1.63 1.79 1.56 1.52

� = 0.3
Proposed 0.79 0.52 1.14 0.79 1.25 0.90 0.75 1.00 0.58 0.72 0.68 0.69 0.65 0.99 0.98 0.80 0.83
RPSM [10] 1.51 1.08 2.05 1.63 1.94 1.67 1.41 1.87 1.24 1.32 1.56 1.34 1.60 1.72 1.90 1.61 1.59

� = 0.4
Proposed 0.82 0.53 1.18 0.82 1.30 0.95 0.77 1.05 0.60 0.74 0.70 0.70 0.67 1.02 1.00 0.82 0.85
RPSM [10] 1.55 1.12 2.15 1.71 2.00 1.77 1.47 1.92 1.32 1.40 1.63 1.41 1.74 1.78 1.97 1.66 1.66

has been regularized and the noisy points are moved close
to their original positions with less adverse effect of creating
holes. Fig. 5-d shows the denoised output of MSGW [12]; it
can be seen that the geometry is not denoised properly and
also causes the opening of holes in the resulting output. The
resulting denoised point clouds using the IBR algorithm [6]
are shown in 5-e. It can be seen that the geometry is not quite
as much regularized with respect to the proposed algorithm,
while still better than MSGW [12]; moreover, the resulting
point cloud of the IBR algorithm [6] has big holes; the reason
is the value of � parameter, higher � is required for denoising
well, but it causes severe artefacts. Overall, it can be seen
from the qualitative results of both real-world and synthetic
point clouds that the point clouds denoised by the proposed
algorithm have better quality and fewer artefacts.

The comparative analysis has also been performed with
respect to RPSM [10] and the results are shown in Fig. 6.
In this particular case, we performed the experiment on sub-
sampled point clouds from the same dataset due the large
memory requirement of RPSM. The sub-sampling performed
here is on spatial basis, where the average minimum distance
between the two points in each point cloud is set to 0.80. The

number of points in each point cloud model of Greyc dataset
[24] is around 20,000 on average. The proposed algorithm
and RPSM [10] are applied to the sub-sampled noisy inputs
shown in Fig. 5-b; the ground-truth point clouds are shown
in Fig. 5-a. The denoised outputs of the proposed algorithm
are shown in Fig. 6-a and Fig. 6-c, and the resulting denoised
outputs of RPSM [10] are shown in Fig. 6-b and Fig. 6-d; it
can be seen that RPSM [10] over-regularized the sub-sampled
point clouds which tends to generate the holes in the resulting
denoised point cloud.

E. Objective evaluation on Greyc color mesh database

The proposed method has also been verified via quantitative
evaluation on the complete Greyc dataset. Each point cloud has
been corrupted with zero-mean Gaussian synthetic geometry
noise, applied to each point with � = 0.2, 0.3 and 0.4. The
MSE and MCD comparisons between the proposed algorithm
and the denoising approaches used in IBR [6] using total
variation regularization and MSGW in [12] is shown in Table
II. The results show that the proposed denoising technique
performed better than MSGW [12] and IBR [6] for all the
models for noise level � = 0.2, 0.3 and 0.4 except duck (where



IBR performed better) and Pokeman ball (where MSGW
performed better).

The objective evaluation has also been performed for the
comparison between the proposed algorithm and RPSM [10]
on the sub-sampled point cloud models of Greyc dataset [24].
Table III shows the MSE and MCD comparison; it can be seen
that the proposed algorithm outperformed the RPSM [10] in
terms of both metrics for � = 0.2, 0.3 and 0.4.

The average MSE and MCD (last column in Table II and
Table III) shows that the gain is larger as the noise level
increases, showing that the proposed denoising methods is
indeed better at removing geometry noise.

(a) (b)

(c) (d)

Fig. 6: 4arms monstre model: (a) Denoised results by pro-
posed algorithm, (b) RPSM [10]. Asterix model: (c) denoised
results by proposed algorithm, and (d) RSPM [10].

IV. CONCLUSIONS

We proposed a novel and efficient point cloud denois-
ing technique in the frequency domain using spectral graph
wavelet transform. Our approach takes advantage of correla-
tion between the color attribute and geometry of points and
use them jointly for denoising the geometry of a point cloud.

For subjective evaluation we showed that the proposed
algorithm performs well on real-world point clouds, per-
forming geometry denoising and avoiding artifacts typical of
other techniques. We also performed an extensive quantita-
tive analysis on each models in Greyc datasets, evaluating
the performance of the proposed algorithm using MSE and
MCD metrics. Both subjective and objective results show that
the proposed technique performs very well for point cloud
denoising, outperforming state-of-the-art techniques.
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